

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                                      |
|----------------------------|-----------------------------------------------------------------------------|
| Core Processor             | PIC                                                                         |
| Core Size                  | 8-Bit                                                                       |
| Speed                      | 10MHz                                                                       |
| Connectivity               | I <sup>2</sup> C, SPI, UART/USART                                           |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                       |
| Number of I/O              | 33                                                                          |
| Program Memory Size        | 14KB (8K x 14)                                                              |
| Program Memory Type        | FLASH                                                                       |
| EEPROM Size                | 256 x 8                                                                     |
| RAM Size                   | 368 x 8                                                                     |
| Voltage - Supply (Vcc/Vdd) | 2V ~ 5.5V                                                                   |
| Data Converters            | A/D 8x10b                                                                   |
| Oscillator Type            | External                                                                    |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                           |
| Mounting Type              | Surface Mount                                                               |
| Package / Case             | 44-TQFP                                                                     |
| Supplier Device Package    | 44-TQFP (10x10)                                                             |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16lf877at-i-pt |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## PIC16F87XA

NOTES:

## 2.3 PCL and PCLATH

The Program Counter (PC) is 13 bits wide. The low byte comes from the PCL register which is a readable and writable register. The upper bits (PC<12:8>) are not readable, but are indirectly writable through the PCLATH register. On any Reset, the upper bits of the PC will be cleared. Figure 2-5 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0>  $\rightarrow$  PCH). The lower example in the figure shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3>  $\rightarrow$  PCH).

#### FIGURE 2-5: LOADING OF PC IN DIFFERENT SITUATIONS



### 2.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to the application note, *AN556, "Implementing a Table Read"* (DS00556).

### 2.3.2 STACK

The PIC16F87XA family has an 8-level deep x 13-bit wide hardware stack. The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed, or an interrupt causes a branch. The stack is POP'ed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

- **Note 1:** There are no status bits to indicate stack overflow or stack underflow conditions.
  - 2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address.

## 2.4 Program Memory Paging

All PIC16F87XA devices are capable of addressing a continuous 8K word block of program memory. The CALL and GOTO instructions provide only 11 bits of address to allow branching within any 2K program memory page. When doing a CALL or GOTO instruction, the upper 2 bits of the address are provided by PCLATH<4:3>. When doing a CALL or GOTO instruction, the user must ensure that the page select bits are programmed so that the desired program memory page is addressed. If a return from a CALL instruction (or interrupt) is executed, the entire 13-bit PC is popped off the stack. Therefore, manipulation of the PCLATH<4:3> bits is not required for the RETURN instructions (which POPs the address from the stack).

| Note: | The contents of the PCLATH register are                                                 |  |  |  |  |  |  |  |
|-------|-----------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|       | unchanged after a RETURN or RETFIE                                                      |  |  |  |  |  |  |  |
|       | instruction is executed. The user must                                                  |  |  |  |  |  |  |  |
|       | rewrite the contents of the PCLATH regis-<br>ter for any subsequent subroutine calls or |  |  |  |  |  |  |  |
|       |                                                                                         |  |  |  |  |  |  |  |
|       | GOTO instructions.                                                                      |  |  |  |  |  |  |  |

Example 2-1 shows the calling of a subroutine in page 1 of the program memory. This example assumes that PCLATH is saved and restored by the Interrupt Service Routine (if interrupts are used).

### EXAMPLE 2-1: CALL OF A SUBROUTINE IN PAGE 1 FROM PAGE 0

|         | ORG 0x500<br>BCF PCLATH,4<br>BSF PCLATH,3 | ;Select page 1<br>:(800b-FFFb)                               |
|---------|-------------------------------------------|--------------------------------------------------------------|
|         | CALL SUB1_P1<br>:<br>:                    | ;Call subroutine in ;page 1 (800h-FFFh)                      |
| SUB1 P1 | ORG 0x900                                 | ;page 1 (800h-FFFh)                                          |
|         | :                                         | ;called subroutine<br>;page 1 (800h-FFFh)                    |
|         | RETURN                                    | ;return to<br>;Call subroutine<br>;in page 0<br>;(000h-7FFh) |

## 3.3 Reading Data EEPROM Memory

To read a data memory location, the user must write the address to the EEADR register, clear the EEPGD control bit (EECON1<7>) and then set control bit RD (EECON1<0>). The data is available in the very next cycle in the EEDATA register; therefore, it can be read in the next instruction (see Example 3-1). EEDATA will hold this value until another read or until it is written to by the user (during a write operation).

The steps to reading the EEPROM data memory are:

- 1. Write the address to EEADR. Make sure that the address is not larger than the memory size of the device.
- 2. Clear the EEPGD bit to point to EEPROM data memory.
- 3. Set the RD bit to start the read operation.
- 4. Read the data from the EEDATA register.

EXAMPLE 3-1: DATA EEPROM READ

| BSF   | STATUS, RP1    | ; |                 |
|-------|----------------|---|-----------------|
| BCF   | STATUS, RPO    | ; | Bank 2          |
| MOVF  | DATA_EE_ADDR,W | ; | Data Memory     |
| MOVWF | EEADR          | ; | Address to read |
| BSF   | STATUS, RPO    | ; | Bank 3          |
| BCF   | EECON1, EEPGD  | ; | Point to Data   |
|       |                | ; | memory          |
| BSF   | EECON1,RD      | ; | EE Read         |
| BCF   | STATUS, RPO    | ; | Bank 2          |
| MOVF  | EEDATA,W       | ; | W = EEDATA      |
|       |                |   |                 |

### 3.4 Writing to Data EEPROM Memory

To write an EEPROM data location, the user must first write the address to the EEADR register and the data to the EEDATA register. Then the user must follow a specific write sequence to initiate the write for each byte.

The write will not initiate if the write sequence is not exactly followed (write 55h to EECON2, write AAh to EECON2, then set WR bit) for each byte. We strongly recommend that interrupts be disabled during this code segment (see Example 3-2).

Additionally, the WREN bit in EECON1 must be set to enable write. This mechanism prevents accidental writes to data EEPROM due to errant (unexpected) code execution (i.e., lost programs). The user should keep the WREN bit clear at all times, except when updating EEPROM. The WREN bit is not cleared by hardware

After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. The WR bit will be inhibited from being set unless the WREN bit is set. At the completion of the write cycle, the WR bit is cleared in hardware and the EE Write Complete Interrupt Flag bit (EEIF) is set. The user can either enable this interrupt or poll this bit. EEIF must be cleared by software.

