E·XFL

NXP USA Inc. - MC68S711E9CFN2 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	HC11
Core Size	8-Bit
Speed	2MHz
Connectivity	SCI, SPI
Peripherals	POR, WDT
Number of I/O	38
Program Memory Size	12KB (12K x 8)
Program Memory Type	OTP
EEPROM Size	512 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	52-LCC (J-Lead)
Supplier Device Package	52-PLCC (19.1x19.1)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc68s711e9cfn2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

To provide the most up-to-date information, the revision of our documents on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to:

http://www.motorola.com/mcu/

The following revision history table summarizes changes contained in this document. For your convenience, the page number designators have been linked to the appropriate location.

Date	Revision Level	Description	Page Number(s)
May, 2001	3.1	4.4.3.1 System Configuration Register — Addition to NOCOP bit description	88
		Added 11.22 EPROM Characteristics	251
June, 2001	3.2	11.22 EPROM Characteristics — For clarity, addition to note 2 following the table	251

Revision History

9.5.9	Timer Interrupt Mask 2 Register
9.5.10	Timer Interrupt Flag Register 2198
9.6	Real-Time Interrupt (RTI)199
9.6.1	Timer Interrupt Mask Register 2
9.6.2	Timer Interrupt Flag Register 2
9.6.3	Pulse Accumulator Control Register
9.7	Computer Operating Properly (COP) Watchdog Function 203
9.8	Pulse Accumulator
9.8.1	Pulse Accumulator Control Register
9.8.2	Pulse Accumulator Count Register
9.8.3	Pulse Accumulator Status and Interrupt Bits

Section 10. Analog-to-Digital (A/D) Converter

10.1	Contents
10.2	Introduction
10.3	Overview
10.3.1	Multiplexer
10.3.2	Analog Converter
10.3.3	Digital Control
10.3.4	Result Registers
10.3.5	A/D Converter Clocks
10.3.6	Conversion Sequence
10.4	A/D Converter Power-Up and Clock Select
10.5	Conversion Process
10.6	Channel Assignments
10.7	Single-Channel Operation
10.8	Multiple-Channel Operation
10.9	Operation in Stop and Wait Modes
10.10	A/D Control/Status Register
10.11	A/D Converter Result Registers

Figure	Title	Page
7-8 7-9	SCI Baud Rate Generator Block Diagram MC68HC(7)11E20 SCI Baud Rate	160
	Generator Block Diagram	161
7-10	Interrupt Source Resolution Within SCI	
8-1	SPI Block Diagram	167
8-2	SPI Transfer Format	
8-3	Serial Peripheral Control Register (SPCR)	
8-4	Serial Peripheral Status Register (SPSR)	175
8-5	Serial Peripheral Data I/O Register (SPDR)	176
9-1	Timer Clock Divider Chains	179
9-2	Capture/Compare Block Diagram	181
9-3	Timer Control Register 2 (TCTL2)	183
9-4	Timer Input Capture 1 Register Pair (TIC1)	
9-5	Timer Input Capture 2 Register Pair (TIC2)	185
9-6	Timer Input Capture 3 Register Pair (TIC3)	185
9-7	Timer Input Capture 4/Output	
	Compare 5 Register Pair (TI4/O5)	
9-8	Timer Output Compare 1 Register Pair (TOC1)	
9-9	Timer Output Compare 2 Register Pair (TOC2)	
9-10	Timer Output Compare 3 Register Pair (TOC3)	
9-11	Timer Output Compare 4 Register Pair (TOC4)	
9-12	Timer Compare Force Register (CFORC)	
9-13	Output Compare 1 Mask Register (OC1M)	
9-14	Output Compare 1 Data Register (OC1D)	
9-15	Timer Counter Register (TCNT)	
9-16	Timer Control Register 1 (TCTL1)	
9-17	Timer Interrupt Mask 1 Register (TMSK1)	
9-18	Timer Interrupt Flag 1 Register (TFLG1)	
9-19	Timer Interrupt Mask 2 Register (TMSK2)	
9-20	Timer Interrupt Flag 2 Register (TFLG2)	
9-21	Timer Interrupt Mask 2 Register (TMSK2)	
9-22	Timer Interrupt Flag 2 Register (TFLG2)	
9-23	Pulse Accumulator Control Register (PACTL)	
9-24	Pulse Accumulator	204

