
Analog Devices Inc. - ADUC7036BCPZ Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor ARM7®

Core Size 16/32-Bit

Speed 20.48MHz

Connectivity LINbus, SPI, UART/USART

Peripherals PSM, Temp Sensor, WDT

Number of I/O 9

Program Memory Size 96KB (48K x 16)

Program Memory Type FLASH

EEPROM Size -

RAM Size 1.5K x 32

Voltage - Supply (Vcc/Vdd) 3.5V ~ 18V

Data Converters A/D 2x16b

Oscillator Type Internal

Operating Temperature -40°C ~ 115°C (TA)

Mounting Type Surface Mount

Package / Case 48-VFQFN Exposed Pad, CSP

Supplier Device Package 48-LFCSP-VQ (7x7)

Purchase URL https://www.e-xfl.com/product-detail/analog-devices/aduc7036bcpz

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/aduc7036bcpz-4384927
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

 ADuC7036

Rev. C | Page 11 of 132

Table 3. SPI Master Mode—Phase Mode = 0
Parameter Description Min Typ Max Unit
tSL SCLK low pulse width1 (SPIDIV + 1) × tHCLK ns
tSH SCLK high pulse width1 (SPIDIV + 1) × tHCLK ns
tDAV Data output valid after SCLK edge2 (2 × tUCLK) + (2 × tHCLK) ns
tDOSU Data output setup before SCLK edge 0.5 tSL ns
tDSU Data input setup time before SCLK edge 0 ns
tDHD Data input hold time after SCLK edge2 3 × tUCLK ns
tDF Data output fall time 3.5 ns
tDR Data output rise time 3.5 ns
tSR SCLK rise time 3.5 ns
tSF SCLK fall time 3.5 ns

1 tHCLK depends on the clock divider (CD) bits in the POWCON MMR. tHCLK = tUCLK/2CD.
2 tUCLK = 48.8 ns. It corresponds to the 20.48 MHz internal clock from the PLL before the clock divider.

SCLK
(POLARITY = 0)

SCLK
(POLARITY = 1)

tSH tSL
tSR tSF

MISO MSB IN BITS[6:1] LSB IN

tDSU tDHD

MOSI LSBBITS[6:1]MSB

tDAV

tDF tDRtDOSU

07
47

4-
00

3

Figure 3. SPI Master Mode Timing—Phase Mode = 0

ADuC7036

Rev. C | Page 14 of 132

LIN Timing Specifications

TRANSMIT
(INPUT TO

TRANSMITTING NODE)

VSUP
�(TRANSCEIVER SUPPLY

OF TRANSMITTING NODE)

RxD
(OUTPUT OF RECEIVING NODE 1)

RxD
(OUTPUT OF RECEIVING NODE 2)

RECESSIVE

THREC (MAX)

tLIN_DOM (MAX) tLIN_REC (MIN)

tLIN_DOM (MIN) tLIN_REC (MAX)

THDOM (MAX)

THREC (MIN)

THDOM (MIN)

DOMINANT

THRESHOLDS OF
RECEIVING NODE 1

LIN
BUS

THRESHOLDS OF
RECEIVING NODE 2

tBIT tBIT tBIT

tRX_PDR

tRX_PDR

tRX_PDF

tRX_PDF

07
47

4-
00

6

Figure 6. LIN 2.0 Timing Specification

 ADuC7036

Rev. C | Page 21 of 132

ARM7 Exceptions

The ARM7 supports five types of exceptions with a privileged
processing mode associated with each type. The five types of
exceptions are as follows:

• Normal interrupt or IRQ. This is provided to service
general-purpose interrupt handling of internal and
external events.

• Fast interrupt or FIQ. This is provided to service data
transfer or a communication channel with low latency.
FIQ has priority over IRQ.

• Memory abort (prefetch and data).

• Attempted execution of an undefined instruction.

• Software interrupt (SWI) instruction that can be used to
make a call to an operating system.

Typically, the programmer defines interrupts as IRQ, but for
higher priority interrupts, the programmer can define interrupts
as the FIQ type.

The priority of these exceptions and vector address are listed in
Table 9.

Table 9. Exception Priorities and Vector Addresses
Priority Exception Address
1 Hardware reset 0x00
2 Memory abort (data) 0x10
3 FIQ 0x1C
4 IRQ 0x18
5 Memory abort (prefetch) 0x0C
6 Software interrupt1 0x08
6 Undefined instruction1 0x04
1 A software interrupt and an undefined instruction exception have the same

priority and are mutually exclusive.

The list of exceptions in Table 9 are located from 0x00 to 0x1C,
with a reserved location at 0x14. This location is required to be
written with either 0x27011970 or the checksum of Page 0,
excluding Location 0x14. If this is not done, user code does not
execute and LIN download mode is entered.

ARM Registers

The ARM7TDMI has 16 standard registers. R0 to R12 are used
for data manipulation, R13 is the stack pointer, R14 is the link
register, and R15 is the program counter that indicates the
instruction currently being executed. The link register contains
the address from which the user has branched (if the branch
and link command was used) or the command during which an
exception occurred.

