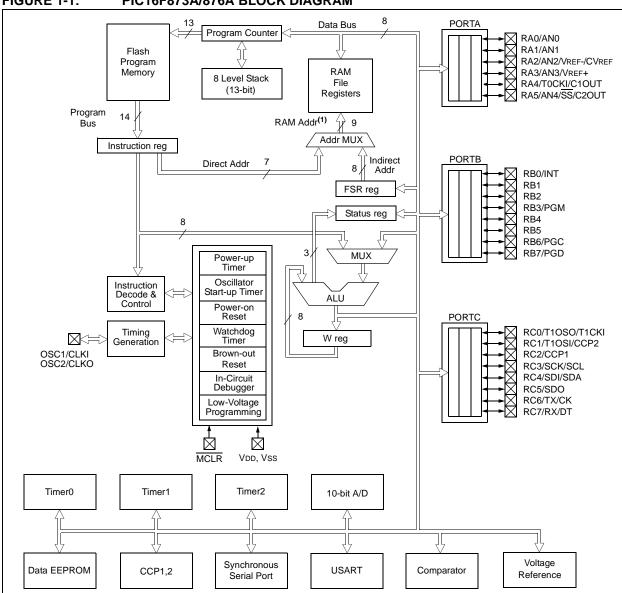


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	10MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf876at-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Device	evice Program Flash Data Memory		Data EEPROM
PIC16F873A	4K words	192 Bytes	128 Bytes
PIC16F876A	8K words	368 Bytes	256 Bytes

Note 1: Higher order bits are from the Status register.

	File Address	<i>I</i>	File Address			File Addres	
ndirect addr.(*) 00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180h
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION_REG	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h		105h		185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
PORTC	07h	TRISC	87h		107h		187h
PORTD ⁽¹⁾	08h	TRISD ⁽¹⁾	88h		108h		188h
PORTE ⁽¹⁾	09h	TRISE ⁽¹⁾	89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	EEDATA	10Ch	EECON1	18Ch
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2	18Dh
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh	Reserved ⁽²⁾	18Eh
TMR1H	0Fh		8Fh	EEADRH	10Fh	Reserved ⁽²⁾	18Fh
T1CON	10h		90h		110h		190h
TMR2	11h	SSPCON2	91h				
T2CON	12h	PR2	92h				
SSPBUF	13h	SSPADD	93h				
SSPCON	14h	SSPSTAT	94h				
CCPR1L	15h		95h				
CCPR1H	16h		96h				
CCP1CON	17h		97h				
RCSTA	18h	TXSTA	98h				
TXREG	19h	SPBRG	99h				
RCREG	1Ah		9Ah				
CCPR2L	1Bh		9Bh				
CCPR2H	1Ch	CMCON	9Ch				
CCP2CON	1Dh	CVRCON	9Dh				
ADRESH	1Eh	ADRESL	9Eh				
ADCON0	1Fh	ADCON1	9Fh		120h		1A0h
General	20h	General	A0h		12011		
Purpose		Purpose		accesses		accesses	
Register		Register		20h-7Fh		A0h - FFh	
96 Bytes		96 Bytes			16Fh		1EFh
		-			170h		1F0h
D 1 2	7Fh		FFh	David C	17Fh	Dersta 0	1FFh
Bank 0		Bank 1		Bank 2		Bank 3	
* Not ote 1: The	a physical re se registers	data memory loca egister. are not implemen are reserved; mai	ted on the	PIC16F873A.			

2.2.2.6 **PIE2** Register

The PIE2 register contains the individual enable bits for the CCP2 peripheral interrupt, the SSP bus collision interrupt, EEPROM write operation interrupt and the comparator interrupt.

- n = Value at POR

REGISTER 2-6:	PIE2 REG	ISTER (AD	DRESS 8	Dh)							
	U-0	R/W-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0			
		CMIE		EEIE	BCLIE	_	_	CCP2IE			
	bit 7							bit 0			
bit 7	Unimplem	ented: Read	d as '0'								
bit 6	CMIE: Con	nparator Inte	rrupt Enabl	le bit							
		 1 = Enables the comparator interrupt 0 = Disable the comparator interrupt 									
bit 5	Unimplem	ented: Read	d as '0'								
bit 4	EEIE: EEP	ROM Write	Operation I	nterrupt Ena	ble bit						
		 1 = Enable EEPROM write interrupt 0 = Disable EEPROM write interrupt 									
bit 3	BCLIE: Bu	s Collision Ir	nterrupt Ena	able bit							
		 1 = Enable bus collision interrupt 0 = Disable bus collision interrupt 									
bit 2-1	Unimplem	ented: Read	d as '0'								
bit 0	CCP2IE: C	CP2 Interru	ot Enable b	it							
	 1 = Enables the CCP2 interrupt 0 = Disables the CCP2 interrupt 										
	Legend:										
	R = Reada	ble bit	VV = V	Vritable bit	U = Unimple	emented bi	it, read as '	D'			