There should be a single pullup resistor near the MCU interrupt input pin (typically 4.7 k Ω). There must also be an interlock mechanism at each interrupt source so that the source holds the interrupt line low until the MCU recognizes and acknowledges the interrupt request. If one or more interrupt sources are still pending after the MCU services a request, the interrupt line will still be held low and the MCU will be interrupted again as soon as the interrupt mask bit in the MCU is cleared (normally upon return from an interrupt). Refer to Section 5. Resets and Interrupts.

 V_{PPE} is the input for the 12-volt nominal programming voltage required for EPROM/OTPROM programming. On devices without EPROM/OTPROM, this pin is only an XIRQ input.

2.9 MODA and MODB (MODA/LIR and MODB/V_{STBY})

During reset, MODA and MODB select one of the four operating modes:

- Single-chip mode
- Expanded mode
- Test mode
- Bootstrap mode

Refer to Section 4. Operating Modes and On-Chip Memory.

After the operating mode has been selected, the load instruction register $(\overline{\text{LIR}})$ pin provides an open-drain output to indicate that execution of an instruction has begun. A series of E-clock cycles occurs during execution of each instruction. The $\overline{\text{LIR}}$ signal goes low during the first E-clock cycle of each instruction (opcode fetch). This output is provided for assistance in program debugging.

The V_{STBY} pin is used to input random-access memory (RAM) standby power. When the voltage on this pin is more than one MOS threshold (about 0.7 volts) above the V_{DD} voltage, the internal RAM and part of the reset logic are powered from this signal rather than the V_{DD} input. This allows RAM contents to be retained without V_{DD} power applied to the MCU. Reset must be driven low before V_{DD} is removed and must remain low until V_{DD} has been restored to a valid level.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		<u>г</u> г			drocoina	1	l.	struction		1		<u> </u>	nditio	n Co.	100		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Mnemonic	Operation	Description	A	-	Onc			Cycles	s	x					v	C
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BCS (rel)		? C = 1			Ορυ			-	-	_	_	_		_	_	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			27-1		DEI		27	**	2								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											_	_			_		_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	BGE (Iel)										_		_			_	_
			. ,	_													
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Higher								_	_	_	_	_	_	_	_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	BHS (rel)		? C = 0		REL		24	rr	3	-	_	_	_	-	_	_	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BITA (opr)	Bit(s) Test A	A • M	А	IMM		85	ii		—	—	_	—	Δ	Δ	0	_
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	with Memory															
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $,	10											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	PITP (opr)	Bit(a) Teat B	P • M			10								•		0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ыть (орг)		D • IVI							_	_	_	_	Δ	Δ	0	_
		with Memory															
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						18											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	BLE (rel)	Branch if Δ Zero	? Z + (N ⊕ V) = 1		REL		2F	rr	3	_	_	_	_	_	_	_	_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	BLO (rel)	Branch if Lower	? C = 1		REL		25	rr	3	_	_	_	_	_	_	_	_
or Same <		Branch if Lower								_	_	_	_	_	_	_	_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	220 (101)						20										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $? N ⊕ V = 1		REL		2D	rr	3	—	—	—	—	—	—	—	—
	BMI (rel)	Branch if Minus	? N = 1		REL		2B	rr	3	—	—	—	—	—	—	—	—
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	BNE (rel)		? Z = 0		REL		26	rr	3	—	—	—	—	—	—	—	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	BPL (rel)		? N = 0		REL		2A	rr	3	_	_	_	_	_	_	_	_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										_	_	_	_		_	_	_
	. ,									_	_	_	_	_	_	_	_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					IND,Y	18	1F	ff mm rr	8								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BRN (rel)	Branch Never	? 1 = 0		REL		21	rr	3	—	_	_	_	—	_	_	_
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BRSET(opr)	Branch if Bit(s)	? (M) • mm = 0		DIR		12	dd mm rr	6	_	_	_	_	_	_	_	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Set			IND,X		1E	ff mm rr	7								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(rel)				IND,Y	18	1E	ff mm rr	8								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BSET (opr)	Set Bit(s)	$M + mm \Rightarrow M$								_	_	—	Δ	Δ	0	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(msk)																
Subroutine Subrou						18											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			See Figure 3–2		REL		8D	rr	6	_	_	—	_	-	_	_	_
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BVC (rel)		? V = 0		REL		28	rr	3	—	—	—	—	—	—	—	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BVS (rel)		? V = 1		REL		29	rr	3	—	—	—	—	—	—	—	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CBA	Compare A to B	A – B		INH		11		2	_	_	_	_	Δ	Δ	Δ	Δ
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										_	_	_	_	_	_	_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Clear Interrupt						_		_	_	_	0	—	_	_	_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			$0 \rightarrow M$	+	EYT	+	75	bb ll	6	-				0	1	0	0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			U ⇒ IVI							_	_	_	_	0	1	0	U
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Dyto				18											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CLRA		$0 \Rightarrow A$	A						-	—	-	-	0	1	0	0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CLRB	Clear	$0 \Rightarrow B$	В	INH		5F	_	2	—	—	—	—	0	1	0	0
CMPA (opr) Compare A to Memory A - M A IMM 81 ii 2 Δ Δ Δ A DIR 91 dd 3 Δ Δ Δ A EXT B1 hh II 4	CLV	Clear Overflow	$0 \Rightarrow V$		INH		0A	-	2	-	_	_	_	-	_	0	_
MemoryADIR91dd3AEXTB1hh II4AIND,XA1ff4		•	A 14	•	10.46.4		04										
A EXT B1 hh ll 4 A IND,X A1 ff 4	CIVIPA (opr)		A – M							-	—	_	—	Δ	Δ	Δ	Δ
A IND,X A1 ff 4		wiemory															
									1								
				A	IND,Y	18	A1	ff	5								

