

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Detuils	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	10MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf874at-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	PDIP Pin#	PLCC Pin#	TQFP Pin#	QFN Pin#	I/O/P Type	Buffer Type	Description
							PORTB is a bidirectional I/O port. PORTB can be
							software programmed for internal weak pull-up on all
							inputs.
RB0/INT	33	36	8	9		TTL/ST ⁽¹⁾	
RB0					I/O		Digital I/O.
INT					I		External interrupt.
RB1	34	37	9	10	I/O	TTL	Digital I/O.
RB2	35	38	10	11	I/O	TTL	Digital I/O.
RB3/PGM	36	39	11	12		TTL	
RB3					I/O		Digital I/O.
PGM					I		Low-voltage ICSP programming enable pin.
RB4	37	41	14	14	I/O	TTL	Digital I/O.
RB5	38	42	15	15	I/O	TTL	Digital I/O.
RB6/PGC	39	43	16	16		TTL/ST ⁽²⁾	
RB6					I/O		Digital I/O.
PGC					I		In-circuit debugger and ICSP programming clock.
RB7/PGD	40	44	17	17		TTL/ST ⁽²⁾	
RB7					I/O		Digital I/O.
PGD					I/O		In-circuit debugger and ICSP programming data.
Legend: I = input	0	= outpu	t	I/O = i	input/outp	out F	p = power

TABLE 1-3: PIC16F874A/877A PINOUT DESCRIPTION (CONTINUED)

Legend: I = input O = output — = Not used TTL = TTL input

ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

TABLE 1-3:			1			``````````````````````````````````````	ONTINUED)
Pin Name	PDII Pin#		TQFP Pin#	QFN Pin#	I/O/P Type	Buffer Type	Description
							PORTD is a bidirectional I/O port or Parallel Slave
							Port when interfacing to a microprocessor bus.
RD0/PSP0	19	21	38	38		ST/TTL ⁽³⁾	
RD0					I/O		Digital I/O.
PSP0					I/O		Parallel Slave Port data.
RD1/PSP1	20	22	39	39		ST/TTL ⁽³⁾	
RD1					I/O		Digital I/O.
PSP1					I/O	(2)	Parallel Slave Port data.
RD2/PSP2	21	23	40	40		ST/TTL ⁽³⁾	
RD2 PSP2					I/O I/O		Digital I/O. Parallel Slave Port data.
-					1/0	o = (=== (3)	Parallel Slave Port data.
RD3/PSP3	22	24	41	41	I/O	ST/TTL ⁽³⁾	
RD3 PSP3					1/O 1/O		Digital I/O. Parallel Slave Port data.
	07	20	0	0	1/0	ST/TTL ⁽³⁾	
RD4/PSP4 RD4	27	30	2	2	I/O	51/11L*/	Digital I/O.
PSP4					1/O		Parallel Slave Port data.
RD5/PSP5	28	31	3	3		ST/TTL ⁽³⁾	
RD5	20	51	5	5	I/O	31/112.7	Digital I/O.
PSP5					I/O		Parallel Slave Port data.
RD6/PSP6	29	32	4	4		ST/TTL ⁽³⁾	
RD6	20	02	-	-	I/O	OWITE	Digital I/O.
PSP6					I/O		Parallel Slave Port data.
RD7/PSP7	30	33	5	5		ST/TTL ⁽³⁾	
RD7			Ũ	Ŭ	I/O	0.,	Digital I/O.
PSP7					I/O		Parallel Slave Port data.
							PORTE is a bidirectional I/O port.
RE0/RD/AN5	8	9	25	25		ST/TTL(3)	
RE0	_	_	_		I/O		Digital I/O.
RD					I		Read control for Parallel Slave Port.
AN5					I		Analog input 5.
RE1/WR/AN6	9	10	26	26		ST/TTL ⁽³⁾	
RE1					I/O		Digital I/O.
WR							Write control for Parallel Slave Port.
AN6					I	(2)	Analog input 6.
RE2/CS/AN7	10	11	27	27		ST/TTL ⁽³⁾	
RE2 CS					I/O		Digital I/O. Chip coloct control for Parallel Slove Part
AN7							Chip select control for Parallel Slave Port. Analog input 7.
Vss	10.0	1 13, 34	6.20	6 20	P		
v	12, 3	1 13, 34	6, 29	6, 30, 31			Ground reference for logic and I/O pins.
Vdd	11, 3	2 12, 35	7, 28	7, 8, 28, 29	Р	—	Positive supply for logic and I/O pins.
NC	<u> </u>	1, 17,	12,13,	13		_	These pins are not internally connected. These pins
	1	28, 40	33, 34	-			should be left unconnected.