The steps to write to EEPROM data memory are:

- 1. If step 10 is not implemented, check the WR bit to see if a write is in progress.
- 2. Write the address to EEADR. Make sure that the address is not larger than the memory size of the device.
- 3. Write the 8-bit data value to be programmed in the EEDATA register.
- 4. Clear the EEPGD bit to point to EEPROM data memory.
- 5. Set the WREN bit to enable program operations.
- 6. Disable interrupts (if enabled).
- 7. Execute the special five instruction sequence:
  - Write 55h to EECON2 in two steps (first to W, then to EECON2)
  - Write AAh to EECON2 in two steps (first to W, then to EECON2)
  - · Set the WR bit
- 8. Enable interrupts (if using interrupts).
- 9. Clear the WREN bit to disable program operations.
- At the completion of the write cycle, the WR bit is cleared and the EEIF interrupt flag bit is set. (EEIF must be cleared by firmware.) If step 1 is not implemented, then firmware should check for EEIF to be set, or WR to clear, to indicate the end of the program cycle.

#### EXAMPLE 3-2: DATA EEPROM WRITE

|      |     | BSF   | STATUS, RP1    | i                  |  |  |
|------|-----|-------|----------------|--------------------|--|--|
|      |     | BTFSC | EECON1,WR      | ;Wait for write    |  |  |
|      |     | GOTO  |                | ;to complete       |  |  |
|      |     | BCF   | STATUS, RPU    | ;Balik 2           |  |  |
|      |     | MOVE  | DATA_EE_ADDR,W | ;Data Memory       |  |  |
|      |     | MOVWE | EEADR          | ;Address to write  |  |  |
|      |     | MOVE  | DATA_EE_DATA,W | ;Data Memory Value |  |  |
|      |     | MOVWF | EEDATA         | ;to write          |  |  |
|      |     | BSF   | STATUS, RPO    | ;Bank 3            |  |  |
|      |     | BCF   | EECON1, EEPGD  | ;Point to DATA     |  |  |
|      |     |       |                | ;memory            |  |  |
|      |     | BSF   | EECON1,WREN    | ;Enable writes     |  |  |
|      |     |       |                |                    |  |  |
|      |     | BCF   | INTCON, GIE    | ;Disable INTs.     |  |  |
|      |     | MOVLW | 55h            | ;                  |  |  |
| σ    | g   | MOVWF | EECON2         | ;Write 55h         |  |  |
| uire | len | MOVLW | AAh            | ;                  |  |  |
| equ  | ed  | MOVWF | EECON2         | ;Write AAh         |  |  |
| R    | Ś   | BSF   | EECON1,WR      | ;Set WR bit to     |  |  |
|      |     |       |                | ;begin write       |  |  |
|      | -   | BSF   | INTCON, GIE    | Enable INTs.       |  |  |
|      |     | BCF   | EECON1, WREN   | ;Disable writes    |  |  |
|      |     |       | •              |                    |  |  |

### 3.5 Reading Flash Program Memory

To read a program memory location, the user must write two bytes of the address to the EEADR and EEADRH registers, set the EEPGD control bit (EECON1<7>) and then set control bit RD (EECON1<0>). Once the read control bit is set, the program memory Flash controller will use the next two instruction cycles to read the data. This causes these two instructions immediately following the "BSF EECON1, RD" instruction to be ignored. The data is available in the very next cycle in the EEDATA and EEDATH registers; therefore, it can be read as two bytes in the following instructions. EEDATA and EEDATH registers will hold this value until another read or until it is written to by the user (during a write operation).

| EXAMPLE 3-3             | FI ASH | PROGRAM | RFAD |
|-------------------------|--------|---------|------|
| $L \land \land \square$ |        | INCONAM | ILAD |

|      |      | BSF   | STATUS, RP1 | -    | ; |                                                    |
|------|------|-------|-------------|------|---|----------------------------------------------------|
|      |      | BCF   | STATUS, RPO | )    | ; | Bank 2                                             |
|      |      | MOVLW | MS_PROG_EE  | ADDR | ; |                                                    |
|      |      | MOVWF | EEADRH      |      | ; | MS Byte of Program Address to read                 |
|      |      | MOVLW | LS PROG EE  | ADDR | ; |                                                    |
|      |      | MOVWF | EEADR       |      | ; | LS Byte of Program Address to read                 |
|      |      | BSF   | STATUS, RPO | )    | ; | Bank 3                                             |
|      |      | BSF   | EECON1, EEF | GD   | ; | Point to PROGRAM memory                            |
|      |      | BSF   | EECON1, RD  |      | ; | EE Read                                            |
| eq   | eg ; |       |             |      |   |                                                    |
| quin | nen  | NOP   |             |      |   |                                                    |
| Rec  | ed   | NOP   |             |      | ; | Any instructions here are ignored as program       |
| `    |      |       |             |      | ; | memory is read in second cycle after BSF EECON1,RD |
|      | ;    |       |             |      |   |                                                    |
|      |      | BCF   | STATUS, RPO | )    | ; | Bank 2                                             |
|      |      | MOVF  | EEDATA, W   |      | ; | W = LS Byte of Program EEDATA                      |
|      |      | MOVWF | DATAL       |      | ; |                                                    |
|      |      | MOVF  | EEDATH, W   |      | ; | W = MS Byte of Program EEDATA                      |
|      |      | MOVWF | DATAH       |      | ; |                                                    |
|      |      |       |             |      |   |                                                    |

### 5.2 Using Timer0 with an External Clock

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks. Therefore, it is necessary for T0CKI to be high for at least 2 Tosc (and a small RC delay of 20 ns) and low for at least 2 Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device.

### 5.3 Prescaler

REGISTER 5-1:

There is only one prescaler available which is mutually exclusively shared between the Timer0 module and the Watchdog Timer. A prescaler assignment for the

**OPTION REG REGISTER** 

Timer0 module means that there is no prescaler for the Watchdog Timer and vice versa. This prescaler is not readable or writable (see Figure 5-1).

The PSA and PS2:PS0 bits (OPTION\_REG<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF1, MOVWF1, BSF1, x....etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer. The prescaler is not readable or writable.

