

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	10MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf876at-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

This document contains device specific information about the following devices:

- PIC16F873A
- PIC16F874A
- PIC16F876A
- PIC16F877A

PIC16F873A/876A devices are available only in 28-pin packages, while PIC16F874A/877A devices are available in 40-pin and 44-pin packages. All devices in the PIC16F87XA family share common architecture with the following differences:

- The PIC16F873A and PIC16F874A have one-half of the total on-chip memory of the PIC16F876A and PIC16F877A
- The 28-pin devices have three I/O ports, while the 40/44-pin devices have five
- The 28-pin devices have fourteen interrupts, while the 40/44-pin devices have fifteen
- The 28-pin devices have five A/D input channels, while the 40/44-pin devices have eight
- The Parallel Slave Port is implemented only on the 40/44-pin devices

The available features are summarized in Table 1-1. Block diagrams of the PIC16F873A/876A and PIC16F874A/877A devices are provided in Figure 1-1 and Figure 1-2, respectively. The pinouts for these device families are listed in Table 1-2 and Table 1-3.

Additional information may be found in the PIC[®] Mid-Range Reference Manual (DS33023), which may be obtained from your local Microchip Sales Representative or downloaded from the Microchip web site. The Reference Manual should be considered a complementary document to this data sheet and is highly recommended reading for a better understanding of the device architecture and operation of the peripheral modules.

Key Features	PIC16F873A	PIC16F874A	PIC16F876A	PIC16F877A
Operating Frequency	DC – 20 MHz			
Resets (and Delays)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)
Flash Program Memory (14-bit words)	4K	4K	8K	8K
Data Memory (bytes)	192	192	368	368
EEPROM Data Memory (bytes)	128	128	256	256
Interrupts	14	15	14	15
I/O Ports	Ports A, B, C	Ports A, B, C, D, E	Ports A, B, C	Ports A, B, C, D, E
Timers	3	3	3	3
Capture/Compare/PWM modules	2	2	2	2
Serial Communications	MSSP, USART	MSSP, USART	MSSP, USART	MSSP, USART
Parallel Communications	—	PSP	_	PSP
10-bit Analog-to-Digital Module	5 input channels	8 input channels	5 input channels	8 input channels
Analog Comparators	2	2	2	2
Instruction Set	35 Instructions	35 Instructions	35 Instructions	35 Instructions
Packages	28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin QFN	40-pin PDIP 44-pin PLCC 44-pin TQFP 44-pin QFN	28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin QFN	40-pin PDIP 44-pin PLCC 44-pin TQFP 44-pin QFN

TABLE 1-1:PIC16F87XA DEVICE FEATURES

4.0 I/O PORTS

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Additional information on I/O ports may be found in the PIC[®] Mid-Range Reference Manual (DS33023).

4.1 PORTA and the TRISA Register

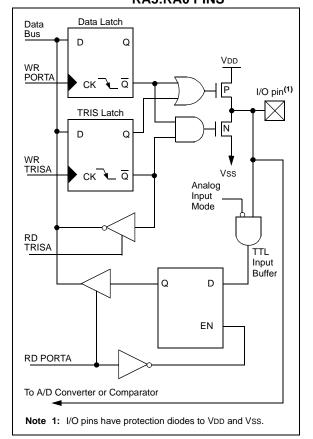
PORTA is a 6-bit wide, bidirectional port. The corresponding data direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin).

Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, the value is modified and then written to the port data latch.

Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin. The RA4/T0CKI pin is a Schmitt Trigger input and an open-drain output. All other PORTA pins have TTL input levels and full CMOS output drivers.

Other PORTA pins are multiplexed with analog inputs and the analog VREF input for both the A/D converters and the comparators. The operation of each pin is selected by clearing/setting the appropriate control bits in the ADCON1 and/or CMCON registers.

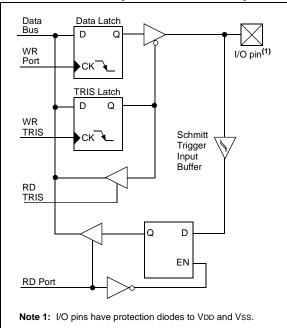
Note:	On a Power-on Reset, these pins are con-								
	figured as analog inputs and read as '0'.								
	The comparators are in the off (digital)								
	state.								


The TRISA register controls the direction of the port pins even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

EXAMPLE 4-1: INITIALIZING PORTA

BCF	STATUS,		;
BCF	STATUS,	RP1	; Bank0
CLRF	PORTA		; Initialize PORTA by
			; clearing output
			; data latches
BSF	STATUS,	RP0	; Select Bank 1
MOVLW	0x06		; Configure all pins
MOVWF	ADCON1		; as digital inputs
MOVLW	0xCF		; Value used to
			; initialize data
			; direction
MOVWF	TRISA		; Set RA<3:0> as inputs
			; RA<5:4> as outputs
			; TRISA<7:6>are always
			; read as '0'.