Technical Data

_

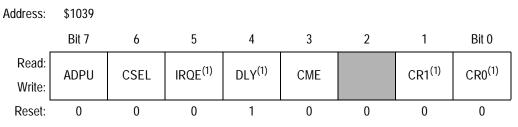

Mnemonic	Operation	Description	A	ddressing	1	Ir	nstruction				Co	onditic	n Coc	les		
Mnemonic	Operation	Description		Mode	Op	ocode	Operand	Cycles	S	Х	Н	I	Ν	Z	V	С
CMPB (opr)	Compare B to Memory	B – M	B B B B B	IMM DIR EXT IND,X IND,Y	18	C1 D1 F1 E1 E1	ii dd hh II ff ff	2 3 4 4 5		_	_	_	Δ	Δ	Δ	Δ
COM (opr)	Ones Complement Memory Byte	$FF - M \Rightarrow M$		EXT IND,X IND,Y	18	73 63 63	hh ll ff ff	6 6 7	_	_	_		Δ	Δ	0	1
COMA	Ones Complement A	$FF - A \Rightarrow A$	A	INH		43	_	2	-	_	_	_	Δ	Δ	0	1
COMB	Ones Complement B	\$FF – B ⇒ B	В	INH		53	_	2	-	_	—	_	Δ	Δ	0	1
CPD (opr)	Compare D to Memory 16-Bit	D – M : M + 1		IMM DIR EXT IND,X IND,Y	1A 1A 1A 1A CD	83 93 B3 A3 A3	jj kk dd hh ll ff ff	5 6 7 7 7		_	_	_	Δ	Δ	Δ	Δ
CPX (opr)	Compare X to Memory 16-Bit	IX – M : M + 1		IMM DIR EXT IND,X IND,Y	CD	8C 9C BC AC AC	jj kk dd hh ll ff ff	4 5 6 6 7		_	_	_	Δ	Δ	Δ	Δ
CPY (opr)	Compare Y to Memory 16-Bit	IY – M : M + 1		IMM DIR EXT IND,X IND,Y	18 18 18 1A 18	8C 9C BC AC AC	jj kk dd hh ll ff ff	5 6 7 7 7	_	_	_	_	Δ	Δ	Δ	Δ
DAA	Decimal Adjust A	Adjust Sum to BCD		INH		19	_	2	-	_	_	_	Δ	Δ	Δ	Δ
DEC (opr)	Decrement Memory Byte	$M - 1 \Rightarrow M$		EXT IND,X IND,Y	18	7A 6A 6A	hh ll ff ff	6 6 7	-	_	_	_	Δ	Δ	Δ	_
DECA	Decrement Accumulator A	$A - 1 \Rightarrow A$	A	INH		4A	_	2	-	_	_	_	Δ	Δ	Δ	_
DECB	Decrement Accumulator B	$B - 1 \Rightarrow B$	В	INH		5A	_	2	-	_	_	_	Δ	Δ	Δ	_
DES	Decrement Stack Pointer	$SP - 1 \Rightarrow SP$		INH		34	-	3	-	—	—	_	—	—	_	_
DEX	Decrement Index Register X	$IX - 1 \Rightarrow IX$		INH		09	_	3	-	_	_	_	—	Δ	_	_
DEY	Decrement Index Register Y	$IY - 1 \Rightarrow IY$		INH	18	09	_	4	-	_	_	_	-	Δ	_	_
EORA (opr)	Exclusive OR A with Memory	$A \oplus M \Rightarrow A$	A A A A	IMM DIR EXT IND,X IND,Y	18	88 98 88 A8 A8	ii dd hh ll ff ff	2 3 4 4 5		_	_	_	Δ	Δ	0	
EORB (opr)	Exclusive OR B with Memory	$B \oplus M \Rightarrow B$	B B B B B	IMM DIR EXT IND,X IND,Y	18	C8 D8 F8 E8 E8	ii dd hh ll ff ff	2 3 4 4 5	_	_	_	_	Δ	Δ	0	_