'1' = Bit is set

'0' = Bit is cleared

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

x = Bit is unknown

NOTES:

6.4 Timer1 Operation in Asynchronous Counter Mode

If control bit $\overline{T1SYNC}$ (T1CON<2>) is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during Sleep and can generate an interrupt-on-overflow which will wake-up the processor. However, special precautions in software are needed to read/write the timer.

In Asynchronous Counter mode, Timer1 cannot be used as a time base for capture or compare operations.

6.4.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers while the register is incrementing. This may produce an unpredictable value in the timer register.

Reading the 16-bit value requires some care. Examples 12-2 and 12-3 in the PIC[®] Mid-Range MCU Family Reference Manual (DS33023) show how to read and write Timer1 when it is running in Asynchronous mode.

6.5 Timer1 Oscillator

A crystal oscillator circuit is built-in between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit, T1OSCEN (T1CON<3>). The oscillator is a low-power oscillator, rated up to 200 kHz. It will continue to run during Sleep. It is primarily intended for use with a 32 kHz crystal. Table 6-1 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is identical to the LP oscillator. The user must provide a software time delay to ensure proper oscillator start-up.

TABLE 6-1:CAPACITOR SELECTION FOR
THE TIMER1 OSCILLATOR

Freq.	C1	C2			
32 kHz	33 pF	33 pF			
100 kHz	15 pF				
200 kHz 15 p					
lues are for o	design guida	nce only.			
Crystals	Tested:				
Epson C-00	1R32.768K-A	± 20 PPM			
100 kHz Epson C-2 100.00 KC-P ± 20 PPM					
STD XTL 2	200.000 kHz	± 20 PPM			
	32 kHz 100 kHz 200 kHz Iues are for o Crystals Epson C-00 Epson C-2	32 kHz 33 pF 100 kHz 15 pF 200 kHz 15 pF lues are for design guidat Crystals Tested: Epson C-001R32.768K-A			

Note 1: Higher capacitance increases the stability of oscillator but also increases the start-up time.

2: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.

6.6 Resetting Timer1 Using a CCP Trigger Output

If the CCP1 or CCP2 module is configured in Compare mode to generate a "special event trigger" (CCP1M3:CCP1M0 = 1011), this signal will reset Timer1.

Note:	The special event triggers from the CCP1
	and CCP2 modules will not set interrupt
	flag bit, TMR1IF (PIR1<0>).

Timer1 must be configured for either Timer or Synchronized Counter mode to take advantage of this feature. If Timer1 is running in Asynchronous Counter mode, this Reset operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1 or CCP2, the write will take precedence.

In this mode of operation, the CCPRxH:CCPRxL register pair effectively becomes the period register for Timer1.

8.3.3 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- 3. Make the CCP1 pin an output by clearing the TRISC<2> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
- 5. Configure the CCP1 module for PWM operation.

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12kHz	156.3 kHz	208.3 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFFh	0xFFh	0xFFh	0x3Fh	0x1Fh	0x17h
Maximum Resolution (bits)	10	10	10	8	7	5.5

TABLE 8-4:	REGISTERS ASSOCIATED WITH CAPTURE, COMPARE AND TIMER1
------------	--

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh,8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
0Dh	PIR2	—	—	_	_	—	—	_	CCP2IF	0	0
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
8Dh	PIE2	—	—	_	_	—	—	_	CCP2IE	0	0
87h	TRISC	PORTC D	ata Direc	tion Registe	er					1111 1111	1111 1111
0Eh	TMR1L	Holding R	egister fo	r the Least	Significant I	Byte of the 1	6-bit TMR'	1 Register		xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding R	egister fo	r the Most S	Significant E	Byte of the 10	6-bit TMR1	Register		xxxx xxxx	uuuu uuuu
10h	T1CON	—	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
15h	CCPR1L	Capture/C	Compare/F	PWM Regis	ter 1 (LSB)					xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/C	Compare/F	PWM Regis	ter 1 (MSB))				xxxx xxxx	uuuu uuuu
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
1Bh	CCPR2L	Capture/C	Capture/Compare/PWM Register 2 (LSB)								uuuu uuuu
1Ch	CCPR2H	Capture/C	Compare/F	PWM Regis	ter 2 (MSB))				xxxx xxxx	uuuu uuuu
1Dh	CCP2CON	_		CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by Capture and Timer1.