BLOCK DIAGRAM OF RA3:RA0 PINS


4.4 PORTD and TRISD Registers

Note:	PORTD and TRISD are not implemented
	on the 28-pin devices.

PORTD is an 8-bit port with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

PORTD can be configured as an 8-bit wide microprocessor port (Parallel Slave Port) by setting control bit, PSPMODE (TRISE<4>). In this mode, the input buffers are TTL.

FIGURE 4-8: PORTD BLOCK DIAGRAM (IN I/O PORT MODE)

Name	Bit# Buffer Type		Function
RD0/PSP0	bit 0	ST/TTL ⁽¹⁾	Input/output port pin or Parallel Slave Port bit 0.
RD1/PSP1	bit 1	ST/TTL ⁽¹⁾	Input/output port pin or Parallel Slave Port bit 1.
RD2/PSP2	bit2	ST/TTL ⁽¹⁾	Input/output port pin or Parallel Slave Port bit 2.
RD3/PSP3	bit 3	ST/TTL ⁽¹⁾	Input/output port pin or Parallel Slave Port bit 3.
RD4/PSP4	bit 4	ST/TTL ⁽¹⁾	Input/output port pin or Parallel Slave Port bit 4.
RD5/PSP5	bit 5	ST/TTL ⁽¹⁾	Input/output port pin or Parallel Slave Port bit 5.
RD6/PSP6	bit 6	ST/TTL ⁽¹⁾	Input/output port pin or Parallel Slave Port bit 6.
RD7/PSP7	bit 7	ST/TTL ⁽¹⁾	Input/output port pin or Parallel Slave Port bit 7.

TABLE 4-7:PORTD FUNCTIONS

Legend: ST = Schmitt Trigger input, TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port mode.

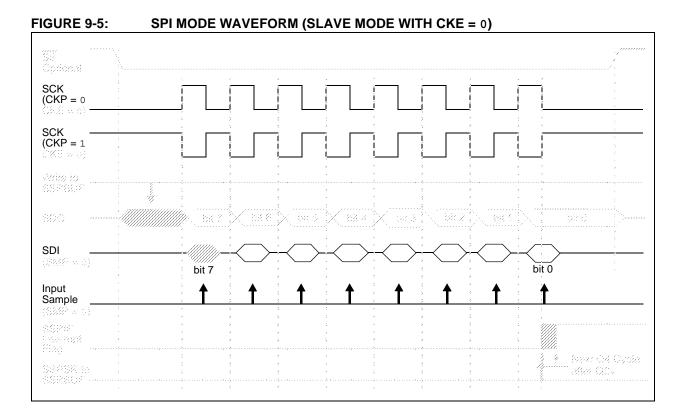
TABLE 4-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORT
--

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR		Valu all o Res	
08h	PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx	xxxx	uuuu	uuuu
88h	TRISD	PORTI	PORTD Data Direction Register								1111	1111	1111
89h	TRISE	IBF	OBF	IBOV	PSPMODE		PORTE I	Data Dire	ction Bits	0000	-111	0000	-111

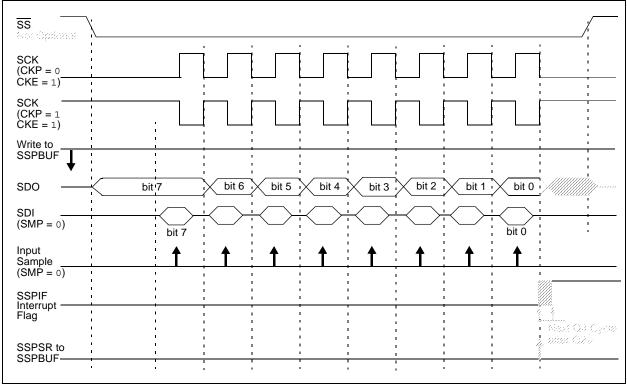
Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PORTD.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
09h	PORTE	—	—	_	—		RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE	—	PORTE Data Direction bits			0000 -111	0000 -111
9Fh	ADCON1	ADFM	ADCS2		—	PCFG3	PCFG2	PCFG1	PCFG0	00 0000	00 0000

TABLE 4-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE


Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PORTE.