TARI E 1-3. PIC16E8744/8774 PINOLIT DESCRIPTION (CONTINUED)

= input I. — = Not used TTL = TTL input

I/O = input/output I ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

An example of the complete four-word write sequence is shown in Example 3-4. The initial address is loaded into the EEADRH:EEADR register pair; the four words of data are loaded using indirect addressing.

EXAMPLE 3-4: WRITING TO FLASH PROGRAM MEMORY

; This write routine assumes the following: ; 1. A valid starting address (the least significant bits = '00') is loaded in ADDRH:ADDRL ; 2. The 8 bytes of data are loaded, starting at the address in DATADDR ; 3. ADDRH, ADDRL and DATADDR are all located in shared data memory 0x70 - 0x7f ; BSF STATUS, RP1 ; ; Bank 2 BCF STATUS, RPO ; Load initial address MOVF ADDRH,W MOVWF EEADRH MOVF ADDRL,W ; MOVWF EEADR MOVF DATAADDR,W ; Load initial data address MOVWF FSR ; Load first data byte into lower LOOP MOVF INDF,W MOVWF EEDATA ; INCF FSR,F ; Next byte INDF,W MOVE ; Load second data byte into upper MOVWF EEDATH : INCF FSR,F ; ; Bank 3 STATUS, RPO BSF EECON1, EEPGD BSF ; Point to program memory ; Enable writes BSF EECON1,WREN BCF INTCON, GIE ; Disable interrupts (if using) MOVLW 55h ; Start of required write sequence: MOVWF EECON2 ; Write 55h MOVLW AAh ; Write AAh MOVWF EECON2 BSF EECON1,WR ; Set WR bit to begin write NOP ; Any instructions here are ignored as processor ; halts to begin write sequence NOP ; processor will stop here and wait for write complete ; after write processor continues with 3rd instruction EECON1,WREN BCF ; Disable writes INTCON, GIE ; Enable interrupts (if using) BSF BCF STATUS, RPO ; Bank 2 INCE EEADR, F ; Increment address ; Check if lower two bits of address are `00' MOVF EEADR,W ANDLW ; Indicates when four words have been programmed 0x03 XORLW 0x03 ; BTFSC STATUS,Z ; Exit if more than four words, GOTO ; Continue if less than four words LOOP

4.0 I/O PORTS

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Additional information on I/O ports may be found in the PIC[®] Mid-Range Reference Manual (DS33023).

4.1 PORTA and the TRISA Register

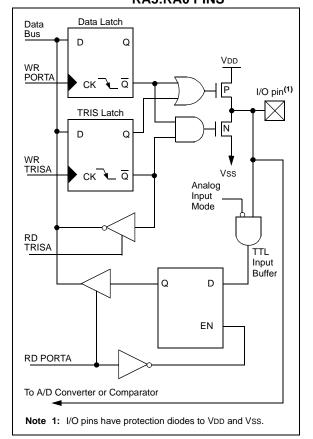
PORTA is a 6-bit wide, bidirectional port. The corresponding data direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin).

Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, the value is modified and then written to the port data latch.

Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin. The RA4/T0CKI pin is a Schmitt Trigger input and an open-drain output. All other PORTA pins have TTL input levels and full CMOS output drivers.

Other PORTA pins are multiplexed with analog inputs and the analog VREF input for both the A/D converters and the comparators. The operation of each pin is selected by clearing/setting the appropriate control bits in the ADCON1 and/or CMCON registers.

Note:	On a Power-on Reset, these pins are con-							
	figured as analog inputs and read as '0'.							
	The comparators are in the off (digital)							
	state.							


The TRISA register controls the direction of the port pins even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

EXAMPLE 4-1: INITIALIZING PORTA

BCF	STATUS,		;
BCF	STATUS,	RP1	; Bank0
CLRF	PORTA		; Initialize PORTA by
			; clearing output
			; data latches
BSF	STATUS,	RP0	; Select Bank 1
MOVLW	0x06		; Configure all pins
MOVWF	ADCON1		; as digital inputs
MOVLW	0xCF		; Value used to
			; initialize data
			; direction
MOVWF	TRISA		; Set RA<3:0> as inputs
			; RA<5:4> as outputs
			; TRISA<7:6>are always
			; read as '0'.

BLOCK DIAGRAM OF RA3:RA0 PINS

Name	Bit#	Buffer	Function
RB0/INT	bit 0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1	bit 1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit 2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3/PGM ⁽³⁾	bit 3	TTL	Input/output pin or programming pin in LVP mode. Internal software programmable weak pull-up.
RB4	bit 4	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB5	bit 5	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB6/PGC	bit 6	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change) or in-circuit debugger pin. Internal software programmable weak pull-up. Serial programming clock.
RB7/PGD	bit 7	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change) or in-circuit debugger pin. Internal software programmable weak pull-up. Serial programming data.

TABLE 4-3:PORTB FUNCTIONS

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode or in-circuit debugger.