Note 1: The PSP is not implemented on 28-pin devices; always maintain these bits clear.

9.3.1 REGISTERS

The MSSP module has four registers for SPI mode operation. These are:

- MSSP Control Register (SSPCON)
- MSSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer Register (SSPBUF)
- MSSP Shift Register (SSPSR) Not directly accessible

SSPCON and SSPSTAT are the control and status registers in SPI mode operation. The SSPCON register is readable and writable. The lower six bits of the SSPSTAT are read-only. The upper two bits of the SSPSTAT are read/write. SSPSR is the shift register used for shifting data in or out. SSPBUF is the buffer register to which data bytes are written to or read from.

In receive operations, SSPSR and SSPBUF together create a double-buffered receiver. When SSPSR receives a complete byte, it is transferred to SSPBUF and the SSPIF interrupt is set.

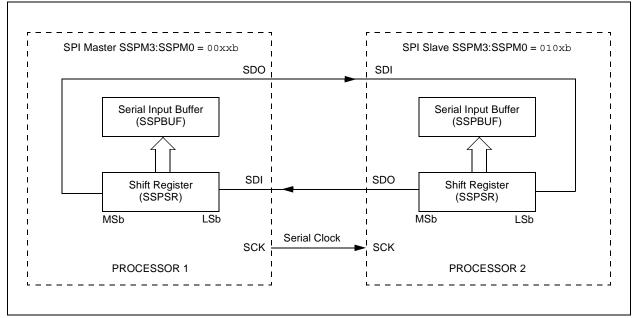
During transmission, the SSPBUF is not doublebuffered. A write to SSPBUF will write to both SSPBUF and SSPSR.

REGISTER 9-1: SSPSTAT: MSSP STATUS REGISTER (SPI MODE) (ADDRESS 94h)

	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0			
	SMP	CKE	D/A	Р	S	R/W	UA	BF			
	bit 7							bit 0			
bit 7	SMP: Sam	ple bit									
	SPI Master mode:										
		 1 = Input data sampled at end of data output time 0 = Input data sampled at middle of data output time 									
			at middle o	r data outpu	tume						
	SMP must	be cleared v	when SPI is	used in Slav	ve mode						
bit 6		Clock Select			o modo.						
	1 = Transm	nit occurs on	transition fr	om active to	ldle clock s	state					
	0 = Transmit occurs on transition from Idle to active clock state										
	Note:	Polarity of o	clock state is	s set by the	CKP bit (SS	PCON1<4>).				
bit 5	D/A: Data/	Address bit									
	Used in I ² C	c mode only.									
bit 4	P: Stop bit										
	Used in I ² C	mode only.	This bit is cle	ared when t	he MSSP me	odule is disa	bled, SSPEI	N is cleared.			
bit 3	S: Start bit										
	Used in I ² C	c mode only.									
bit 2	R/W: Read	I/Write bit inf	ormation								
	Used in I ² C	c mode only.									
bit 1	UA: Update	e Address b	it								
	Used in I ² C	c mode only.									
bit 0	BF: Buffer	Full Status b	oit (Receive	mode only)							
	1 = Receiv	e complete,	SSPBUF is	full							
	0 = Receiv	e not comple	ete, SSPBU	F is empty							
	Legend:										
	R = Reada	ble bit	W = W	ritable bit	U = Unim	plemented	bit, read as	'0'			
	- n = Value	at POR	'1' = B	it is set	'0' = Bit i	s cleared	x = Bit is ι	Inknown			

9.3.3 ENABLING SPI I/O

To enable the serial port, SSP Enable bit, SSPEN (SSPCON<5>), must be set. To reset or reconfigure SPI mode, clear the SSPEN bit, re-initialize the SSPCON registers and then set the SSPEN bit. This configures the SDI, SDO, SCK and SS pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRIS register) appropriately programmed. That is:


- SDI is automatically controlled by the SPI module
- SDO must have TRISC<5> bit cleared
- SCK (Master mode) must have TRISC<3> bit cleared
- SCK (Slave mode) must have TRISC<3> bit set
- SS must have TRISC<4> bit set

Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value.