FDIV	Fractional Divide 16 by 16	$D / IX \Rightarrow IX; r \Rightarrow D$		INH		03	_	41	-	_	_	_	—	Δ	Δ	Δ
IDIV	Integer Divide 16 by 16	$D / IX \Rightarrow IX; r \Rightarrow D$		INH		02	-	41	-	_	-	—	—	Δ	0	Δ
INC (opr)	Increment Memory Byte	$M + 1 \Rightarrow M$		EXT IND,X IND,Y	18	7C 6C 6C	hh ll ff ff	6 6 7	-	-	_	_	Δ	Δ	Δ	_
INCA	Increment Accumulator A	$A + 1 \Rightarrow A$	A	INH		4C	_	2	-	_	_	_	Δ	Δ	Δ	_

Table 3-2. Instruction Set (Sheet 3 of 7)

M68HC11E Family — Rev. 3.2

4.4.3.3 System Configuration Options Register

The 8-bit, special-purpose system configuration options register (OPTION) sets internal system configuration options during initialization. The time protected control bits, IRQE, DLY, and CR[1:0], can be written only once after a reset and then they become read-only. This minimizes the possibility of any accidental changes to the system configuration.

1. Can be written only once in first 64 cycles out of reset in normal modes or at any time during special modes.

= Unimplemented

Figure 4-13. System Configuration Options Register (OPTION)

ADPU — Analog-to-Digital Converter Power-Up Bit

Refer to Section 10. Analog-to-Digital (A/D) Converter.

CSEL — Clock Select Bit

Selects alternate clock source for on-chip EEPROM charge pump. Refer to **4.6.1 EEPROM and CONFIG Programming and Erasure** for more information on EEPROM use.

CSEL also selects the clock source for the A/D converter, a function discussed in **Section 10. Analog-to-Digital (A/D) Converter**.

IRQE — Configure IRQ for Edge-Sensitive Only Operation Bit

Refer to Section 5. Resets and Interrupts.

DLY — Enable Oscillator Startup Delay Bit

- 0 = The oscillator startup delay coming out of stop mode is bypassed and the MCU resumes processing within about four bus cycles.
- 1 = A delay of approximately 4000 E-clock cycles is imposed as the MCU is started up from the stop power-saving mode. This delay allows the crystal oscillator to stabilize.