Note: Writing to TMR0 when the prescaler is assigned to Timer0 will clear the prescaler count, but will not change the prescaler assignment.

|       |                                                      | _                                                                           |                                                                           |                                |                    |             |               |       |  |  |
|-------|------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------|--------------------|-------------|---------------|-------|--|--|
|       | R/W-1                                                | R/W-1                                                                       | R/W-1                                                                     | R/W-1                          | R/W-1              | R/W-1       | R/W-1         | R/W-1 |  |  |
|       | RBPU                                                 | INTEDG                                                                      | TOCS                                                                      | T0SE                           | PSA                | PS2         | PS1           | PS0   |  |  |
|       | bit 7                                                |                                                                             |                                                                           |                                |                    |             |               | bit   |  |  |
| t 7   | RBPU                                                 |                                                                             |                                                                           |                                |                    |             |               |       |  |  |
| t 6   | INTEDG                                               |                                                                             |                                                                           |                                |                    |             |               |       |  |  |
| t 5   | TOCS: TM                                             | R0 Clock So                                                                 | urce Select                                                               | bit                            |                    |             |               |       |  |  |
|       | 1 = Transit<br>0 = Interna                           | ion on T0CK<br>al instruction                                               | íl pin<br>cycle clock                                                     | (CLKO)                         |                    |             |               |       |  |  |
| t 4   | TOSE: TMI                                            | R0 Source E                                                                 | dge Select                                                                | bit                            |                    |             |               |       |  |  |
|       | 1 = Increm<br>0 = Increm                             | ient on high-f                                                              | to-low trans                                                              | sition on TOC<br>sition on TOC | CKI pin<br>CKI pin |             |               |       |  |  |
| t 3   | PSA: Pres                                            | caler Assign                                                                | ment bit                                                                  |                                |                    |             |               |       |  |  |
|       | 1 = Presca<br>0 = Presca                             | aler is assign<br>aler is assign                                            | ed to the W<br>ed to the Ti                                               | /DT<br>mer0 modul              | e                  |             |               |       |  |  |
| t 2-0 | PS2:PS0: Prescaler Rate Select bits                  |                                                                             |                                                                           |                                |                    |             |               |       |  |  |
|       | Bit Value                                            | TMR0 Rate                                                                   | WDT Rate                                                                  |                                |                    |             |               |       |  |  |
|       | 000<br>001<br>010<br>011<br>100<br>101<br>110<br>111 | 1 : 2<br>1 : 4<br>1 : 8<br>1 : 16<br>1 : 32<br>1 : 64<br>1 : 128<br>1 : 256 | 1 : 1<br>1 : 2<br>1 : 4<br>1 : 8<br>1 : 16<br>1 : 32<br>1 : 64<br>1 : 128 |                                |                    |             |               |       |  |  |
|       | Legend:                                              |                                                                             |                                                                           |                                |                    |             |               |       |  |  |
|       | R = Reada                                            | able bit                                                                    | VV = V                                                                    | Vritable bit                   | U = Unimp          | plemented b | it, read as ' | 0'    |  |  |
|       |                                                      | - n = Value at POR '1' = E                                                  |                                                                           |                                |                    | ماممتعما    |               | - 1   |  |  |

be followed even if the WDT is disabled.

### 7.1 Timer2 Prescaler and Postscaler

The prescaler and postscaler counters are cleared when any of the following occurs:

- a write to the TMR2 register
- a write to the T2CON register
- any device Reset (POR, MCLR Reset, WDT Reset or BOR)

TMR2 is not cleared when T2CON is written.

## 7.2 Output of TMR2

The output of TMR2 (before the postscaler) is fed to the SSP module, which optionally uses it to generate the shift clock.

### TABLE 7-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

| Address                 | Name   | Bit 7                | Bit 6                    | Bit 5   | Bit 4   | Bit 3   | Bit 2  | Bit 1   | Bit 0   | Value<br>POR, | e on:<br>BOR | Value<br>all o<br>Res | e on<br>other<br>sets |
|-------------------------|--------|----------------------|--------------------------|---------|---------|---------|--------|---------|---------|---------------|--------------|-----------------------|-----------------------|
| 0Bh, 8Bh,<br>10Bh, 18Bh | INTCON | GIE                  | PEIE                     | TMR0IE  | INTE    | RBIE    | TMR0IF | INTF    | RBIF    | 0000          | 000x         | 0000                  | 000u                  |
| 0Ch                     | PIR1   | PSPIF <sup>(1)</sup> | ADIF                     | RCIF    | TXIF    | SSPIF   | CCP1IF | TMR2IF  | TMR1IF  | 0000          | 0000         | 0000                  | 0000                  |
| 8Ch                     | PIE1   | PSPIE <sup>(1)</sup> | ADIE                     | RCIE    | TXIE    | SSPIE   | CCP1IE | TMR2IE  | TMR1IE  | 0000          | 0000         | 0000                  | 0000                  |
| 11h                     | TMR2   | Timer2 M             | Timer2 Module's Register |         |         |         |        |         |         |               | 0000         | 0000                  | 0000                  |
| 12h                     | T2CON  | _                    | TOUTPS3                  | TOUTPS2 | TOUTPS1 | TOUTPS0 | TMR2ON | T2CKPS1 | T2CKPS0 | -000          | 0000         | -000                  | 0000                  |
| 92h                     | PR2    | Timer2 P             | eriod Regis              | ter     |         |         |        |         |         | 1111          | 1111         | 1111                  | 1111                  |

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer2 module.

Note 1: Bits PSPIE and PSPIF are reserved on 28-pin devices; always maintain these bits clear.

## 8.0 CAPTURE/COMPARE/PWM MODULES

Each Capture/Compare/PWM (CCP) module contains a 16-bit register which can operate as a:

- 16-bit Capture register
- 16-bit Compare register
- PWM Master/Slave Duty Cycle register

Both the CCP1 and CCP2 modules are identical in operation, with the exception being the operation of the special event trigger. Table 8-1 and Table 8-2 show the resources and interactions of the CCP module(s). In the following sections, the operation of a CCP module is described with respect to CCP1. CCP2 operates the same as CCP1 except where noted.

### CCP1 Module:

Capture/Compare/PWM Register 1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. The special event trigger is generated by a compare match and will reset Timer1.

### CCP2 Module:

Capture/Compare/PWM Register 2 (CCPR2) is comprised of two 8-bit registers: CCPR2L (low byte) and CCPR2H (high byte). The CCP2CON register controls the operation of CCP2. The special event trigger is generated by a compare match and will reset Timer1 and start an A/D conversion (if the A/D module is enabled).

Additional information on CCP modules is available in the PIC<sup>®</sup> Mid-Range MCU Family Reference Manual (DS33023) and in application note *AN594, "Using the CCP Module*(s)" (DS00594).