9.3.4 TYPICAL CONNECTION

Figure 9-2 shows a typical connection between two microcontrollers. The master controller (Processor 1) initiates the data transfer by sending the SCK signal. Data is shifted out of both shift registers on their programmed clock edge and latched on the opposite edge of the clock. Both processors should be programmed to the same Clock Polarity (CKP), then both controllers would send and receive data at the same time. Whether the data is meaningful (or dummy data) depends on the application software. This leads to three scenarios for data transmission:

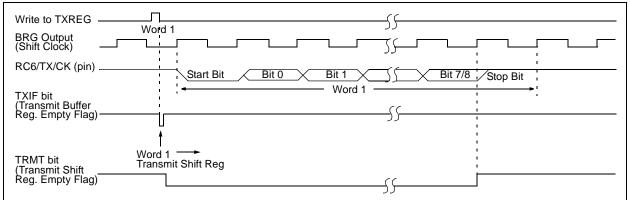
- Master sends data Slave sends dummy data
- Master sends data Slave sends data
- Master sends dummy data Slave sends data

FIGURE 9-2: SPI MASTER/SLAVE CONNECTION

REGISTER 9-4:	SSPCON1: MSSP CONTROL REGISTER 1 (I ² C MODE) (ADDRESS 14h)											
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0				
	bit 7							bit 0				
bit 7	WCOL: Wr	rite Collision	Detect bit									
	In Master Transmit mode:											
	 1 = A write to the SSPBUF register was attempted while the I²C conditions were not valid for a transmission to be started. (Must be cleared in software.) 0 = No collision 											
	<u>In Slave Transmit mode:</u> 1 = The SSPBUF register is written while it is still transmitting the previous word. (Must be cleared in software.)											
	0 = No col In Receive	mode (Masi	ter or Slave	modes):								
		lon't care" bi										
bit 6		eceive Over	flow Indicato	r bit								
	 In Receive mode: 1 = A byte is received while the SSPBUF register is still holding the previous byte. (Must be cleared in software.) 0 = No overflow 											
	<u>In Transmit mode:</u> This is a "don't care" bit in Transmit mode.											
bit 5	SSPEN: Synchronous Serial Port Enable bit											
		ables the serial port and configures the SDA and SCL pins as the serial port pins ables the serial port and configures these pins as I/O port pins										
	Note: When enabled, the SDA and SCL pins must be properly configured as input or output.											
bit 4	CKP: SCK	Release Co	ontrol bit									
	In Slave mode: 1 = Release clock 0 = Holds clock low (clock stretch). (Used to ensure data setup time.)											
	In Master mode: Unused in this mode.											
bit 3-0	SSPM3:SS	SPM0: Synch	nronous Ser	ial Port Moc	le Select bits	5						
	1111 = I^2C Slave mode, 10-bit address with Start and Stop bit interrupts enabled 1110 = I^2C Slave mode, 7-bit address with Start and Stop bit interrupts enabled 1011 = I^2C Firmware Controlled Master mode (Slave Idle) 1000 = I^2C Master mode, clock = Fosc/(4 * (SSPADD + 1)) 0111 = I^2C Slave mode, 10-bit address 0110 = I^2C Slave mode, 7-bit address											
	Note: Bit combinations not specifically listed here are either reserved or implemented in SPI mode only.											
	Legend:]				
	R = Reada	ble bit	W = W	ritable bit	U = Unim	plemented	bit, read as	'0'				