3: Low-Voltage ICSP Programming (LVP) is enabled by default which disables the RB3 I/O function. LVP must be disabled to enable RB3 as an I/O pin and allow maximum compatibility to the other 28-pin and 40-pin mid-range devices.

TABLE 4-4: S	SUMMARY OF REGISTERS ASSOCIATED WITH PORTB
--------------	--

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POR, I		Valu all o Res	ther
06h, 106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX :	xxxx	uuuu	uuuu
86h, 186h	TRISB	PORTB	PORTB Data Direction Register 1111 1111 1111 1111 1111 1111 1111 1							1111			
81h, 181h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1	1111	1111	1111

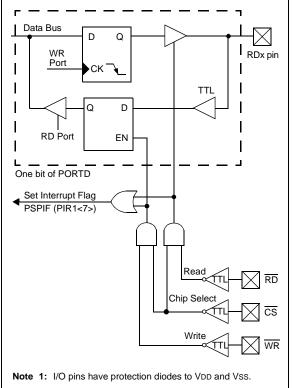
Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

4.6 Parallel Slave Port

The Parallel Slave Port (PSP) is not implemented on the PIC16F873A or PIC16F876A.

PORTD operates as an 8-bit wide Parallel Slave Port, or microprocessor port, when control bit PSPMODE (TRISE<4>) is set. In Slave mode, it is asynchronously readable and writable by the external world through RD control input pin, RE0/RD/AN5, and WR control input pin, RE1/WR/AN6.

The PSP can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting bit PSPMODE enables port pin RE0/RD/AN5 to be the RD input, RE1/WR/AN6 to be the WR input and RE2/CS/AN7 to be the CS (Chip Select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (set). The A/D port configuration bits, PCFG3:PCFG0 (ADCON1<3:0>), must be set to configure pins RE2:RE0 as digital I/O.


There are actually two 8-bit latches: one for data output and one for data input. The user writes 8-bit data to the PORTD data latch and reads data from the port pin latch (note that they have the same address). In this mode, the TRISD register is ignored since the external device is controlling the direction of data flow.

A write to the PSP occurs when both the \overline{CS} and \overline{WR} lines are first detected low. When either the \overline{CS} or \overline{WR} lines become high (level triggered), the Input Buffer Full (IBF) status flag bit (TRISE<7>) is set on the Q4 clock cycle, following the next Q2 cycle, to signal the write is complete (Figure 4-11). The interrupt flag bit, PSPIF (PIR1<7>), is also set on the same Q4 clock cycle. IBF can only be cleared by reading the PORTD input latch. The Input Buffer Overflow (IBOV) status flag bit (TRISE<5>) is set if a second write to the PSP is attempted when the previous byte has not been read out of the buffer.

A read from the PSP occurs when both the CS and RD lines are first detected low. The Output Buffer Full (OBF) status flag bit (TRISE<6>) is cleared immediately (Figure 4-12), indicating that the PORTD latch is waiting to be read by the external bus. When either the CS or RD pin becomes high (level triggered), the interrupt flag bit PSPIF is set on the Q4 clock cycle, following the next Q2 cycle, indicating that the read is complete. OBF remains low until data is written to PORTD by the user firmware. When not in PSP mode, the IBF and OBF bits are held clear. However, if flag bit IBOV was previously set, it must be cleared in firmware.

An interrupt is generated and latched into flag bit PSPIF when a read or write operation is completed. PSPIF must be cleared by the user in firmware and the interrupt can be disabled by clearing the interrupt enable bit PSPIE (PIE1<7>).

9.3.8 SLEEP OPERATION

In Master mode, all module clocks are halted and the transmission/reception will remain in that state until the device wakes from Sleep. After the device returns to normal mode, the module will continue to transmit/ receive data.

In Slave mode, the SPI Transmit/Receive Shift register operates asynchronously to the device. This allows the device to be placed in Sleep mode and data to be shifted into the SPI Transmit/Receive Shift register. When all 8 bits have been received, the MSSP interrupt flag bit will be set and if enabled, will wake the device from Sleep.