## TABLE 8-1: CCP MODE – TIMER RESOURCES REQUIRED

| CCP Mode | Timer Resource |
|----------|----------------|
| Capture  | Timer1         |
| Compare  | Timer1         |
| PWM      | Timer2         |

TABLE 8-2:INTERACTION OF TWO CCP MODULES

| CCPx Mode | CCPy Mode | Interaction                                                                         |
|-----------|-----------|-------------------------------------------------------------------------------------|
| Capture   | Capture   | Same TMR1 time base                                                                 |
| Capture   | Compare   | The compare should be configured for the special event trigger which clears TMR1    |
| Compare   | Compare   | The compare(s) should be configured for the special event trigger which clears TMR1 |
| PWM       | PWM       | The PWMs will have the same frequency and update rate (TMR2 interrupt)              |
| PWM       | Capture   | None                                                                                |
| PWM       | Compare   | None                                                                                |

| REGISTER 9-5: SSPCON2: MSSP CONTROL REGISTER 2 (I <sup>2</sup> C MODE) (ADD                                                                                                                                                                                                                                                    |                                   |                                                  |                                          |                       |               | E) (ADDF     | RESS 91h)    |             |  |           |          |        |            |           |          |              |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------|------------------------------------------|-----------------------|---------------|--------------|--------------|-------------|--|-----------|----------|--------|------------|-----------|----------|--------------|-----|
|                                                                                                                                                                                                                                                                                                                                | R/W-0                             | R/W-0                                            | R/W-0                                    | R/W-0                 | R/W-0         | R/W-0        | R/W-0        | R/W-0       |  |           |          |        |            |           |          |              |     |
|                                                                                                                                                                                                                                                                                                                                | GCEN                              | ACKSTAT                                          | ACKDT                                    | ACKEN                 | RCEN          | PEN          | RSEN         | SEN         |  |           |          |        |            |           |          |              |     |
|                                                                                                                                                                                                                                                                                                                                | bit 7                             |                                                  |                                          |                       |               |              |              | bit 0       |  |           |          |        |            |           |          |              |     |
| bit 7                                                                                                                                                                                                                                                                                                                          | GCEN: G                           | eneral Call En                                   | able bit (Sla                            | ve mode only          | ()            |              |              |             |  |           |          |        |            |           |          |              |     |
|                                                                                                                                                                                                                                                                                                                                | 1 = Enabl<br>0 = Gener            | e interrupt whe                                  | en a general<br>s disabled               | call address          | (0000h) is    | received in  | the SSPSF    | 8           |  |           |          |        |            |           |          |              |     |
| bit 6                                                                                                                                                                                                                                                                                                                          | ACKSTAT                           | F: Acknowledg                                    | e Status bit                             | (Master Trans         | smit mode o   | only)        |              |             |  |           |          |        |            |           |          |              |     |
|                                                                                                                                                                                                                                                                                                                                | 1 = Ackno<br>0 = Ackno            | wledge was n<br>wledge was r                     | ot received f                            | irom slave<br>I slave |               |              |              |             |  |           |          |        |            |           |          |              |     |
| bit 5                                                                                                                                                                                                                                                                                                                          | ACKDT: A                          | Acknowledge [                                    | Data bit (Mas                            | ster Receive          | mode only)    |              |              |             |  |           |          |        |            |           |          |              |     |
|                                                                                                                                                                                                                                                                                                                                | 1 = Not A<br>0 = Ackno            | cknowledge<br>wledge                             |                                          |                       |               |              |              |             |  |           |          |        |            |           |          |              |     |
|                                                                                                                                                                                                                                                                                                                                | Note:                             | Value that w the end of a                        | ill be transm<br>receive.                | itted when th         | e user initia | tes an Ackı  | nowledge se  | equence at  |  |           |          |        |            |           |          |              |     |
| bit 4                                                                                                                                                                                                                                                                                                                          | ACKEN: /                          | Acknowledge                                      | Sequence E                               | nable bit (Ma         | ster Receiv   | e mode on    | ly)          |             |  |           |          |        |            |           |          |              |     |
|                                                                                                                                                                                                                                                                                                                                | 1 = Initiat<br>Autor<br>0 = Ackno | e Acknowledg<br>matically clear<br>owledge seque | ge sequence<br>ed by hardwa<br>ence Idle | e on SDA ar<br>are.   | nd SCL pins   | s and tran   | smit ACKD    | T data bit. |  |           |          |        |            |           |          |              |     |
| bit 3                                                                                                                                                                                                                                                                                                                          | RCEN: Re                          | eceive Enable                                    | bit (Master i                            | mode only)            |               |              |              |             |  |           |          |        |            |           |          |              |     |
|                                                                                                                                                                                                                                                                                                                                | 1 = Enable<br>0 = Recei           | es Receive m<br>ve Idle                          | ode for I <sup>2</sup> C                 |                       |               |              |              |             |  |           |          |        |            |           |          |              |     |
| bit 2                                                                                                                                                                                                                                                                                                                          | PEN: Stop                         | o Condition Er                                   | able bit (Ma                             | ster mode or          | nly)          |              |              |             |  |           |          |        |            |           |          |              |     |
|                                                                                                                                                                                                                                                                                                                                | 1 = Initiate<br>0 = Stop c        | e Stop conditio                                  | on on SDA a                              | nd SCL pins.          | Automatica    | ally cleared | by hardwa    | re.         |  |           |          |        |            |           |          |              |     |
| bit 1                                                                                                                                                                                                                                                                                                                          | RSEN: Re                          | epeated Start                                    | Condition En                             | abled bit (Ma         | aster mode    | only)        |              |             |  |           |          |        |            |           |          |              |     |
|                                                                                                                                                                                                                                                                                                                                | 1 = Initiate<br>0 = Repea         | e Repeated Sta<br>ated Start cond                | art condition<br>dition Idle             | on SDA and S          | SCL pins. A   | utomatically | y cleared by | hardware.   |  |           |          |        |            |           |          |              |     |
| bit 0                                                                                                                                                                                                                                                                                                                          | SEN: Star                         | t Condition Er                                   | habled/Streto                            | h Enabled bi          | t             |              |              |             |  |           |          |        |            |           |          |              |     |
|                                                                                                                                                                                                                                                                                                                                | In Master                         | mode:                                            |                                          |                       |               |              |              |             |  |           |          |        |            |           |          |              |     |
| <ul> <li>1 = Initiate Start condition on SDA and SCL pins. Automatically cleared by hardware.</li> <li>0 = Start condition Idle</li> <li><u>In Slave mode:</u></li> <li>1 = Clock stretching is enabled for both slave transmit and slave receive (stretch enabled or slave transmit only (PIC16F87X compatibility)</li> </ul> |                                   |                                                  |                                          |                       |               |              |              |             |  |           |          |        |            |           |          |              |     |
|                                                                                                                                                                                                                                                                                                                                |                                   |                                                  |                                          |                       |               |              |              |             |  | Legend:   |          |        |            |           |          |              |     |
|                                                                                                                                                                                                                                                                                                                                |                                   |                                                  |                                          |                       |               |              |              |             |  | R = Reada | able bit | W = Wr | itable bit | U = Unimp | lemented | bit, read as | '0' |
|                                                                                                                                                                                                                                                                                                                                | - n = Value                       | e at POR                                         | '1' = Bit                                | is set                | '0' = Bit is  | cleared      | x = Bit is ι | Inknown     |  |           |          |        |            |           |          |              |     |
|                                                                                                                                                                                                                                                                                                                                |                                   |                                                  |                                          |                       |               |              |              |             |  |           |          |        |            |           |          |              |     |