M68HC11E Family - Rev. 3.2

Address:	\$1026								
	Bit 7	6	5	4	3	2	1	Bit 0	
Read: Write:	DDRA7	PAEWN	PAMOD	PEDGE	DDRA3	14/05	RTR1	RTR0	
Reset:	0	0	0	0	0	0	0	0	

Figure 6-2. Pulse Accumulator Control Register (PACTL)

DDRA7 — Data Direction for Port A Bit 7

Overridden if an output compare function is configured to control the PA7 pin

- 0 = Input
- 1 = Output

The pulse accumulator uses port A bit 7 as the PAI input, but the pin can also be used as general-purpose I/O or as an output compare.

- **NOTE:** Even when port A bit 7 is configured as an output, the pin still drives the input to the pulse accumulator.
 - PAEN Pulse Accumulator System Enable Bit

Refer to Section 9. Timing System.

PAMOD — Pulse Accumulator Mode Bit

Refer to Section 9. Timing System.

PEDGE — Pulse Accumulator Edge Control Bit

Refer to Section 9. Timing System.

DDRA3 — Data Direction for Port A Bit 3

This bit is overridden if an output compare function is configured to control the PA3 pin.

- 0 = Input
- 1 = Output
- I4/O5 Input Capture 4/Output Compare 5 Bit

Refer to Section 9. Timing System.

RTR[1:0] — RTI Interrupt Rate Select Bits

Refer to Section 9. Timing System.

MOTOROLA

Full handshake modes use port C pins and the STRA and STRB lines. Input and output handshake modes are supported, and output handshake mode has a 3-stated variation. STRA is an edge-detecting input and STRB is a handshake output. Control and enable bits are located in the PIOC register.

In full input handshake mode, the MCU asserts STRB to signal an external system that it is ready to latch data. Port C logic levels are latched into PORTCL when the STRA line is asserted by the external system. The MCU then negates STRB. The MCU reasserts STRB after the PORTCL register is read. In this mode, a mix of latched inputs, static inputs, and static outputs is allowed on port C, differentiated by the data direction bits and use of the PORTC and PORTCL registers.

In full output handshake mode, the MCU writes data to PORTCL which, in turn, asserts the STRB output to indicate that data is ready. The external system reads port C data and asserts the STRA input to acknowledge that data has been received.

In the 3-state variation of output handshake mode, lines intended as 3-state handshake outputs are configured as inputs by clearing the corresponding DDRC bits. The MCU writes data to PORTCL and asserts STRB. The external system responds by activating the STRA input, which forces the MCU to drive the data in PORTC out on all of the port C lines. After the trailing edge of the active signal on STRA, the MCU negates the STRB signal. The 3-state mode variation does not allow part of port C to be used for static inputs while other port C pins are being used for handshake outputs. Refer to the **6.9 Parallel I/O Control Register** for further information.

there is a loss of efficiency because of the extra bit time for each character (address bit) required for all characters.

7.7 SCI Error Detection

Three error conditions – SCDR overrun, received bit noise, and framing – can occur during generation of SCI system interrupts. Three bits (OR, NF, and FE) in the serial communications status register (SCSR) indicate if one of these error conditions exists.

The overrun error (OR) bit is set when the next byte is ready to be transferred from the receive shift register to the SCDR and the SCDR is already full (RDRF bit is set). When an overrun error occurs, the data that caused the overrun is lost and the data that was already in SCDR is not disturbed. The OR is cleared when the SCSR is read (with OR set), followed by a read of the SCDR.

The noise flag (NF) bit is set if there is noise on any of the received bits, including the start and stop bits. The NF bit is not set until the RDRF flag is set. The NF bit is cleared when the SCSR is read (with FE equal to 1) followed by a read of the SCDR.

When no stop bit is detected in the received data character, the framing error (FE) bit is set. FE is set at the same time as the RDRF. If the byte received causes both framing and overrun errors, the processor only recognizes the overrun error. The framing error flag inhibits further transfer of data into the SCDR until it is cleared. The FE bit is cleared when the SCSR is read (with FE equal to 1) followed by a read of the SCDR.

interrupt mask for TDRE. When TIE is 0, TDRE must be polled. When TIE and TDRE are 1, an interrupt is requested.