9.3.9 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

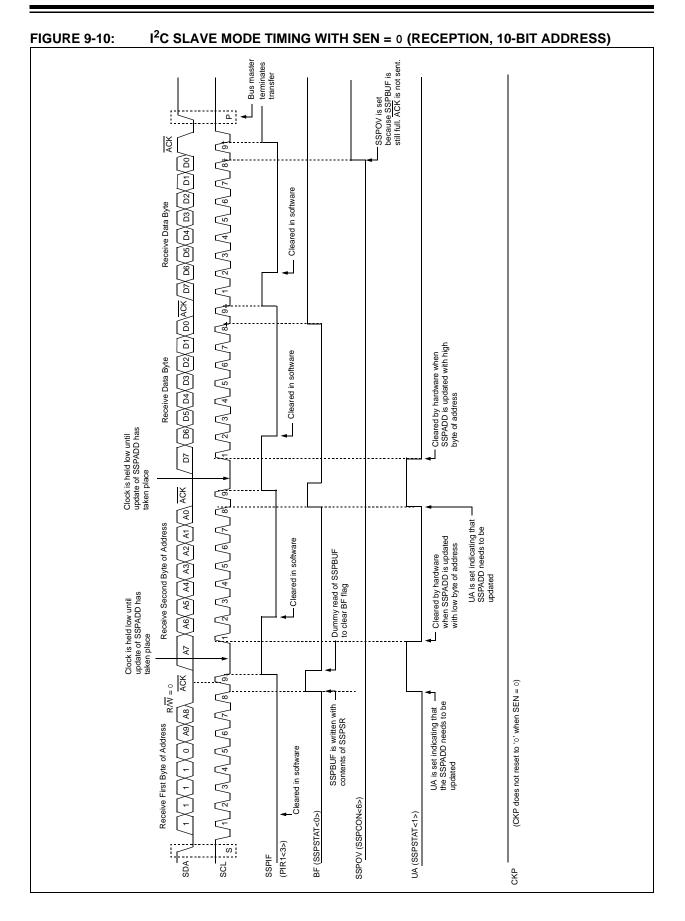
9.3.10 BUS MODE COMPATIBILITY

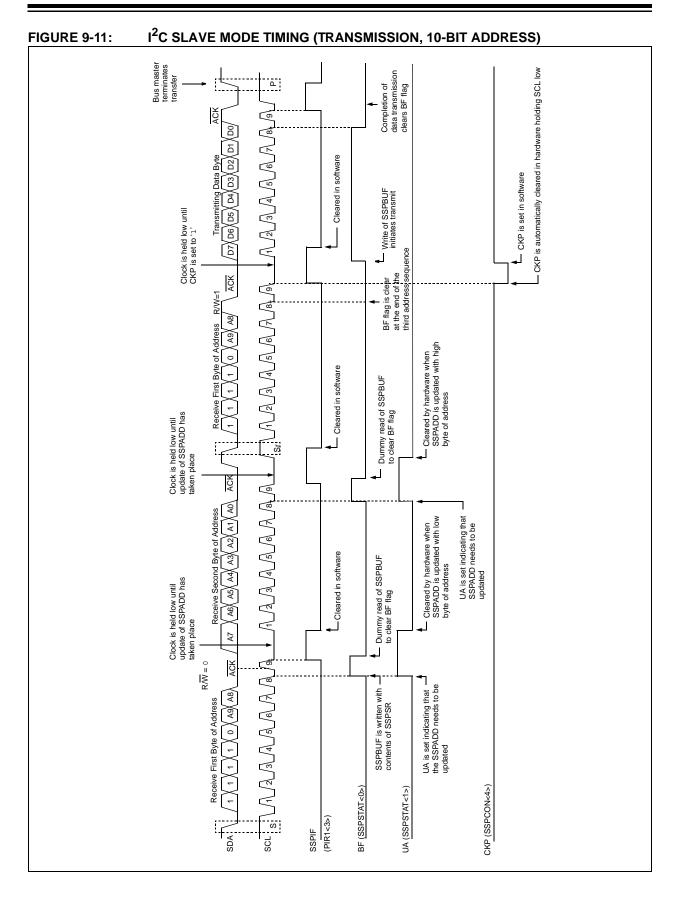
Table 9-1 shows the compatibility between the standard SPI modes and the states of the CKP and CKE control bits.

TABLE 9-1: SPI BUS MODES

Standard SPI Mode	Control Bits State					
Terminology	СКР	CKE				
0, 0	0	1				
0, 1	0	0				
1, 0	1	1				
1, 1	1	0				

There is also a SMP bit which controls when the data is sampled.


Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Valu POR,	e on BOR	Valu all o Res	ther
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000	000x	0000	000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
TRISC	PORTC D	ata Direc	tion Regis	ter					1111	1111	1111	1111
SSPBUF	Synchron	ous Seria	I Port Rec	eive Buffe	er/Transmit	Register			xxxx	xxxx	uuuu	uuuu
SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000	0000	0000	0000
TRISA	—	PORTA Data Direction Register							11	1111	11	1111
SSPSTAT	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	0000	0000	0000	0000


TABLE 9-2: REGISTERS ASSOCIATED WITH SPI OPERATION

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the MSSP in SPI mode.

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on 28-pin devices; always maintain these bits clear.