REGISTER 4-1: TRISE REGISTER (ADDRESS 89h)


R-0	R-0	R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1
IBF	OBF	IBOV	PSPMODE	—	Bit 2	Bit 1	Bit 0
bit 7							bit 0

Parallel Slave Port Status/Control Bits:

bit 7	IBF: Input Buffer Full Stat	tus bit		
	1 = A word has been rece	eived and is waiting to	be read by the CPU	
	0 = No word has been re-	ceived		
bit 6	OBF : Output Buffer Full	Status bit		
	1 = The output buffer still	holds a previously wri	tten word	
	0 = The output buffer has	been read		
bit 5	IBOV: Input Buffer Overf	low Detect bit (in Micro	processor mode)	
	1 = A write occurred wh software)	en a previously input	word has not been re	ad (must be cleared in
	0 = No overflow occurred	b		
bit 4	PSPMODE: Parallel Slav	e Port Mode Select bit		
	1 = PORTD functions in F	Parallel Slave Port mo	de	
	0 = PORTD functions in g	general purpose I/O m	ode	
bit 3	Unimplemented: Read a	as '0'		
	PORTE Data Direction E	<u>Bits:</u>		
bit 2	Bit 2: Direction Control bi	it for pin RE2/ \overline{CS} /AN7		
	1 = Input			
	0 = Output			
bit 1	Bit 1: Direction Control bi	it for pin RE1/WR/AN6		
	1 = Input			
	0 = Output			
bit 0	Bit 0: Direction Control bi	it for pin RE0/RD/AN5		
	1 = Input			
	0 = Output			
	Legend:			
	R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
	- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
	L			

FIGURE 9-6: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN				
	bit 7	1		I		I	I	bit 0				
bit 7		eneral Call En		-	-							
		 1 = Enable interrupt when a general call address (0000h) is received in the SSPSR 0 = General call address disabled 										
bit 6	ACKSTA	f: Acknowledg	e Status bit	(Master Tran	smit mode o	only)						
		wledge was n wledge was re										
bit 5	ACKDT: A	Acknowledge [Data bit (Mas	ster Receive	mode only)							
	1 = Not A 0 = Ackno	cknowledge wledge										
	Note:	Value that w the end of a		itted when th	e user initia	tes an Ackr	nowledge se	equence at				
bit 4	ACKEN:	Acknowledge	Sequence E	nable bit (Ma	ster Receiv	e mode on	ly)					
	1 = Initiat Autor	 1 = Initiate Acknowledge sequence on SDA and SCL pins and transmit ACKDT data bit. Automatically cleared by hardware. 0 = Acknowledge sequence Idle 										
bit 3	RCEN: R	eceive Enable	bit (Master i	mode only)								
	1 = Enabl 0 = Recei	es Receive mo ve Idle	ode for I ² C									
bit 2	PEN: Stop	o Condition En	able bit (Ma	ster mode or	nly)							
		e Stop conditio	n on SDA a	nd SCL pins.	Automatica	ally cleared	by hardwa	re.				
bit 1	RSEN: Re	epeated Start (Condition Er	nabled bit (Ma	aster mode	only)						
		e Repeated Sta ated Start cond		on SDA and S	SCL pins. A	utomatically	y cleared by	hardware.				
bit 0	SEN: Star	t Condition En	abled/Streto	h Enabled bi	t							
	1 = Initiate	<u>In Master mode:</u> 1 = Initiate Start condition on SDA and SCL pins. Automatically cleared by hardware. 0 = Start condition Idle										
	In Slave mode: 1 = Clock stretching is enabled for both slave transmit and slave receive (stretch enabled) 0 = Clock stretching is enabled for slave transmit only (PIC16F87X compatibility)											
	Legend:											
		R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'										
	- n = Valu	e at POR	'1' = Bit	is set	'0' = Bit is	cleared	x = Bit is ι	unknown				

Note: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I²C module is not in the Idle mode, this bit may not be set (no spooling) and the SSPBUF may not be written (or writes to the SSPBUF are disabled).

9.4.3.2 Reception

When the R/\overline{W} bit of the address byte is clear and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register and the SDA line is held low (ACK).

When the address byte overflow condition exists, then the No Acknowledge (ACK) pulse is given. An overflow condition is defined as either bit BF (SSPSTAT<0>) is set or bit SSPOV (SSPCON<6>) is set.

An MSSP interrupt is generated for each data transfer byte. Flag bit SSPIF (PIR1<3>) must be cleared in software. The SSPSTAT register is used to determine the status of the byte.

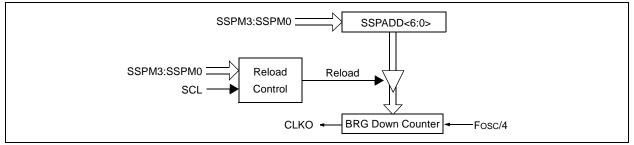
If SEN is enabled (SSPCON<0> = 1), RC3/SCK/SCL will be held low (clock stretch) following each data transfer. The clock must be released by setting bit CKP (SSPCON<4>). See **Section 9.4.4** "**Clock Stretching**" for more detail.