**Note:** For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I<sup>2</sup>C module is not in the Idle mode, this bit may not be set (no spooling) and the SSPBUF may not be written (or writes to the SSPBUF are disabled).

## PIC16F87XA



I<sup>2</sup>C SLAVE MODE TIMING (TRANSMISSION, 7-BIT ADDRESS)



### 10.3.2 USART SYNCHRONOUS MASTER RECEPTION

Once Synchronous mode is selected, reception is enabled by setting either enable bit, SREN (RCSTA<5>), or enable bit, CREN (RCSTA<4>). Data is sampled on the RC7/RX/DT pin on the falling edge of the clock. If enable bit SREN is set, then only a single word is received. If enable bit CREN is set, the reception is continuous until CREN is cleared. If both bits are set, CREN takes precedence. After clocking the last bit, the received data in the Receive Shift Register (RSR) is transferred to the RCREG register (if it is empty). When the transfer is complete, interrupt flag bit, RCIF (PIR1<5>), is set. The actual interrupt can be enabled/ disabled by setting/clearing enable bit, RCIE (PIE1<5>). Flag bit RCIF is a read-only bit which is reset by the hardware. In this case, it is reset when the RCREG register has been read and is empty. The RCREG is a double-buffered register (i.e., it is a twodeep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting into the RSR register. On the clocking of the last bit of the third byte, if the RCREG register is still full, then Overrun Error bit, OERR (RCSTA<1>), is set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Bit OERR has to be cleared in software (by clearing bit CREN). If bit OERR is set, transfers from the RSR to the RCREG are inhibited so it is essential to clear bit OERR if it is set. The ninth receive bit is buffered the same way as the receive

data. Reading the RCREG register will load bit RX9D with a new value, therefore, it is essential for the user to read the RCSTA register before reading RCREG in order not to lose the old RX9D information.

When setting up a Synchronous Master Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate (Section 10.1 "USART Baud Rate Generator (BRG)").
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. Ensure bits CREN and SREN are clear.
- 4. If interrupts are desired, then set enable bit RCIE.
- 5. If 9-bit reception is desired, then set bit RX9.
- 6. If a single reception is required, set bit SREN. For continuous reception, set bit CREN.
- Interrupt flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 8. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If any error occurred, clear the error by clearing bit CREN.
- 11. If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of the INTCON register are set.

| Address                | Name   | Bit 7                        | Bit 6                  | Bit 5  | Bit 4 | Bit 3 | Bit 2  | Bit 1  | Bit 0  | Value on:<br>POR, BOR | Value on<br>all other<br>Resets |
|------------------------|--------|------------------------------|------------------------|--------|-------|-------|--------|--------|--------|-----------------------|---------------------------------|
| 0Bh, 8Bh,<br>10Bh,18Bh | INTCON | GIE                          | PEIE                   | TMR0IE | INTE  | RBIE  | TMR0IF | INTF   | R0IF   | 0000 000x             | 0000 000u                       |
| 0Ch                    | PIR1   | PSPIF <sup>(1)</sup>         | ADIF                   | RCIF   | TXIF  | SSPIF | CCP1IF | TMR2IF | TMR1IF | 0000 0000             | 0000 0000                       |
| 18h                    | RCSTA  | SPEN                         | RX9                    | SREN   | CREN  |       | FERR   | OERR   | RX9D   | 0000 -00x             | 0000 -00x                       |
| 1Ah                    | RCREG  | USART Re                     | USART Receive Register |        |       |       |        |        |        | 0000 0000             | 0000 0000                       |
| 8Ch                    | PIE1   | PSPIE <sup>(1)</sup>         | ADIE                   | RCIE   | TXIE  | SSPIE | CCP1IE | TMR2IE | TMR1IE | 0000 0000             | 0000 0000                       |
| 98h                    | TXSTA  | CSRC                         | TX9                    | TXEN   | SYNC  | —     | BRGH   | TRMT   | TX9D   | 0000 -010             | 0000 -010                       |
| 99h                    | SPBRG  | Baud Rate Generator Register |                        |        |       |       |        |        |        | 0000 0000             | 0000 0000                       |

### TABLE 10-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous master reception. Note 1: Bits PSPIE and PSPIF are reserved on 28-pin devices; always maintain these bits clear.

# PIC16F87XA





### 12.6 Comparator Interrupts

The comparator interrupt flag is set whenever there is a change in the output value of either comparator. Software will need to maintain information about the status of the output bits, as read from CMCON<7:6>, to determine the actual change that occurred. The CMIF bit (PIR registers) is the Comparator Interrupt Flag. The CMIF bit must be reset by clearing it ('0'). Since it is also possible to write a '1' to this register, a simulated interrupt may be initiated.

The CMIE bit (PIE registers) and the PEIE bit (INTCON register) must be set to enable the interrupt. In addition, the GIE bit must also be set. If any of these bits are clear, the interrupt is not enabled, though the CMIF bit will still be set if an interrupt condition occurs.

Note: If a change in the CMCON register (C1OUT or C2OUT) should occur when a read operation is being executed (start of the Q2 cycle), then the CMIF (PIR registers) interrupt flag may not get set.

The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of CMCON will end the mismatch condition.
- b) Clear flag bit CMIF.