REGISTER 9-3:	SSPSTAT:	MSSP STA	TUS REG	SISTER (I ²	C MODE)	(ADDRESS	6 94h)			
	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0		
	SMP	CKE	D/A	Р	S	R/W	UA	BF		
	bit 7							bit 0		
bit 7	SMP: Slew	Rate Contro	l bit							
		or Slave mode								
		ate control dis					1 MHz)			
bit 6		ate control en		gn-speed n	100e (400 K	ΠΖ)				
bit 0		or Slave mode	<i>.</i>							
	1 = Enable	SMBus spec	ific inputs							
		e SMBus spe	cific inputs							
bit 5		Address bit								
	<u>In Master n</u> Reserved.	node:								
	In Slave me									
		es that the las	-							
bit 4	• = mulcate P: Stop bit	es that the las	si byte rece		Smilleu was	audiess				
511 4	•	es that a Stop	bit has be	en detected	last					
		t was not det								
	Note:	This bit is clo	eared on Re	eset and wh	nen SSPEN	is cleared.				
bit 3	S: Start bit									
		es that a Star t was not det		en detectec	llast					
	Note:	This bit is cl		eset and wh	nen SSPEN	is cleared				
bit 2	_	Write bit info								
511 2	In Slave me				y)					
	1 = Read									
	0 = Write									
	Note:	This bit hold only valid fro								
	In Master n									
	 1 = Transmit is in progress 0 = Transmit is not in progress 									
	Note:	ORing this b	-	, RSEN, PE	N, RCEN o	r ACKEN will	indicate if th	e MSSP is		
		in Idle mode								
bit 1	UA: Update	e Address (10	D-bit Slave i	mode only)						
		es that the us		•	address in	the SSPADE	D register			
		s does not ne	•	odated						
bit 0	BF: Buffer Full Status bit									
		In Transmit mode: 1 = Receive complete, SSPBUF is full								
	0 = Receive not complete, SSPBUF is empty									
	In Receive mode: 1 = Data Transmit in progress (does not include the \overline{ACK} and Stop bits), SSPBUF is full									
		ransmit in pro								
	Legend:									
	R = Reada	ble bit	W = W	ritable bit	U = Unir	nplemented	bit, read as '	0'		
	- n = Value		'1' = Bi			is cleared	x = Bit is u			

9.4.14 SLEEP OPERATION

While in Sleep mode, the I^2C module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from Sleep (if the MSSP interrupt is enabled).

9.4.15 EFFECT OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

9.4.16 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit (SSPSTAT<4>) is set, or the bus is Idle, with both the S and P bits clear. When the bus is busy, enabling the SSP interrupt will generate the interrupt when the Stop condition occurs.

In multi-master operation, the SDA line must be monitored for arbitration to see if the signal level is at the expected output level. This check is performed in hardware with the result placed in the BCLIF bit.

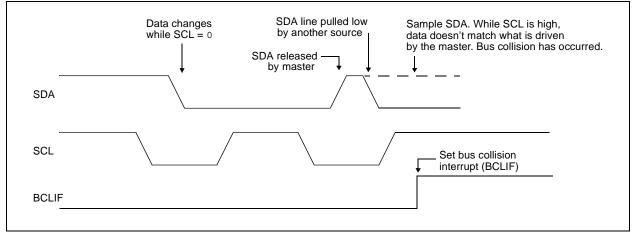
The states where arbitration can be lost are:

- · Address Transfer
- Data Transfer
- A Start Condition
- A Repeated Start Condition
- An Acknowledge Condition

9.4.17 MULTI -MASTER COMMUNICATION, BUS COLLISION AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDA pin, arbitration takes place when the master outputs a '1' on SDA by letting SDA float high and another master asserts a '0'. When the SCL pin floats high, data should be stable. If the expected data on SDA is a '1' and the data sampled on the SDA pin = 0, then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCLIF, and reset the I^2C port to its Idle state (Figure 9-25).

If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDA and SCL lines are deasserted and the SSPBUF can be written to. When the user services the bus collision Interrupt Service Routine and if the I^2C bus is free, the user can resume communication by asserting a Start condition.


If a Start, Repeated Start, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDA and SCL lines are deasserted and the respective control bits in the SSPCON2 register are cleared. When the user services the bus collision Interrupt Service Routine and if the I²C bus is free, the user can resume communication by asserting a Start condition.

The Master will continue to monitor the SDA and SCL pins. If a Stop condition occurs, the SSPIF bit will be set.

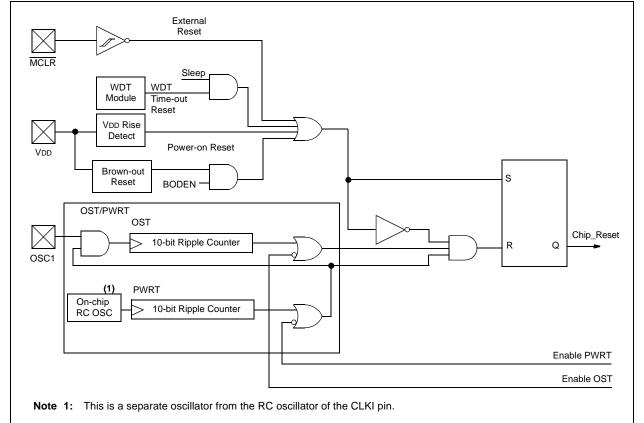
A write to the SSPBUF will start the transmission of data at the first data bit regardless of where the transmitter left off when the bus collision occurred.