9.4.3.3 Transmission

When the R/W bit of the incoming address byte is set and an address match occurs, the R/W bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The ACK pulse will be sent on the ninth bit and pin RC3/SCK/SCL is held low regardless of SEN (see **Section 9.4.4 "Clock Stretching"** for more detail). By stretching the clock, the master will be unable to assert another clock pulse until the slave is done preparing the transmit data. The transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then pin RC3/SCK/SCL should be enabled by setting bit CKP (SSPCON<4>). The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 9-9).

The ACK pulse from the master-receiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line is high (not ACK), then the data transfer is complete. In this case, when the ACK is latched by the slave, the slave logic is reset (resets SSPSTAT register) and the slave monitors for another occurrence of the Start bit. If the SDA line was low (ACK), the next transmit data must be loaded into the SSPBUF register. Again, pin RC3/SCK/SCL must be enabled by setting bit CKP.

An MSSP interrupt is generated for each data transfer byte. The SSPIF bit must be cleared in software and the SSPSTAT register is used to determine the status of the byte. The SSPIF bit is set on the falling edge of the ninth clock pulse.


9.4.7 BAUD RATE GENERATOR

In I²C Master mode, the Baud Rate Generator (BRG) reload value is placed in the lower 7 bits of the SSPADD register (Figure 9-17). When a write occurs to SSPBUF, the Baud Rate Generator will automatically begin counting. The BRG counts down to 0 and stops until another reload has taken place. The BRG count is decremented twice per instruction cycle (Tcr) on the Q2 and Q4 clocks. In I²C Master mode, the BRG is reloaded automatically.

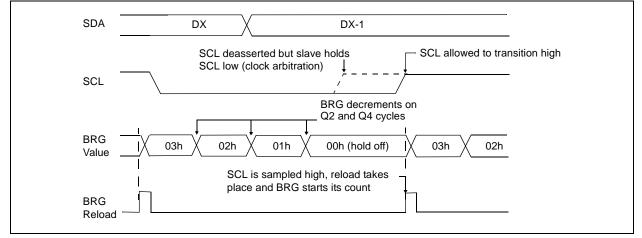
Once the given operation is complete (i.e., transmission of the last data bit is followed by ACK), the internal clock will automatically stop counting and the SCL pin will remain in its last state.

Table 9-3 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPADD.

FIGURE 9-17: BAUD RATE GENERATOR BLOCK DIAGRAM

TABLE 9-3: I²C CLOCK RATE W/BRG

Fcy	FcY*2	BRG Value	FscL (2 Rollovers of BRG)
10 MHz	20 MHz	19h	400 kHz ⁽¹⁾
10 MHz	20 MHz	20h	312.5 kHz
10 MHz	20 MHz	3Fh	100 kHz
4 MHz	8 MHz	0Ah	400 kHz ⁽¹⁾
4 MHz	8 MHz	0Dh	308 kHz
4 MHz	8 MHz	28h	100 kHz
1 MHz	2 MHz	03h	333 kHz ⁽¹⁾
1 MHz	2 MHz	0Ah	100 kHz
1 MHz	2 MHz	00h	1 MHz ⁽¹⁾


Note 1: The I²C interface does not conform to the 400 kHz I²C specification (which applies to rates greater than 100 kHz) in all details, but may be used with care where higher rates are required by the application.

9.4.7.1 Clock Arbitration

Clock arbitration occurs when the master, during any receive, transmit or Repeated Start/Stop condition, deasserts the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the Baud Rate Generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the

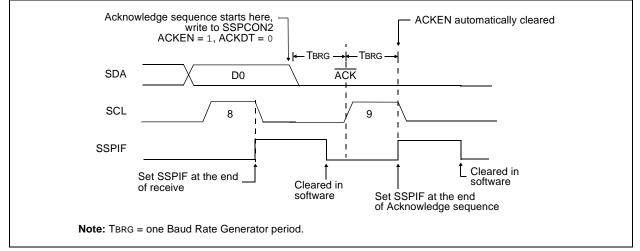
SCL pin is sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count, in the event that the clock is held low by an external device (Figure 9-17).

9.4.12 ACKNOWLEDGE SEQUENCE TIMING

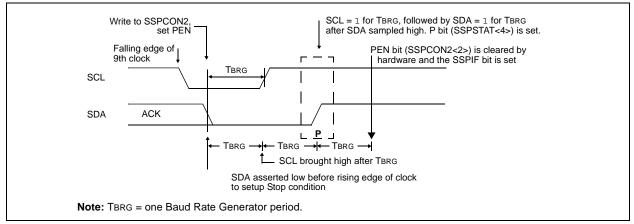
An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit. ACKEN (SSPCON2<4>). When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit are presented on the SDA pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCL pin is deasserted (pulled high). When the SCL pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the baud rate generator is turned off and the MSSP module then goes into Idle mode (Figure 9-23).