A mismatch condition will continue to set flag bit CMIF. Reading CMCON will end the mismatch condition and allow flag bit CMIF to be cleared.

| SWAPF            | Swap Nibbles in f                                                                                                                                                                  |  |  |  |  |  |  |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Syntax:          | [ label ] SWAPF f,d                                                                                                                                                                |  |  |  |  |  |  |
| Operands:        | $\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$                                                                                                                        |  |  |  |  |  |  |
| Operation:       | $(f<3:0>) \rightarrow (destination<7:4>),$<br>$(f<7:4>) \rightarrow (destination<3:0>)$                                                                                            |  |  |  |  |  |  |
| Status Affected: | None                                                                                                                                                                               |  |  |  |  |  |  |
| Description:     | The upper and lower nibbles of<br>register 'f' are exchanged. If 'd' is<br>'0', the result is placed in the W<br>register. If 'd' is '1', the result is<br>placed in register 'f'. |  |  |  |  |  |  |

| XORWF            | Exclusive OR W with f                                                                                                                                                           |  |  |  |  |  |  |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Syntax:          | [ label ] XORWF f,d                                                                                                                                                             |  |  |  |  |  |  |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$                                                                                                                 |  |  |  |  |  |  |
| Operation:       | (W) .XOR. (f) $\rightarrow$ (destination)                                                                                                                                       |  |  |  |  |  |  |
| Status Affected: | Z                                                                                                                                                                               |  |  |  |  |  |  |
| Description:     | Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'. |  |  |  |  |  |  |

| XORLW            | Exclusive OR Literal with W                                                                                                |  |  |  |  |  |
|------------------|----------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Syntax:          | [ <i>label</i> ] XORLW k                                                                                                   |  |  |  |  |  |
| Operands:        | $0 \leq k \leq 255$                                                                                                        |  |  |  |  |  |
| Operation:       | (W) .XOR. $k \rightarrow$ (W)                                                                                              |  |  |  |  |  |
| Status Affected: | Z                                                                                                                          |  |  |  |  |  |
| Description:     | The contents of the W register<br>are XOR'ed with the eight-bit<br>literal 'k'. The result is placed in<br>the W register. |  |  |  |  |  |

## 16.0 DEVELOPMENT SUPPORT

The PIC<sup>®</sup> microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
  - MPLAB<sup>®</sup> IDE Software
- Assemblers/Compilers/Linkers
  - MPASM<sup>™</sup> Assembler
  - MPLAB C17 and MPLAB C18 C Compilers
  - MPLINK<sup>™</sup> Object Linker/
  - MPLIB<sup>™</sup> Object Librarian
  - MPLAB C30 C Compiler
  - MPLAB ASM30 Assembler/Linker/Library
- Simulators
  - MPLAB SIM Software Simulator
- MPLAB dsPIC30 Software Simulator
- Emulators
  - MPLAB ICE 2000 In-Circuit Emulator
  - MPLAB ICE 4000 In-Circuit Emulator
- In-Circuit Debugger
- MPLAB ICD 2
- Device Programmers
  - PRO MATE<sup>®</sup> II Universal Device Programmer
  - PICSTART<sup>®</sup> Plus Development Programmer
- Low Cost Demonstration Boards
  - PICDEM<sup>™</sup> 1 Demonstration Board
  - PICDEM.net<sup>™</sup> Demonstration Board
  - PICDEM 2 Plus Demonstration Board
  - PICDEM 3 Demonstration Board
  - PICDEM 4 Demonstration Board
  - PICDEM 17 Demonstration Board
  - PICDEM 18R Demonstration Board
  - PICDEM LIN Demonstration Board
  - PICDEM USB Demonstration Board
- Evaluation Kits
  - KEELOQ<sup>®</sup>
  - PICDEM MSC
  - microID<sup>®</sup>
  - CAN
  - PowerSmart<sup>®</sup>
  - Analog

### 16.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16-bit microcontroller market. The MPLAB IDE is a Windows<sup>®</sup> based application that contains:

- · An interface to debugging tools
  - simulator
  - programmer (sold separately)
  - emulator (sold separately)
  - in-circuit debugger (sold separately)
- · A full-featured editor with color coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High level source code debugging
- Mouse over variable inspection
- Extensive on-line help
- The MPLAB IDE allows you to:
- Edit your source files (either assembly or C)
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- Debug using:
  - source files (assembly or C)
  - absolute listing file (mixed assembly and C)
  - machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost effective simulators, through low cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increasing flexibility and power.

### 16.2 MPASM Assembler

The MPASM assembler is a full-featured, universal macro assembler for all PIC MCUs.

The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel<sup>®</sup> standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM assembler features include:

- Integration into MPLAB IDE projects
- · User defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

### 16.20 PICDEM 18R PIC18C601/801 Demonstration Board

The PICDEM 18R demonstration board serves to assist development of the PIC18C601/801 family of Microchip microcontrollers. It provides hardware implementation of both 8-bit Multiplexed/Demultiplexed and 16-bit Memory modes. The board includes 2 Mb external Flash memory and 128 Kb SRAM memory, as well as serial EEPROM, allowing access to the wide range of memory types supported by the PIC18C601/801.

## 16.21 PICDEM LIN PIC16C43X Demonstration Board

The powerful LIN hardware and software kit includes a series of boards and three PIC microcontrollers. The small footprint PIC16C432 and PIC16C433 are used as slaves in the LIN communication and feature onboard LIN transceivers. A PIC16F874 Flash microcontroller serves as the master. All three microcontrollers are programmed with firmware to provide LIN bus communication.

## 16.22 PICkit<sup>™</sup> 1 Flash Starter Kit

A complete "development system in a box", the PICkit Flash Starter Kit includes a convenient multi-section board for programming, evaluation and development of 8/14-pin Flash PIC<sup>®</sup> microcontrollers. Powered via USB, the board operates under a simple Windows GUI. The PICkit 1 Starter Kit includes the user's guide (on CD ROM), PICkit 1 tutorial software and code for various applications. Also included are MPLAB<sup>®</sup> IDE (Integrated Development Environment) software, software and hardware "Tips 'n Tricks for 8-pin Flash PIC<sup>®</sup> Microcontrollers" Handbook and a USB Interface Cable. Supports all current 8/14-pin Flash PIC microcontrollers, as well as many future planned devices.

## 16.23 PICDEM USB PIC16C7X5 Demonstration Board

The PICDEM USB Demonstration Board shows off the capabilities of the PIC16C745 and PIC16C765 USB microcontrollers. This board provides the basis for future USB products.