In Multi-Master mode, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the I^2C bus can be taken when the P bit is set in the SSPSTAT register or the bus is Idle and the S and P bits are cleared.

FIGURE 9-25: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE

© 2001-2013 Microchip Technology Inc.

14.3 Reset


The PIC16F87XA differentiates between various kinds of Reset:

- Power-on Reset (POR)
- MCLR Reset during normal operation
- MCLR Reset during Sleep
- WDT Reset (during normal operation)
- WDT Wake-up (during Sleep)
- Brown-out Reset (BOR)

Some registers are not affected in any Reset condition. Their status is unknown on POR and unchanged in any other Reset. Most other registers are reset to a "Reset state" on Power-on Reset (POR), on the MCLR and WDT Reset, on MCLR Reset during Sleep and Brownout Reset (BOR). They are not affected by a WDT wake-up which is viewed as the resumption of normal operation. The TO and PD bits are set or cleared differently in different Reset situations as indicated in Table 14-4. These bits are used in software to determine the nature of the Reset. See Table 14-6 for a full description of Reset states of all registers.

A simplified block diagram of the on-chip Reset circuit is shown in Figure 14-4.

FIGURE 14-4: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

TABLE 15-2: PIC16	F87XA INSTRUCTION SET
-------------------	-----------------------

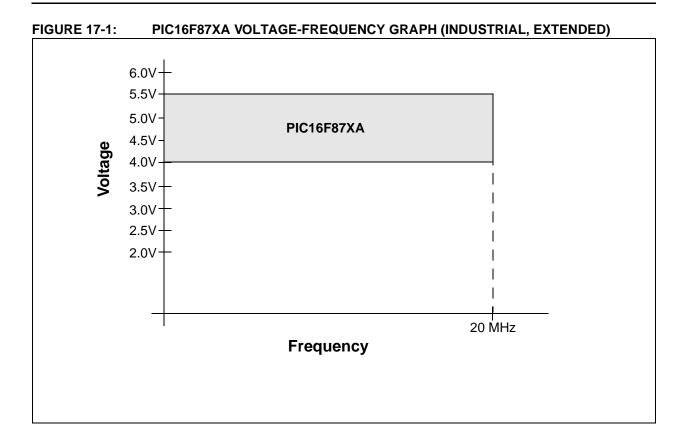
Mnemonic, Operands		Description	Cycles	14-Bit Opcode				Status	Notos
		Description	Cycles	MSb			LSb	Affected	Notes
BYTE-ORIENTED FILE REGISTER OPERATIONS									
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
		BIT-ORIENTED FILE	REGISTER OPER	ATION	١S				
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
		LITERAL AND CO	NTROL OPERAT	IONS					
ADDLW	k	Add Literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND Literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call Subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to Address	2	10	1kkk	kkkk	kkkk	-	
IORLW	k	Inclusive OR Literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move Literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from Interrupt	2	00	0000	0000	1001		
RETLW	k	Return with Literal in W	2	11	01xx	kkkk			
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from Literal	1	11		kkkk		C,DC,Z	
XORLW	k	Exclusive OR Literal with W	1	11	1010	kkkk		Z	
Note 1:		I/O register is modified as a function of itse							

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTE, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

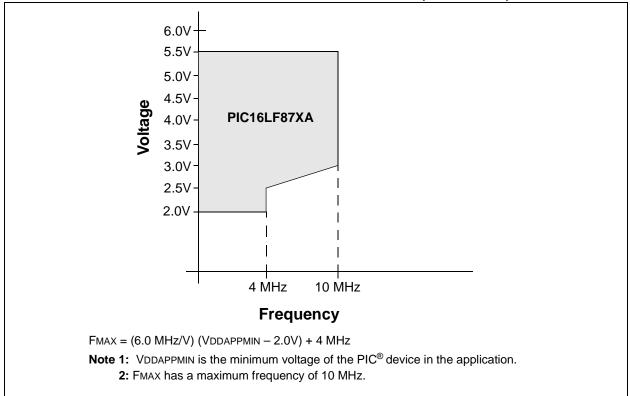
2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 module.