9.4.12.1 WCOL Status Flag

If the user writes the SSPBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).


9.4.13 STOP CONDITION TIMING

A Stop bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN (SSPCON2<2>). At the end of a receive/ transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the Baud Rate Generator is reloaded and counts down to 0. When the Baud Rate Generator times out, the SCL pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDA pin will be deasserted. When the SDA pin is sampled high while SCL is high, the P bit (SSPSTAT<4>) is set. A TBRG later, the PEN bit is cleared and the SSPIF bit is set (Figure 9-24).


9.4.13.1 WCOL Status Flag

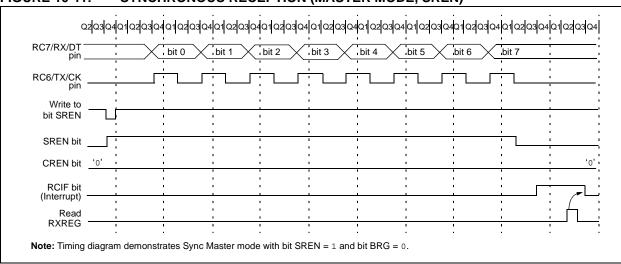

If the user writes the SSPBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

FIGURE 9-23: ACKNOWLEDGE SEQUENCE WAVEFORM

FIGURE 9-24: STOP CONDITION RECEIVE OR TRANSMIT MODE

FIGURE 10-11: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

10.4 USART Synchronous Slave Mode

Synchronous Slave mode differs from the Master mode in the fact that the shift clock is supplied externally at the RC6/TX/CK pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in Sleep mode. Slave mode is entered by clearing bit, CSRC (TXSTA<7>).

10.4.1 USART SYNCHRONOUS SLAVE TRANSMIT

The operation of the Synchronous Master and Slave modes is identical, except in the case of the Sleep mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in TXREG register.
- c) Flag bit TXIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will now be set.
- e) If enable bit TXIE is set, the interrupt will wake the chip from Sleep and if the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

When setting up a Synchronous Slave Transmission, follow these steps:

- 1. Enable the synchronous slave serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set bit TX9.
- 5. Enable the transmission by setting enable bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.
- 8. If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of the INTCON register are set.

14.0 SPECIAL FEATURES OF THE CPU

All PIC16F87XA devices have a host of features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- Oscillator Selection
- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- Sleep
- Code Protection
- ID Locations
- In-Circuit Serial Programming
- Low-Voltage In-Circuit Serial Programming
- In-Circuit Debugger

PIC16F87XA devices have a Watchdog Timer which can be shut-off only through configuration bits. It runs off its own RC oscillator for added reliability.

There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only. It is designed to keep the part in Reset while the power supply stabilizes. With these two timers on-chip, most applications need no external Reset circuitry. Sleep mode is designed to offer a very low current power-down mode. The user can wake-up from Sleep through external Reset, Watchdog Timer wake-up or through an interrupt.

Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits is used to select various options.

Additional information on special features is available in the PIC[®] Mid-Range MCU Family Reference Manual (DS33023).

14.1 Configuration Bits

The configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1') to select various device configurations. The erased or unprogrammed value of the Configuration Word register is 3FFFh. These bits are mapped in program memory location 2007h.

It is important to note that address 2007h is beyond the user program memory space which can be accessed only during programming.

TABLE 15-2: PIC16	F87XA INSTRUCTION SET
-------------------	-----------------------

Mnem	Mnemonic, Description Operands		Cycles		14-Bit	Opcode	e	Status	Notes
Oper			Cycles	MSb			LSb	Affected	Notes
BYTE-ORIENTED FILE REGISTER OPERATIONS									
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
		BIT-ORIENTED FILE		ATIO	NS				
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01		bfff			1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff			3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
	,	LITERAL AND CO	()	IONS					
ADDLW	k	Add Literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND Literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call Subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to Address	2	10	1kkk	kkkk	kkkk	-	
IORLW	k	Inclusive OR Literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move Literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from Interrupt	2	00	0000	0000	1001		
RETLW	k	Return with Literal in W	2	11	01xx	kkkk			
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from Literal	1	11		kkkk		C,DC,Z	
XORLW	k	Exclusive OR Literal with W	1	11	1010	kkkk		Z	
Note 1:		I/O register is modified as a function of itse							

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTE, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 module.