## 16.24 Evaluation and Programming Tools

In addition to the PICDEM series of circuits, Microchip has a line of evaluation kits and demonstration software for these products.

- KEELOQ evaluation and programming tools for Microchip's HCS Secure Data Products
- CAN developers kit for automotive network applications
- Analog design boards and filter design software
- PowerSmart battery charging evaluation/ calibration kits
- IrDA<sup>®</sup> development kit
- microID development and rfLab<sup>™</sup> development software
- SEEVAL<sup>®</sup> designer kit for memory evaluation and endurance calculations
- PICDEM MSC demo boards for Switching mode power supply, high power IR driver, delta sigma ADC, and flow rate sensor

Check the Microchip web page and the latest Product Line Card for the complete list of demonstration and evaluation kits.

### 17.1 DC Characteristics: PIC16F873A/874A/876A/877A (Industrial, Extended) PIC16LF873A/874A/876A/877A (Industrial) (Continued)

| PIC16LF873A/874A/876A/877A<br>(Industrial)          |                                    |                                           | Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial                                                                                                                                                        |      |          |          |                                                                                                        |  |  |
|-----------------------------------------------------|------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|----------|--------------------------------------------------------------------------------------------------------|--|--|
| PIC16F873A/874A/876A/877A<br>(Industrial, Extended) |                                    |                                           | $\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}\mbox{C} \leq T\mbox{Ta} \leq +85^{\circ}\mbox{C for industrial} \\ -40^{\circ}\mbox{C} \leq T\mbox{A} \leq +125^{\circ}\mbox{C for extended} \end{array}$ |      |          |          |                                                                                                        |  |  |
| Param<br>No.                                        | m Symbol Characteristic/<br>Device |                                           |                                                                                                                                                                                                                                                                                           | Тур† | Max      | Units    | Conditions                                                                                             |  |  |
|                                                     | IPD                                | Power-down Current <sup>(3,5)</sup>       |                                                                                                                                                                                                                                                                                           |      |          |          |                                                                                                        |  |  |
| D020                                                |                                    | 16LF87XA                                  | _                                                                                                                                                                                                                                                                                         | 7.5  | 30       | μΑ       | VDD = 3.0V, WDT enabled,<br>-40°C to +85°C                                                             |  |  |
| D020                                                |                                    | 16F87XA                                   | _                                                                                                                                                                                                                                                                                         | 10.5 | 42<br>60 | μΑ<br>μΑ | VDD = 4.0V, WDT enabled,<br>-40°C to +85°C<br>VDD = 4.0V, WDT enabled,<br>-40°C to +125°C (extended)   |  |  |
| D021                                                |                                    | 16LF87XA                                  |                                                                                                                                                                                                                                                                                           | 0.9  | 5        | μΑ       | VDD = 3.0V, WDT disabled,<br>0°C to +70°C                                                              |  |  |
| D021                                                |                                    | 16F87XA                                   | _                                                                                                                                                                                                                                                                                         | 1.5  | 16<br>20 | μΑ<br>μΑ | VDD = 4.0V, WDT disabled,<br>-40°C to +85°C<br>VDD = 4.0V, WDT disabled,<br>-40°C to +125°C (extended) |  |  |
| D021A                                               |                                    | 16LF87XA                                  |                                                                                                                                                                                                                                                                                           | 0.9  | 5        | μΑ       | VDD = 3.0V, WDT disabled,<br>-40°C to +85°C                                                            |  |  |
| D021A                                               |                                    | 16F87XA                                   |                                                                                                                                                                                                                                                                                           | 1.5  | 19       | μA       | VDD = 4.0V, WDT disabled,<br>-40°C to +85°C                                                            |  |  |
| D023                                                | $\Delta$ IBOR                      | Brown-out<br>Reset Current <sup>(6)</sup> | _                                                                                                                                                                                                                                                                                         | 85   | 200      | μΑ       | BOR enabled, VDD = 5.0V                                                                                |  |  |

Legend: Rows with standard voltage device data only are shaded for improved readability.

- † Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: This is the limit to which VDD can be lowered without losing RAM data.
  - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading, switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.
    - The test conditions for all IDD measurements in active operation mode are:
      - OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT enabled/disabled as specified.
  - **3:** The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD and Vss.
  - **4:** For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.
  - **5:** Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
  - 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
  - 7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.