The TC flag indicates the transmitter has completed the queue. The TCIE bit is the local interrupt mask for TC. When TCIE is 0, TC must be polled. When TCIE is 1 and TC is 1, an interrupt is requested.

Writing a 0 to TE requests that the transmitter stop when it can. The transmitter completes any transmission in progress before actually shutting down. Only an MCU reset can cause the transmitter to stop and shut down immediately. If TE is written to 0 when the transmitter is already idle, the pin reverts to its general-purpose I/O function (synchronized to the bit-rate clock). If anything is being transmitted when TE is written to 0, that character is completed before the pin reverts to general-purpose I/O, but any other characters waiting in the transmit queue are lost. The TC and TDRE flags are set at the completion of this last character, even though TE has been disabled.

7.10 Receiver Flags

The SCI receiver has five status flags, three of which can generate interrupt requests. The status flags are set by the SCI logic in response to specific conditions in the receiver. These flags can be read (polled) at any time by software. Refer to **Figure 7-10**, which shows SCI interrupt arbitration.

When an overrun takes place, the new character is lost, and the character that was in its way in the parallel RDR is undisturbed. RDRF is set when a character has been received and transferred into the parallel RDR. The OR flag is set instead of RDRF if overrun occurs. A new character is ready to be transferred into RDR before a previous character is read from RDR.

The NF and FE flags provide additional information about the character in the RDR, but do not generate interrupt requests.

The last receiver status flag and interrupt source come from the IDLE flag. The RxD line is idle if it has constantly been at logic 1 for a full character time. The IDLE flag is set only after the RxD line has been

8.5 Clock Phase and Polarity Controls

Software can select one of four combinations of serial clock phase and polarity using two bits in the SPI control register (SPCR). The clock polarity is specified by the CPOL control bit, which selects an active high or active low clock, and has no significant effect on the transfer format. The clock phase (CPHA) control bit selects one of two different transfer formats. The clock phase and polarity should be identical for the master SPI device and the communicating slave device. In some cases, the phase and polarity are changed between transfers to allow a master device to communicate with peripheral slaves having different requirements.

When CPHA equals 0, the \overline{SS} line must be negated and reasserted between each successive serial byte. Also, if the slave writes data to the SPI data register (SPDR) while \overline{SS} is low, a write collision error results.

When CPHA equals 1, the \overline{SS} line can remain low between successive transfers.

8.6 SPI Signals

This subsection contains descriptions of the four SPI signals:

- Master in/slave out (MISO)
- Master out/slave in (MOSI)
- Serial clock (SCK)
- Slave select (SS)

Any SPI output line must have its corresponding data direction bit in DDRD register set. If the DDR bit is clear, that line is disconnected from the SPI logic and becomes a general-purpose input. All SPI input lines are forced to act as inputs regardless of the state of the corresponding DDR bits in DDRD register.

8.8.3 Serial Peripheral Data I/O Register

The SPDR is used when transmitting or receiving data on the serial bus. Only a write to this register initiates transmission or reception of a byte, and this only occurs in the master device. At the completion of transferring a byte of data, the SPIF status bit is set in both the master and slave devices.

A read of the SPDR is actually a read of a buffer. To prevent an overrun and the loss of the byte that caused the overrun, the first SPIF must be cleared by the time a second transfer of data from the shift register to the read buffer is initiated.

Figure 8-5. Serial Peripheral Data I/O Register (SPDR)

SPI is double buffered in and single buffered out.