				,
- n = Value at	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN				
	bit 7	1		I		I	I	bit 0				
bit 7		eneral Call En		-	-							
		e interrupt whe ral call address		call address	(0000h) is	received in	the SSPSF	2				
bit 6	ACKSTA	f: Acknowledg	e Status bit	(Master Tran	smit mode o	only)						
		 1 = Acknowledge was not received from slave 0 = Acknowledge was received from slave 										
bit 5	bit 5 ACKDT: Acknowledge Data bit (Master Receive mode only)											
		1 = Not Acknowledge 0 = Acknowledge										
	Note: Value that will be transmitted when the user initiates an Acknowledge sequer the end of a receive.											
bit 4	ACKEN:	Acknowledge	Sequence E	nable bit (Ma	ster Receiv	e mode on	ly)					
	1 = Initiat Autor	 1 = Initiate Acknowledge sequence on SDA and SCL pins and transmit ACKDT data by Automatically cleared by hardware. 0 = Acknowledge sequence Idle 										
bit 3	RCEN: R	eceive Enable	bit (Master i	mode only)								
	1 = Enabl 0 = Recei	es Receive mo ve Idle	ode for I ² C									
bit 2	PEN: Stop	o Condition En	able bit (Ma	ster mode or	nly)							
		e Stop conditio	n on SDA a	nd SCL pins.	Automatica	ally cleared	by hardwa	re.				
bit 1	RSEN: Re	epeated Start (Condition Er	nabled bit (Ma	aster mode	only)						
		e Repeated Sta ated Start cond		on SDA and S	SCL pins. A	utomatically	y cleared by	hardware.				
bit 0	SEN: Star	t Condition En	abled/Streto	h Enabled bi	t							
		<u>mode:</u> e Start conditic condition Idle	on on SDA a	nd SCL pins.	Automatica	ally cleared	by hardwa	re.				
	In Slave mode: 1 = Clock stretching is enabled for both slave transmit and slave receive (stretch enabled) 0 = Clock stretching is enabled for slave transmit only (PIC16F87X compatibility)											
	Legend:	-										
	R = Read			itable bit	-		bit, read as					
	- n = Valu	e at POR	'1' = Bit	is set	'0' = Bit is	cleared	x = Bit is ι	unknown				


Note: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I²C module is not in the Idle mode, this bit may not be set (no spooling) and the SSPBUF may not be written (or writes to the SSPBUF are disabled).

When setting up an Asynchronous Transmission, follow these steps:

- Initialize the SPBRG register for the appropriate baud rate. If a high-speed baud rate is desired, set bit BRGH (Section 10.1 "USART Baud Rate Generator (BRG)").
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set transmit bit TX9.

- 5. Enable the transmission by setting bit TXEN, which will also set bit TXIF.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Load data to the TXREG register (starts transmission).
- 8. If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of the INTCON register are set.

FIGURE 10-2: ASYNCHRONOUS MASTER TRANSMISSION

FIGURE 10-3: ASYNCHRONOUS MASTER TRANSMISSION (BACK TO BACK)

TABLE 10-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	R0IF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN		FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART Tra	nsmit Re	gister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	SPBRG Baud Rate Generator Register									0000 0000
Legend:				0		s '0' Sh	adad calls	are not use	d for asym	0000 0000	

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous transmission.
 Note 1: Bits PSPIE and PSPIF are reserved on 28-pin devices; always maintain these bits clear.

14.10 Power Control/Status Register (PCON)

The Power Control/Status Register, PCON, has up to two bits depending upon the device.

Bit 0 is the Brown-out Reset Status bit, BOR. The BOR bit is unknown on a Power-on Reset. It must then be set by the user and checked on subsequent Resets to see if it has been cleared, indicating that a BOR has occurred.

When the Brown-out Reset is disabled, the state of the BOR bit is unpredictable and is, therefore, not valid at any time.

Bit 1 is the Power-on Reset Status bit, $\overline{\text{POR}}$. It is cleared on a Power-on Reset and unaffected otherwise. The user must set this bit following a Power-on Reset.

TABLE 14-3: TIME-OUT IN VARIOUS SITUATIONS

Oscillator Configuration	Power	-up	Brown-out	Wake-up from	
	PWRTE = 0 PWRTE = 2		Brown-out	Sleep	
XT, HS, LP	; HS, LP 72 ms + 1024 Tosc 1024 Tosc		72 ms + 1024 Tosc	1024 Tosc	
RC	72 ms	—	72 ms	—	

TABLE 14-4: STATUS BITS AND THEIR SIGNIFICANCE

POR	BOR	то	PD	Condition
0	x	1	1	Power-on Reset
0	x	0	x	Illegal, TO is set on POR
0	x	x	0	Illegal, PD is set on POR
1	0	1	1	Brown-out Reset
1	1	0	1	WDT Reset
1	1	0	0	WDT Wake-up
1	1	u	u	MCLR Reset during normal operation
1	1	1	0	MCLR Reset during Sleep or Interrupt Wake-up from Sleep