3: If Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

Note: Additional information on the mid-range instruction set is available in the PIC[®] Mid-Range MCU Family Reference Manual (DS33023).

RLF	Rotate Left f through Carry
Syntax:	[<i>label</i>] RLF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	See description below
Status Affected:	С
Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is stored back in register 'f'.

Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \ prescaler, \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Description:	The power-down status bit, \overline{PD} , is cleared. Time-out status bit, \overline{TO} , is set. Watchdog Timer and its prescaler are cleared. The processor is put into Sleep mode with the oscillator stopped.

RETURN	Return from Subroutine			
Syntax:	[label] RETURN			
Operands:	None			
Operation:	$TOS \rightarrow PC$			
Status Affected:	None			
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.			

SUBLW	Subtract W from Literal
Syntax:	[<i>label</i>] SUBLW k
Operands:	$0 \leq k \leq 255$
Operation:	$k \text{ - (W)} \to (W)$
Status Affected:	C, DC, Z
Description:	The W register is subtracted (2's complement method) from the eight-bit literal 'k'. The result is placed in the W register.

RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RRF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	See description below
Status Affected:	С
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

SUBWF	Subtract W from f
Syntax:	[<i>label</i>] SUBWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - (W) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

16.20 PICDEM 18R PIC18C601/801 Demonstration Board

The PICDEM 18R demonstration board serves to assist development of the PIC18C601/801 family of Microchip microcontrollers. It provides hardware implementation of both 8-bit Multiplexed/Demultiplexed and 16-bit Memory modes. The board includes 2 Mb external Flash memory and 128 Kb SRAM memory, as well as serial EEPROM, allowing access to the wide range of memory types supported by the PIC18C601/801.

16.21 PICDEM LIN PIC16C43X Demonstration Board

The powerful LIN hardware and software kit includes a series of boards and three PIC microcontrollers. The small footprint PIC16C432 and PIC16C433 are used as slaves in the LIN communication and feature onboard LIN transceivers. A PIC16F874 Flash microcontroller serves as the master. All three microcontrollers are programmed with firmware to provide LIN bus communication.

16.22 PICkit[™] 1 Flash Starter Kit

A complete "development system in a box", the PICkit Flash Starter Kit includes a convenient multi-section board for programming, evaluation and development of 8/14-pin Flash PIC[®] microcontrollers. Powered via USB, the board operates under a simple Windows GUI. The PICkit 1 Starter Kit includes the user's guide (on CD ROM), PICkit 1 tutorial software and code for various applications. Also included are MPLAB[®] IDE (Integrated Development Environment) software, software and hardware "Tips 'n Tricks for 8-pin Flash PIC[®] Microcontrollers" Handbook and a USB Interface Cable. Supports all current 8/14-pin Flash PIC microcontrollers, as well as many future planned devices.

16.23 PICDEM USB PIC16C7X5 Demonstration Board

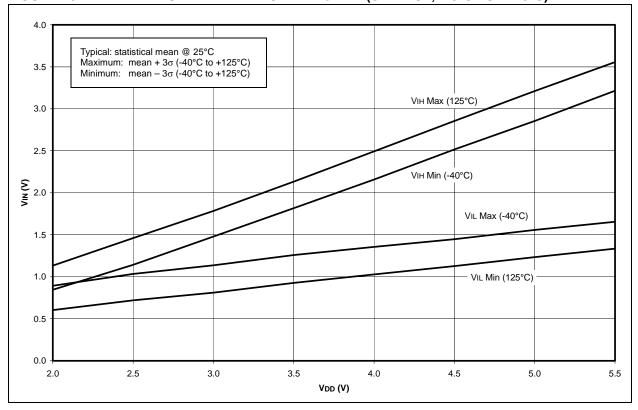
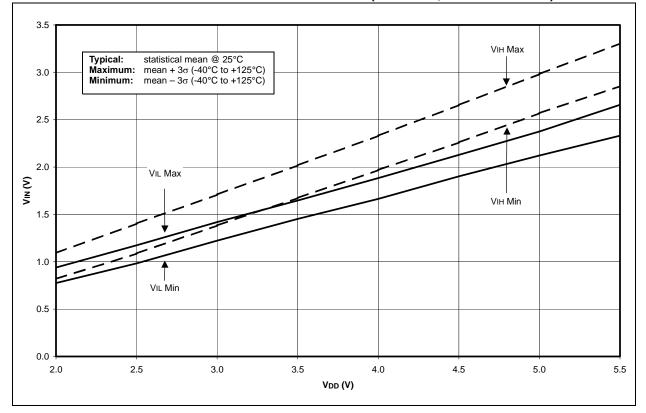
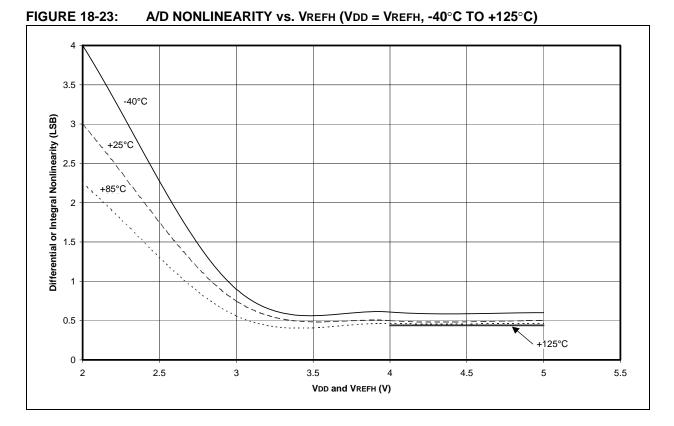
The PICDEM USB Demonstration Board shows off the capabilities of the PIC16C745 and PIC16C765 USB microcontrollers. This board provides the basis for future USB products.