3: If Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

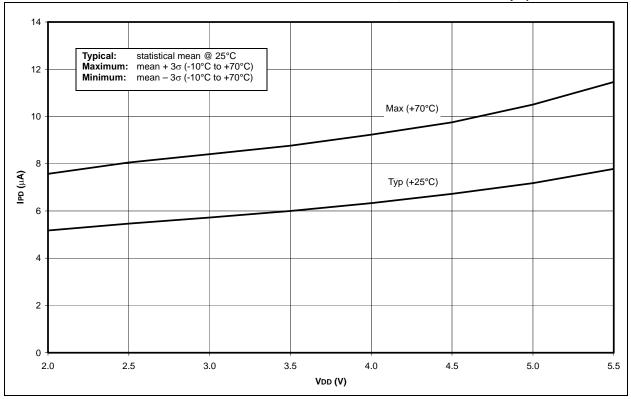
Note: Additional information on the mid-range instruction set is available in the PIC[®] Mid-Range MCU Family Reference Manual (DS33023).


DECFSZ	Decrement f, Skip if 0		
Syntax:	[<i>label</i>] DECFSZ f,d		
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$		
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0		
Status Affected:	None		
Description:	The contents of register 'f' are decremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', then a NOP is executed instead, making it a 2 TCY instruction.		

INCFSZ	Increment f, Skip if 0			
Syntax:	[label] INCFSZ f,d			
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$			
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0			
Status Affected:	None			
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruc- tion is executed. If the result is '0', a NOP is executed instead, making it a 2 TCY instruction.			


GOTO	Unconditional Branch			
Syntax:	[<i>label</i>] GOTO k			
Operands:	$0 \le k \le 2047$			
Operation:	$k \rightarrow PC<10:0>$ PCLATH<4:3> \rightarrow PC<12:11>			
Status Affected:	None			
Description:	GOTO is an unconditional branch. The eleven-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two-cycle instruction.			

IORLW	Inclusive OR Literal with W		
Syntax:	[<i>label</i>] IORLW k		
Operands:	$0 \le k \le 255$		
Operation:	(W) .OR. $k \rightarrow$ (W)		
Status Affected:	Z		
Description:	The contents of the W register are OR'ed with the eight-bit literal 'k'. The result is placed in the W register.		


INCF	Increment f	IORWF	Inclusive OR W with f
Syntax:	[label] INCF f,d	Syntax:	[<i>label</i>] IORWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$	Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(f) + 1 \rightarrow (destination)	Operation:	(W) .OR. (f) \rightarrow (destination)
Status Affected:	Z	Status Affected:	Z
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.	Description:	Inclusive OR the W register with register 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

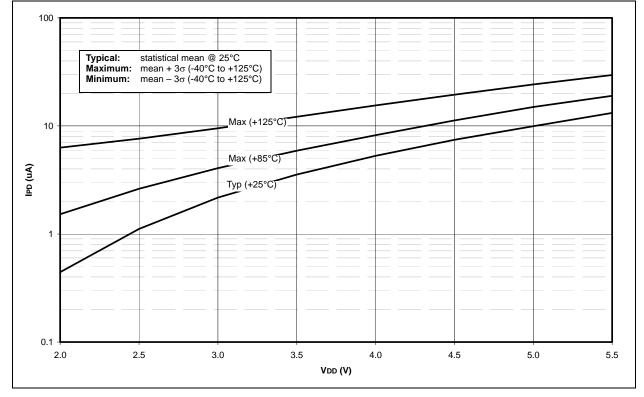
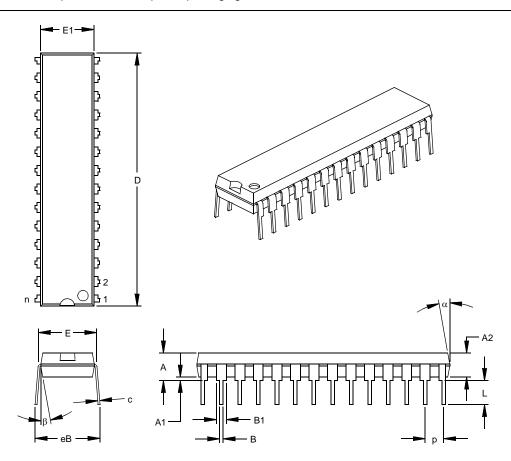


FIGURE 18-11: TYPICAL AND MAXIMUM \triangle ITMR1 vs. VDD OVER TEMPERATURE (-10°C TO +70°C, TIMER1 WITH OSCILLATOR, XTAL = 32 kHz, C1 AND C2 = 47 pF)



28-Lead Skinny Plastic Dual In-line (SP) – 300 mil (PDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES*		N	IILLIMETERS	
Dimer	ision Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.100			2.54	
Top to Seating Plane	А	.140	.150	.160	3.56	3.81	4.06
Molded Package Thickness	A2	.125	.130	.135	3.18	3.30	3.43
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	E	.300	.310	.325	7.62	7.87	8.26
Molded Package Width	E1	.275	.285	.295	6.99	7.24	7.49
Overall Length	D	1.345	1.365	1.385	34.16	34.67	35.18
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.040	.053	.065	1.02	1.33	1.65
Lower Lead Width	В	.016	.019	.022	0.41	0.48	0.56
Overall Row Spacing	§ eB	.320	.350	.430	8.13	8.89	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