9.7 Computer Operating Properly (COP) Watchdog Function

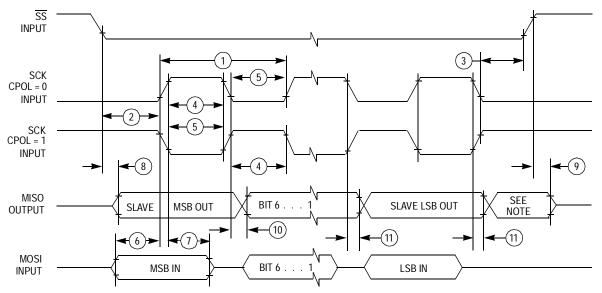
The clocking chain for the COP function, tapped off of the main timer divider chain, is only superficially related to the main timer system. The CR[1:0] bits in the OPTION register and the NOCOP bit in the CONFIG register determine the status of the COP function. One additional register, COPRST, is used to arm and clear the COP watchdog reset system. Refer to **Section 5. Resets and Interrupts** for a more detailed discussion of the COP function.

9.8 Pulse Accumulator

The M68HC11 Family of MCUs has an 8-bit counter that can be configured to operate either as a simple event counter or for gated time accumulation, depending on the state of the PAMOD bit in the PACTL register. Refer to the pulse accumulator block diagram, Figure 9-24. In the event counting mode, the 8-bit counter is clocked to increasing values by an external pin. The maximum clocking rate for the external event counting mode is the E clock divided by two. In gated time accumulation mode, a free-running E-clock divide-by-64 signal drives the 8-bit counter, but only while the external PAI pin is activated. Refer to Table 9-6. The pulse accumulator counter can be read or written at any time.

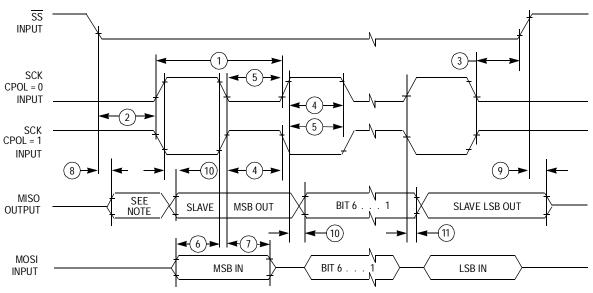
203

Section 10. Analog-to-Digital (A/D) Converter


10.1 Contents

10.2 Introduction	209
10.3 Overview	
10.3.1 Multiplexer	.210
10.3.2 Analog Converter	.212
10.3.3 Digital Control	.212
10.3.4 Result Registers	.212
10.3.5 A/D Converter Clocks	213
10.3.6 Conversion Sequence	213
10.4 A/D Converter Power-Up and Clock Select	214
10.5 Conversion Process	.215
10.6 Channel Assignments	216
10.7 Single-Channel Operation	216
10.8 Multiple-Channel Operation	217
10.9 Operation in Stop and Wait Modes	217
10.10 A/D Control/Status Register	218
10.11 A/D Converter Result Registers	.220

10.2 Introduction


The analog-to-digital (A/D) system, a successive approximation converter, uses an all-capacitive charge redistribution technique to convert analog signals to digital values.