#### 17.2 DC Characteristics: PIC16F873A/874A/876A/877A (Industrial, Extended) PIC16LF873A/874A/876A/877A (Industrial)

| DC CHA                                  | $\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \ \ for \ industrial \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \ \ for \ extended \\ \mbox{Operating voltage VDD range as described in DC specification} \\ \mbox{(Section 17.1)} \end{array}$ |                                         |                    |      |          |       |                                                             |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------|------|----------|-------|-------------------------------------------------------------|
| Param<br>No.                            | Sym                                                                                                                                                                                                                                                                                                                                                       | Characteristic                          | Min                | Тур† | Мах      | Units | Conditions                                                  |
|                                         | VIL                                                                                                                                                                                                                                                                                                                                                       | Input Low Voltage                       |                    |      |          |       |                                                             |
|                                         |                                                                                                                                                                                                                                                                                                                                                           | I/O ports:                              |                    |      |          |       |                                                             |
| D030                                    |                                                                                                                                                                                                                                                                                                                                                           | with TTL buffer                         | Vss                | —    | 0.15 Vdd | V     | For entire VDD range                                        |
| D030A                                   |                                                                                                                                                                                                                                                                                                                                                           |                                         | Vss                | —    | 0.8V     | V     | $4.5V \leq V\text{DD} \leq 5.5V$                            |
| D031                                    |                                                                                                                                                                                                                                                                                                                                                           | with Schmitt Trigger buffer             | Vss                | —    | 0.2 Vdd  | V     |                                                             |
| D032                                    |                                                                                                                                                                                                                                                                                                                                                           | MCLR, OSC1 (in RC mode)                 | Vss                | —    | 0.2 Vdd  | V     |                                                             |
| D033                                    |                                                                                                                                                                                                                                                                                                                                                           | OSC1 (in XT and LP modes)               | Vss                | —    | 0.3V     | V     | (Note 1)                                                    |
|                                         |                                                                                                                                                                                                                                                                                                                                                           | OSC1 (in HS mode)                       | Vss                | —    | 0.3 Vdd  | V     |                                                             |
|                                         |                                                                                                                                                                                                                                                                                                                                                           | Ports RC3 and RC4:                      |                    | —    |          |       |                                                             |
| D034                                    |                                                                                                                                                                                                                                                                                                                                                           | with Schmitt Trigger buffer             | Vss                | —    | 0.3 Vdd  | V     | For entire VDD range                                        |
| D034A                                   |                                                                                                                                                                                                                                                                                                                                                           | with SMBus                              | -0.5               | —    | 0.6      | V     | For VDD = 4.5 to 5.5V                                       |
|                                         | Vih                                                                                                                                                                                                                                                                                                                                                       | Input High Voltage                      |                    |      |          |       | Γ                                                           |
|                                         |                                                                                                                                                                                                                                                                                                                                                           | I/O ports:                              |                    | —    |          |       |                                                             |
| D040                                    |                                                                                                                                                                                                                                                                                                                                                           | with TTL buffer                         | 2.0                | —    | Vdd      | V     | $4.5V \le VDD \le 5.5V$                                     |
| D040A                                   |                                                                                                                                                                                                                                                                                                                                                           |                                         | 0.25 VDD<br>+ 0.8V |      | Vdd      | V     | For entire VDD range                                        |
| D041                                    |                                                                                                                                                                                                                                                                                                                                                           | with Schmitt Trigger buffer             | 0.8 Vdd            | —    | Vdd      | V     | For entire VDD range                                        |
| D042                                    |                                                                                                                                                                                                                                                                                                                                                           | MCLR                                    | 0.8 Vdd            | —    | Vdd      | V     |                                                             |
| D042A                                   |                                                                                                                                                                                                                                                                                                                                                           | OSC1 (in XT and LP modes)               | 1.6V               | —    | Vdd      | V     | (Note 1)                                                    |
|                                         |                                                                                                                                                                                                                                                                                                                                                           | OSC1 (in HS mode)                       | 0.7 Vdd            | —    | Vdd      | V     |                                                             |
| D043                                    |                                                                                                                                                                                                                                                                                                                                                           | OSC1 (in RC mode)                       | 0.9 Vdd            | —    | Vdd      | V     |                                                             |
|                                         |                                                                                                                                                                                                                                                                                                                                                           | Ports RC3 and RC4:                      |                    |      |          |       |                                                             |
| D044                                    |                                                                                                                                                                                                                                                                                                                                                           | with Schmitt Trigger buffer             | 0.7 Vdd            | —    | Vdd      | V     | For entire VDD range                                        |
| D044A                                   |                                                                                                                                                                                                                                                                                                                                                           | with SMBus                              | 1.4                | —    | 5.5      | V     | For VDD = 4.5 to 5.5V                                       |
| D070                                    | IPURB                                                                                                                                                                                                                                                                                                                                                     | PORTB Weak Pull-up Current              | 50                 | 250  | 400      | μA    | Vdd = 5V, Vpin = Vss,<br>-40°С то +85°С                     |
|                                         | lı∟                                                                                                                                                                                                                                                                                                                                                       | Input Leakage Current <sup>(2, 3)</sup> |                    |      |          |       |                                                             |
| D060                                    |                                                                                                                                                                                                                                                                                                                                                           | I/O ports                               | —                  |      | ±1       | μΑ    | Vss $\leq$ VPIN $\leq$ VDD, pin at high-impedance           |
| D061                                    |                                                                                                                                                                                                                                                                                                                                                           | MCLR, RA4/T0CKI                         | —                  | —    | ±5       | μA    | $Vss \leq Vpin \leq Vdd$                                    |
| D063                                    | 063 OSC1                                                                                                                                                                                                                                                                                                                                                  |                                         |                    | -    | ±5       | μA    | Vss $\leq$ VPIN $\leq$ VDD, XT, HS and LP osc configuration |
| , i i i i i i i i i i i i i i i i i i i | These                                                                                                                                                                                                                                                                                                                                                     | na va va stava ava abava stavina d but  |                    |      |          |       |                                                             |

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the PIC16F87XA be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.



### FIGURE 17-11: SPI MASTER MODE TIMING (CKE = 0, SMP = 0)

### FIGURE 17-12: SPI MASTER MODE TIMING (CKE = 1, SMP = 1)







100 Max (125°C) 10 Max (85°C) 1 IPD (NA) 0.1 0.01 Тур (25°С) Typical: statistical mean @ 25°C Maximum: mean +  $3\sigma$  (-40°C to +125°C) Minimum: mean -  $3\sigma$  (-40°C to +125°C) 0.001 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V)

## PIC16F87XA









## 28-Lead Skinny Plastic Dual In-line (SP) – 300 mil (PDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                            |        | INCHES* |       | MILLIMETERS |       |       |       |
|----------------------------|--------|---------|-------|-------------|-------|-------|-------|
| Dimension                  | _imits | MIN     | NOM   | MAX         | MIN   | NOM   | MAX   |
| Number of Pins             | n      |         | 28    |             |       | 28    |       |
| Pitch                      | р      |         | .100  |             |       | 2.54  |       |
| Top to Seating Plane       | А      | .140    | .150  | .160        | 3.56  | 3.81  | 4.06  |
| Molded Package Thickness   | A2     | .125    | .130  | .135        | 3.18  | 3.30  | 3.43  |
| Base to Seating Plane      | A1     | .015    |       |             | 0.38  |       |       |
| Shoulder to Shoulder Width | Е      | .300    | .310  | .325        | 7.62  | 7.87  | 8.26  |
| Molded Package Width       | E1     | .275    | .285  | .295        | 6.99  | 7.24  | 7.49  |
| Overall Length             | D      | 1.345   | 1.365 | 1.385       | 34.16 | 34.67 | 35.18 |
| Tip to Seating Plane       | L      | .125    | .130  | .135        | 3.18  | 3.30  | 3.43  |
| Lead Thickness             | С      | .008    | .012  | .015        | 0.20  | 0.29  | 0.38  |
| Upper Lead Width           | B1     | .040    | .053  | .065        | 1.02  | 1.33  | 1.65  |
| Lower Lead Width           | В      | .016    | .019  | .022        | 0.41  | 0.48  | 0.56  |
| Overall Row Spacing §      | eВ     | .320    | .350  | .430        | 8.13  | 8.89  | 10.92 |
| Mold Draft Angle Top       | α      | 5       | 10    | 15          | 5     | 10    | 15    |
| Mold Draft Angle Bottom    | β      | 5       | 10    | 15          | 5     | 10    | 15    |

\* Controlling Parameter § Significant Characteristic

Notes:

Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

.010" (0.254mm) per side. JEDEC Equivalent: MO-095

Drawing No. C04-070