.010" (0.254mm) per side. JEDEC Equivalent: MO-095

Drawing No. C04-070

Special Function Registers Special Function Registers (SFRs)	
Speed, Operating	
SPI Mode	
Associated Registers	79
Bus Mode Compatibility	
Effects of a Reset	
Enabling SPI I/O	75
Master Mode	
Master/Slave Connection	
Serial Clock	
Serial Data In	
Serial Data Out	
Slave Select	
Slave Select Synchronization	
Sleep Operation	
SPI Clock	
Typical Connection	
SPI Mode Requirements	
SS	71
SSP	
SPI Master/Slave Connection	
SSPADD Register	
SSPBUF Register	
SSPCON Register	
SSPCON2 Register SSPIF	
	-
SSPOV	
SSPSTAT Register	
R/W Bit	
Overflows	
Underflow	
Status Register	
C Bit	22
DC Bit	
IRP Bit	
PD Bit	
RP1:RP0 Bits	,
TO Bit	
Z Bit	
Synchronous Master Reception	
Associated Registers	123
Synchronous Master Transmission	
Associated Registers	122
Synchronous Serial Port Interrupt	
Synchronous Slave Reception	
Associated Registers	125
Synchronous Slave Transmission	
Associated Registers	125
-	
T	
T1CKPS0 Bit	
T1CKPS1 Bit	-
T1CON Register	
T1OSCEN Bit	
T1SYNC Bit	
T2CKPS0 Bit	
T2CKPS1 Bit	61

 T2CON Register
 19

 TAD
 131

 Time-out Sequence
 148

Timer0	53
Associated Registers	55
Clock Source Edge Select (T0SE Bit)	23
Clock Source Select (T0CS Bit)	23
External Clock	54
Interrupt	
Overflow Enable (TMR0IE Bit)	
Overflow Flag (TMR0IF Bit)	
Overflow Interrupt	
Prescaler	
Т0СКІ	
Timer0 and Timer1 External Clock Requirements	
Timer1	
Associated Registers	
Asynchronous Counter Mode	
Reading and Writing to	
Counter Operation	
Operation in Timer Mode	
Oscillator Capacitor Selection	
Prescaler Resetting of Timer1 Registers	
Resetting Timer1 Using a CCP Trigger Output .	
Synchronized Counter Mode	
TMR1H	
TMR1L	
Timer2	
Associated Registers	
Output	
Postscaler	
Prescaler	
Prescaler and Postscaler	
Timing Diagrams	
A/D Conversion	195
Acknowledge Sequence	
Asynchronous Master Transmission	
Asynchronous Master Transmission	-
(Back to Back)	116
Asynchronous Reception	
Asynchronous Reception with	
Address Byte First	120
Asynchronous Reception with	
Address Detect	120
Baud Rate Generator with Clock Arbitration	98
BRG Reset Due to SDA Arbitration During	
Start Condition	107
Brown-out Reset	184
Bus Collision During a Repeated	
Start Condition (Case 1)	108
Bus Collision During Repeated	
Start Condition (Case 2)	108
Bus Collision During Start Condition	
(SCL = 0)	107
Bus Collision During Start Condition	
(SDA Only)	106
Bus Collision During Stop Condition	
(Case 1)	109
Bus Collision During Stop Condition	
(Case 2)	
Bus Collision for Transmit and Acknowledge	
Capture/Compare/PWM (CCP1 and CCP2)	
CLKO and I/O	
Clock Synchronization	
External Clock	
First Start Bit	99

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

PIC16F87XA PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	X /XX XXX T Temperature Package Pattern Range	 Examples: a) PIC16F873A-I/P 301 = Industrial temp., PDIP package, normal VDD limits, QTP pattern #301. b) PIC16LF876A-I/SO = Industrial temp., SOIC package, Extended VDD limits.
Device	PIC16F87XA ⁽¹⁾ , PIC16F87XAT ⁽²⁾ ; VDD range 4.0V to 5.5V PIC16LF87XA ⁽¹⁾ , PIC16LF87XAT ⁽²⁾ ; VDD range 2.0V to 5.5V	 c) PIC16F877A-I/P = Industrial temp., PDIP package, 10 MHz, normal VDD limits.
Temperature Range	I = -40°C to +85°C (Industrial)	
Package	ML = QFN (Metal Lead Frame) PT = TQFP (Thin Quad Flatpack) SO = SOIC SP = Skinny Plastic DIP P = PDIP L = PLCC S = SSOP	Note 1: F = CMOS Flash LF = Low-Power CMOS Flash 2: T = in tape and reel - SOIC, PLCC, TQFP packages only