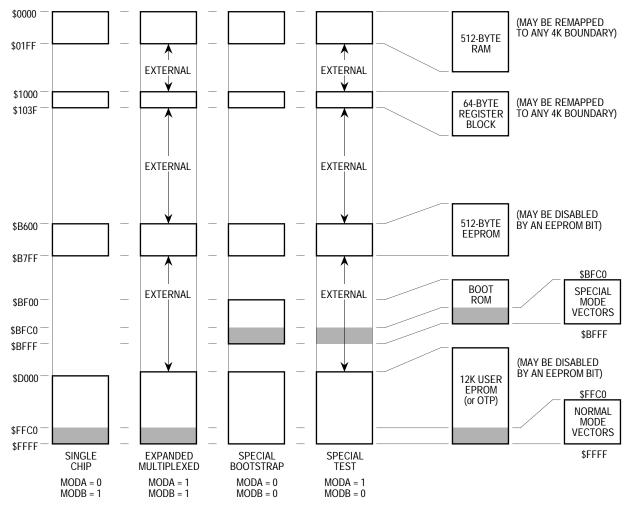
M68HC11E Family — Rev. 3.2

Note: Not defined but normally MSB of character just received

Note: Not defined but normally LSB of character previously transmitted

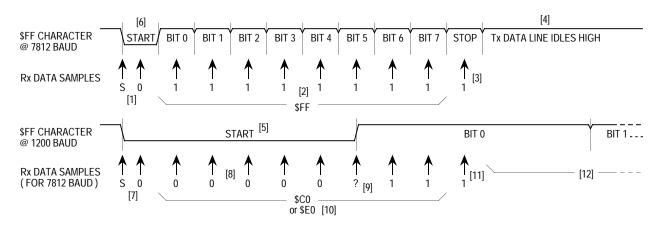
11.20 EEPROM Characteristics

	T	emperature Ran	ige	Unit
Characteristic ⁽¹⁾	–40 to 85°C	–40 to 105°C	-40 to 125°C 20	Unit
Programming time ⁽²⁾ < 1.0 MHz, RCO enabled 1.0 to 2.0 MHz, RCO disabled \geq 2.0 MHz (or anytime RCO enabled)	10 20 10	15 Must use RCO 15	Must use RCO	ms
Erase time ⁽²⁾ Byte, row, and bulk	10	10	10	ms
Write/erase endurance	10,000	10,000	10,000	Cycles
Data retention	10	10	10	Years


1. V_{DD} = 5.0 Vdc ±10%, V_{SS} = 0 Vdc, T_A = T_L to T_H 2. The RC oscillator (RCO) must be enabled (by setting the CSEL bit in the OPTION register) for EEPROM programming and erasure when the E-clock frequency is below 1.0 MHz.

11.21 MC68L11E9 EEPROM Characteristics

Characteristic ⁽¹⁾	Temperature Range –20 to 70°C	Unit
Programming time ⁽²⁾ 3 V, E \leq 2.0 MHz, RCO enabled 5 V, E \leq 2.0 MHz, RCO enabled	25 10	ms
Erase time ⁽²⁾ (byte, row, and bulk) 3 V, E \leq 2.0 MHz, RCO enabled 5 V, E \leq 2.0 MHz, RCO enabled	25 10	ms
Write/erase endurance	10,000	Cycles
Data retention	10	Years


1. V_{DD} = 3.0 Vdc to 5.5 Vdc, V_{SS} = 0 Vdc, T_A = T_L to T_H 2. The RC oscillator (RCO) must be enabled (by setting the CSEL bit in the OPTION register) for EEPROM programming and erasure.

Application Note

OTE: Software can change some aspects of the memory map after reset.

AN1060 — Rev. 1.0

Application Note

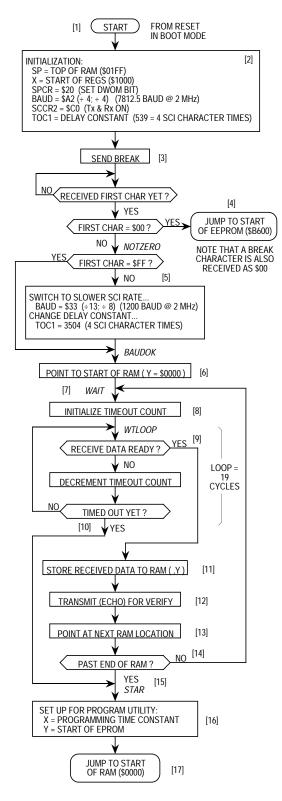


Figure 3. MC68HC711E9 Bootloader Flowchart

AN1060 — Rev. 1.0

The program will inform the user that it is working on converting the file from S records to binary. This process will take from 30 seconds to a few minutes, depending on the computer.

A prompt reading, "Comm port open?" will appear at the end of the file conversion. This is the last chance to ensure that everything is properly configured on the EVBU. Pressing [RETURN] will send the bootcode to the target MC68HC711E9. The program then informs the user that the bootload code is being sent to the target, and the results of the echoing of this code are displayed on the screen.

Another prompt reading "Programming is ready to begin. Are you?" will appear. Turn on the 12-volt programming power supply and press [RETURN] to start the actual programming of the target EPROM.

A count of the byte being verified will be updated continually on the screen as the programming progresses. Any failures will be flagged as they occur.

When programming is complete, a message will be displayed as well as a prompt requesting the user to press [RETURN] to quit.

Turn off the 12-volt programming power supply before turning off 5 volts to the EVBU.