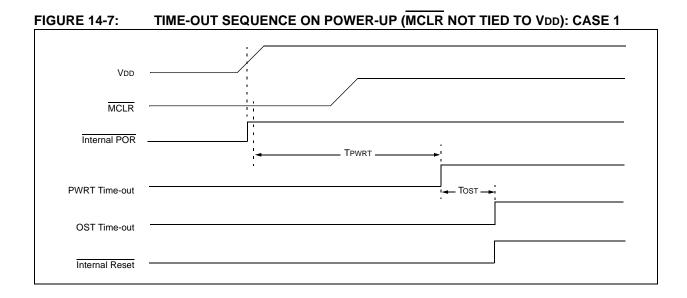
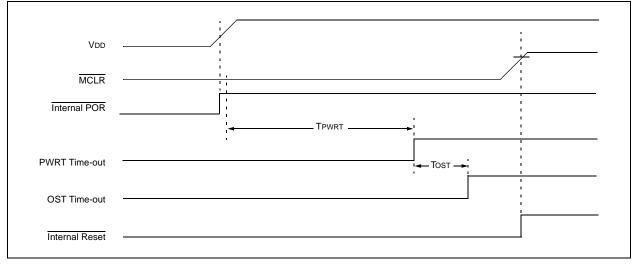

Legend: x = don't care, u = unchanged

TABLE 14-5: RESET CONDITIONS FOR SPECIAL REGISTERS


Condition	Program Counter	Status Register	PCON Register
Power-on Reset	000h	0001 1xxx	0x
MCLR Reset during normal operation	000h	000u uuuu	uu
MCLR Reset during Sleep	000h	0001 0uuu	uu
WDT Reset	000h	0000 luuu	uu
WDT Wake-up	PC + 1	uuu0 0uuu	uu
Brown-out Reset	000h	0001 luuu	u0
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	uuul Ouuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'

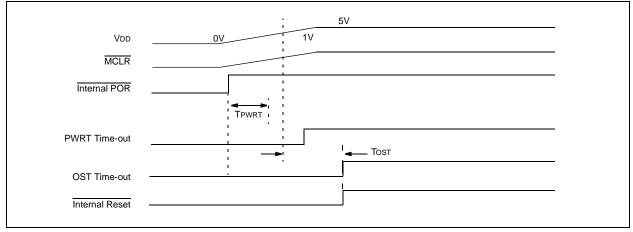

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

FIGURE 14-8: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

FIGURE 14-9: SLOW RISE TIME (MCLR TIED TO VDD VIA RC NETWORK)

FIGURE 17-9: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)

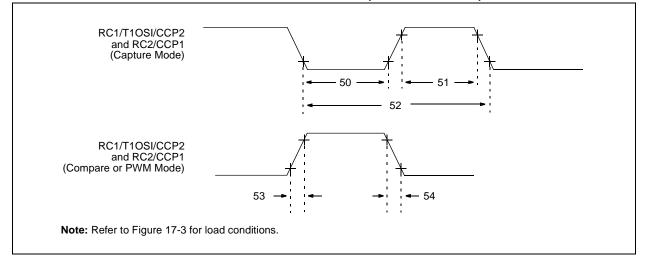
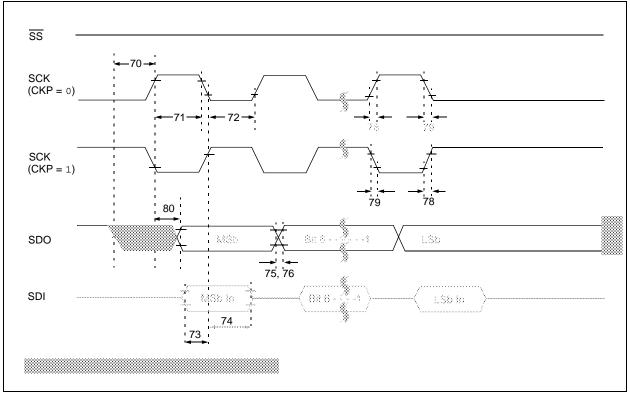
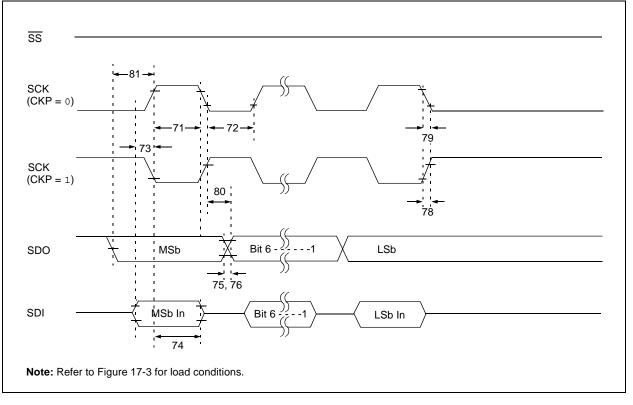