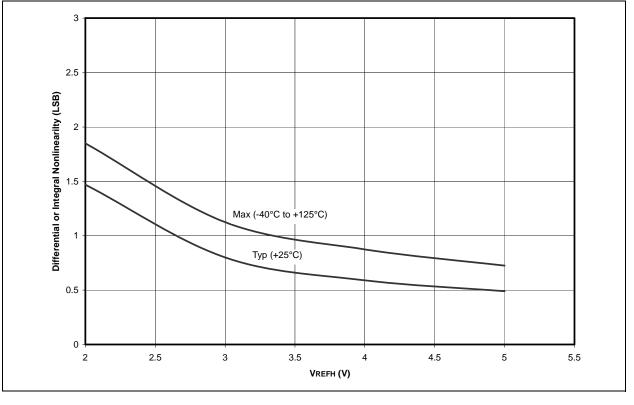
16.24 Evaluation and Programming Tools

In addition to the PICDEM series of circuits, Microchip has a line of evaluation kits and demonstration software for these products.

- KEELOQ evaluation and programming tools for Microchip's HCS Secure Data Products
- CAN developers kit for automotive network applications
- Analog design boards and filter design software
- PowerSmart battery charging evaluation/ calibration kits
- IrDA[®] development kit
- microID development and rfLab[™] development software
- SEEVAL[®] designer kit for memory evaluation and endurance calculations
- PICDEM MSC demo boards for Switching mode power supply, high power IR driver, delta sigma ADC, and flow rate sensor

Check the Microchip web page and the latest Product Line Card for the complete list of demonstration and evaluation kits.


FIGURE 18-21: MINIMUM AND MAXIMUM VIN vs. VDD (ST INPUT, -40°C TO +125°C)

Capture/Compare/PWM Requirements	
(CCP1 and CCP2)	
CCP. See Capture/Compare/PWM.	
CCP1CON Register	
CCP2CON Register	
CCPR1H Register	
CCPR1L Register	19, 63
CCPR2H Register	
CCPR2L Register	
CCPxM0 Bit	
CCPxM1 Bit	64
CCPxM2 Bit	64
CCPxM3 Bit	64
CCPxX Bit	64
CCPxY Bit	
CLKO and I/O Timing Requirements	183
CMCON Register	20
Code Examples	
Call of a Subroutine in Page 1 from Page 0	
Indirect Addressing	
Initializing PORTA	
Loading the SSPBUF (SSPSR) Register	
Reading Data EEPROM	35
Reading Flash Program Memory	
Saving Status, W and PCLATH Registers	
in RAM	
Writing to Data EEPROM	
Writing to Flash Program Memory	
Code Protection	. 143, 157
Comparator Module	135
Analog Input Connection	
Considerations	
Associated Registers	
Configuration	136
Effects of a Reset	139
Interrupts	138
Operation	
Operation During Sleep	139
Outputs	
Reference	
Response Time	
Comparator Specifications	
Comparator Voltage Reference	
Associated Registers	
Computed GOTO	
Configuration Bits	143
Configuration Word	
Conversion Considerations	
CVRCON Register	
-	

D

Data EEPROM and Flash Program Memory	
EEADR Register	
EEADRH Register	33
EECON1 Register	33
EECON2 Register	33
EEDATA Register	
EEDATH Register	

Data EEPROM Memory	
Associated Registers	39
EEADR Register	33
EEADRH Register	33
EECON1 Register	
EECON2 Register	33
Operation During Code-Protect	39
Protection Against Spurious Writes	
Reading	35
Write Complete Flag Bit (EEIF)	33
Writing	
Data Memory	
Bank Select (RP1:RP0 Bits)	
General Purpose Registers	
Register File Map	17, 18
Special Function Registers	
DC and AC Characteristics Graphs and Tables	
DC Characteristics	175–179
Demonstration Boards	
PICDEM 1	170
PICDEM 17	170
PICDEM 18R PIC18C601/801	171
PICDEM 2 Plus	170
PICDEM 3 PIC16C92X	170
PICDEM 4	170
PICDEM LIN PIC16C43X	171
PICDEM USB PIC16C7X5	171
PICDEM.net Internet/Ethernet	170
Development Support	167
Device Differences	
Device Overview	
Direct Addressing	5

Ε

EEADR Register	21, 33
EEADRH Register	21, 33
EECON1 Register	21, 33
EECON2 Register	21, 33
EEDATA Register	
EEDATH Register	
Electrical Characteristics	173
Errata	4
Evaluation and Programming Tools	171
External Clock Timing Requirements	
External Interrupt Input (RB0/INT). See Interrupt S	ources.
External Reference Signal	137

F

Firmware Instructions	159
Flash Program Memory	
Associated Registers	39
EECON1 Register	33
EECON2 Register	33
Reading	36
Writing	37
FSR Register	. 19, 20, 31
G	
General Call Address Support	

Special Function Registers Special Function Registers (SFRs)	
Speed, Operating	
SPI Mode	
Associated Registers	79
Bus Mode Compatibility	
Effects of a Reset	
Enabling SPI I/O	75
Master Mode	
Master/Slave Connection	
Serial Clock	
Serial Data In	
Serial Data Out	
Slave Select	
Slave Select Synchronization	
Sleep Operation	
SPI Clock	
Typical Connection	
SPI Mode Requirements	
SS	71
SSP	
SPI Master/Slave Connection	
SSPADD Register	
SSPBUF Register	
SSPCON Register	
SSPCON2 Register SSPIF	
	-
SSPOV	
SSPSTAT Register	
R/W Bit	
Overflows	
Underflow	
Status Register	
C Bit	22
DC Bit	
IRP Bit	
PD Bit	
RP1:RP0 Bits	,
TO Bit	
Z Bit	
Synchronous Master Reception	
Associated Registers	123
Synchronous Master Transmission	
Associated Registers	122
Synchronous Serial Port Interrupt	
Synchronous Slave Reception	
Associated Registers	125
Synchronous Slave Transmission	
Associated Registers	125
-	
т	
T1CKPS0 Bit	
T1CKPS1 Bit	-
T1CON Register	
T1OSCEN Bit	
T1SYNC Bit	
T2CKPS0 Bit	
T2CKPS1 Bit	61

 T2CON Register
 19

 TAD
 131

 Time-out Sequence
 148

Timer0	53
Associated Registers	55
Clock Source Edge Select (T0SE Bit)	23
Clock Source Select (T0CS Bit)	23
External Clock	54
Interrupt	
Overflow Enable (TMR0IE Bit)	
Overflow Flag (TMR0IF Bit)	
Overflow Interrupt	
Prescaler	
Т0СКІ	
Timer0 and Timer1 External Clock Requirements	
Timer1	
Associated Registers	
Asynchronous Counter Mode	
Reading and Writing to	
Counter Operation	
Operation in Timer Mode	
Oscillator Capacitor Selection	
Prescaler Resetting of Timer1 Registers	
Resetting Timer1 Using a CCP Trigger Output .	
Synchronized Counter Mode	
TMR1H	
TMR1L	
Timer2	
Associated Registers	
Output	
Postscaler	
Prescaler	
Prescaler and Postscaler	
Timing Diagrams	
A/D Conversion	195
Acknowledge Sequence	
Asynchronous Master Transmission	
Asynchronous Master Transmission	-
(Back to Back)	116
Asynchronous Reception	
Asynchronous Reception with	
Address Byte First	120
Asynchronous Reception with	
Address Detect	120
Baud Rate Generator with Clock Arbitration	98
BRG Reset Due to SDA Arbitration During	
Start Condition	107
Brown-out Reset	184
Bus Collision During a Repeated	
Start Condition (Case 1)	108
Bus Collision During Repeated	
Start Condition (Case 2)	108
Bus Collision During Start Condition	
(SCL = 0)	107
Bus Collision During Start Condition	
(SDA Only)	106
Bus Collision During Stop Condition	
(Case 1)	109
Bus Collision During Stop Condition	
(Case 2)	
Bus Collision for Transmit and Acknowledge	
Capture/Compare/PWM (CCP1 and CCP2)	
CLKO and I/O	
Clock Synchronization	
External Clock	
First Start Bit	99

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support