TABLE 17-7: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

Param No.	Symbol	c	Characteristic		Min	Тур†	Max	Units	Conditions
50*	TccL	CCP1 and CCP2	No Prescaler		0.5 Tcy + 20	—		ns	
		Input Low Time	With Prescaler	Standard(F)	10	_	—	ns	
		with Prescaler	Extended(LF)	20	—	_	ns		
51*	ТссН	CCP1 and CCP2	No Prescaler		0.5 TCY + 20	_	_	ns	
	Input High Time		Standard(F)	10	—	_	ns		
			With Prescaler	Extended(LF)	20	_	_	ns	
52*	TCCP	CCP1 and CCP2 Inp	ut Period		<u>3 Tcy + 40</u> N	—	_	ns	N = prescale value (1, 4 or 16)
53*	TCCR	CCP1 and CCP2 Out	put Rise Time	Standard(F)	—	10	25	ns	
				Extended(LF)	—	25	50	ns	
54*	TccF	CCP1 and CCP2 Out	CCP1 and CCP2 Output Fall Time		—	10	25	ns	
			Extended(LF)	—	25	45	ns		


These parameters are characterized but not tested.

t Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

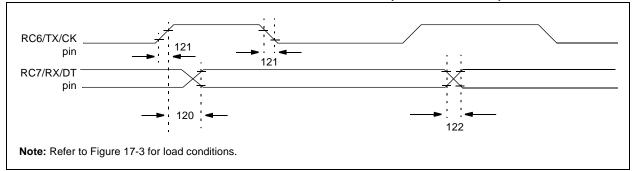


FIGURE 17-11: SPI MASTER MODE TIMING (CKE = 0, SMP = 0)

FIGURE 17-12: SPI MASTER MODE TIMING (CKE = 1, SMP = 1)

FIGURE 17-17: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

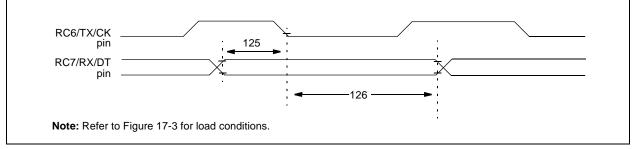
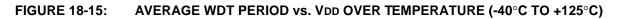


TABLE 17-12: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param No.	Symbol	Characteristic	Characteristic				Units	Conditions
120	TCKH2DTV	<u>SYNC XMIT (MASTER & SLAVE)</u> Clock High to Data Out Valid	Standard(F)	_	_	80	ns	
			Extended(LF)	—		100	ns	
121	TCKRF	Clock Out Rise Time and Fall Time	Standard(F)	—	—	45	ns	
		(Master mode)	Extended(LF)	—	—	50	ns	
122	Tdtrf	Data Out Rise Time and Fall Time	Standard(F)	—	—	45	ns	
			Extended(LF)	_	—	50	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


FIGURE 17-18: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

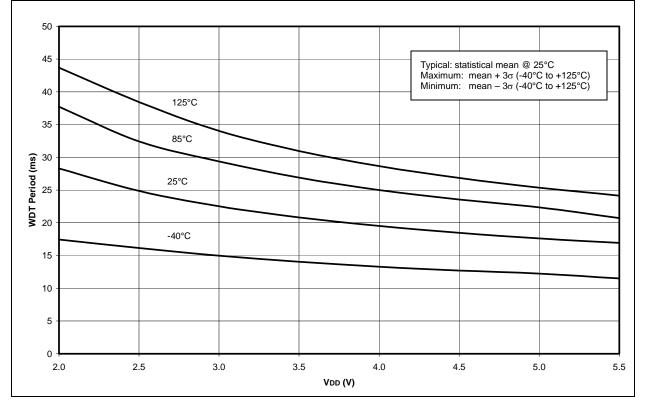


TABLE 17-13: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
125	TDTV2CKL	SYNC RCV (MASTER & SLAVE) Data Setup before $CK \downarrow$ (DT setup time)	15			ns	
126	TCKL2DTL	Data Hold after CK \downarrow (DT hold time)	15			ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

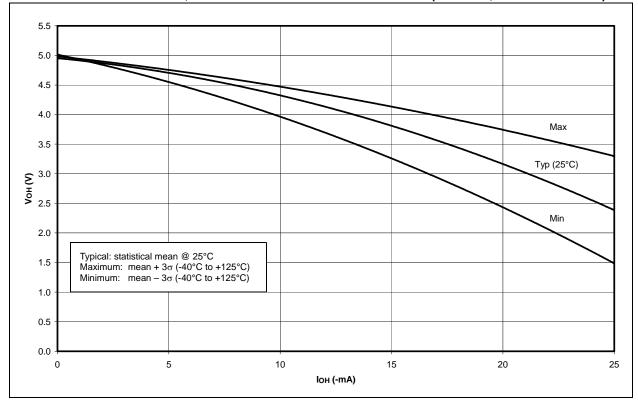


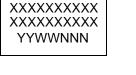
FIGURE 18-16: TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD = 5V, -40°C TO +125°C)

28-Lead QFN


28-Lead SSOP

Example

Example

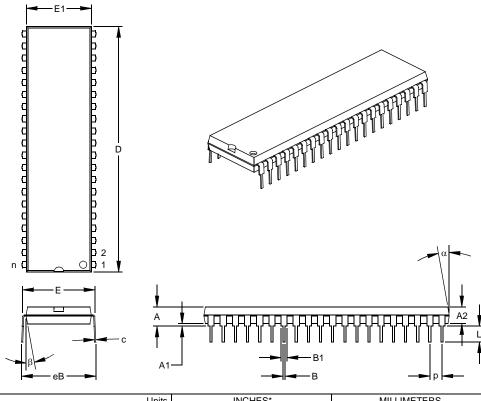

28-Lead SOIC

Example

28-Lead PDIP (Skinny DIP)

Example

44-Lead QFN


 \mathbf{N}

XXXXXXXXXXX

Package Marking Information (Cont'd)

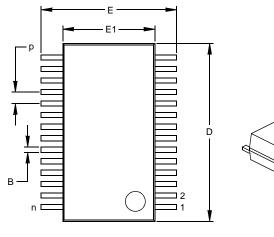
40-Lead Plastic Dual In-line (P) - 600 mil (PDIP)

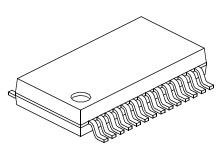
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES*		N	MILLIMETERS			
Dimensio	n Limits	MIN	NOM	MAX	MIN	NOM	MAX		
Number of Pins	n		40			40			
Pitch	р		.100			2.54			
Top to Seating Plane	А	.160	.175	.190	4.06	4.45	4.83		
Molded Package Thickness	A2	.140	.150	.160	3.56	3.81	4.06		
Base to Seating Plane	A1	.015			0.38				
Shoulder to Shoulder Width	Е	.595	.600	.625	15.11	15.24	15.88		
Molded Package Width	E1	.530	.545	.560	13.46	13.84	14.22		
Overall Length	D	2.045	2.058	2.065	51.94	52.26	52.45		
Tip to Seating Plane	L	.120	.130	.135	3.05	3.30	3.43		
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38		
Upper Lead Width	B1	.030	.050	.070	0.76	1.27	1.78		
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56		
Overall Row Spacing §	eB	.620	.650	.680	15.75	16.51	17.27		
Mold Draft Angle Top	α	5	10	15	5	10	15		
Mold Draft Angle Bottom	β	5	10	15	5	10	15		

* Controlling Parameter § Significant Characteristic

Notes:


Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed


.010" (0.254mm) per side. JEDEC Equivalent: MO-011

Drawing No. C04-016

28-Lead Plastic Shrink Small Outline (SS) - 209 mil, 5.30 mm (SSOP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES		MILLIMETERS*			
Dimension	n Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		28			28		
Pitch	р		.026			0.65		
Overall Height	А	.068	.073	.078	1.73	1.85	1.98	
Molded Package Thickness	A2	.064	.068	.072	1.63	1.73	1.83	
Standoff §	A1	.002	.006	.010	0.05	0.15	0.25	
Overall Width	E	.299	.309	.319	7.59	7.85	8.10	
Molded Package Width	E1	.201	.207	.212	5.11	5.25	5.38	
Overall Length	D	.396	.402	.407	10.06	10.20	10.34	
Foot Length	L	.022	.030	.037	0.56	0.75	0.94	
Lead Thickness	С	.004	.007	.010	0.10	0.18	0.25	
Foot Angle	φ	0	4	8	0.00	101.60	203.20	
Lead Width	В	.010	.013	.015	0.25	0.32	0.38	
Mold Draft Angle Top	α	0	5	10	0	5	10	
Mold Draft Angle Bottom	β	0	5	10	0	5	10	

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-150

Drawing No. C04-073