The stack pointer contains the current location of the stack. As
a general rule, on an ARM7TDMI, the stack starts at the top of
the available RAM area and descends using the area as required.
A separate stack is defined for each of the exceptions. The size of
each stack is user configurable and is dependent on the target
application. On the ADuC7036, the stack begins at 0x00040FFC

and descends. When programming using high level languages,
such as C, it is necessary to ensure that the stack does not overflow.
This is dependent on the performance of the compiler that is used.

When an exception occurs, some of the standard registers are
replaced with registers specific to the exception mode. All
exception modes have replacement banked registers for the
stack pointer (R13) and the link register (R14) as represented
in Figure 11. The FIQ mode has more registers (R8 to R12)
supporting faster interrupt processing. With the increased
number of noncritical registers, the interrupt can be processed
without the need to save or restore these registers, thereby
reducing the response time of the interrupt handling process.

More information relative to the model of the programmer and
the ARM7TDMI core architecture can be found in ARM7TDMI
technical and ARM architecture manuals available directly from
ARM Ltd.

USABLE IN USER MODE

SYSTEM MODES ONLY

SPSR_UND
SPSR_IRQSPSR_ABTSPSR_SVC

R8_FIQ
R9_FIQ

R10_FIQ
R11_FIQ
R12_FIQ
R13_FIQ
R14_FIQ

R13_UND
R14_UND

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12
R13
R14

R15 (PC)

R13_IRQ
R14_IRQ

R13_ABT
R14_ABT

R13_SVC
R14_SVC

SPSR_FIQCPSR

USER MODE
FIQ

MODE
SVC

MODE
ABORT
MODE

IRQ
MODE

UNDEFINED
MODE 07

47
4-

01
1

Figure 11. Register Organization

Interrupt Latency

The worst-case latency for an FIQ consists of the longest possible
time for the request to pass through the synchronizer, for the
longest instruction to complete (the longest instruction is an LDM)
and load all the registers including the PC, and for the data abort
entry and the FIQ entry to complete. At the end of this time, the
ARM7TDMI executes the instruction at Address 0x1C (the FIQ
interrupt vector address). The maximum FIQ latency is 50 pro-
cessor cycles or just over 2.44 μs in a system using a continuous
20.48 MHz processor clock.

The maximum IRQ latency calculation is similar but must allow
for the fact that FIQ has higher priority and may delay entry into
the IRQ handling routine for an arbitrary length of time. This
time can be reduced to 42 cycles if the LDM command is not
used; some compilers have an option to compile without using
this command. Another option is to run the part in Thumb
mode, which reduces the time to 22 cycles.

 ADuC7036

Rev. C | Page 23 of 132

Remap Operation

When a reset occurs on the ADuC7036, execution starts
automatically in the factory-programmed internal configuration
code. This so-called kernel is hidden and cannot be accessed by
user code. If the ADuC7036 is in normal mode, it executes the
power-on configuration routine of the kernel and then jumps to
the reset vector, Address 0x00000000, to execute the reset
exception routine of the user. Because the Flash/EE is mirrored at
the bottom of the memory array at reset, the reset routine must
always be written in Flash/EE.

The remap command must be executed from the absolute
Flash/EE address and not from the mirrored, remapped
segment of memory, which may be replaced by SRAM. If a
remap operation is executed while operating code from the
mirrored location, prefetch/data aborts may occur or the user
may observe abnormal program operation.

Any kind of reset remaps the Flash/EE memory to the bottom
of the memory array.

SYSMAP0 Register

Name: SYSMAP0

Address: 0xFFFF0220

Default Value: Updated by the kernel

Access: Read/write access

Function: This 8-bit register allows user code to remap either
RAM or Flash/EE space into the bottom of the ARM memory
space, starting at Address 0x00000000.

Table 10. SYSMAP0 MMR Bit Designations
Bit Description
7 to 1 Reserved. These bits are reserved and should be written

as 0 by user code.
0 Remap bit.
 Set by the user to remap the SRAM to 0x00000000.
 Cleared automatically after a reset to remap the

Flash/EE memory to 0x00000000.

ADuC7036

Rev. C | Page 26 of 132

The FEE0CON and FEE1CON Registers section to the FEE0MOD and FEE1MOD Registers section provide detailed descriptions of the
bit designations for each of the Flash/EE control MMRs.

FEE0CON and FEE1CON Registers

Name: FEE0CON and FEE1CON

Address: 0xFFFF0E08 and 0xFFFF0E88

Default Value: 0x07

Access: Read/write access

Function: These 8-bit registers are written by user code to control the operating modes of the Flash/EE memory controllers for Block 0
(32 kB) and Block 1 (64 kB).

Table 13. Command Codes in FEE0CON and FEE1CON
Code Command Description1
0x002 Reserved Reserved. This command should not be written by user code.
0x012 Single read Load FEExDAT with the 16-bit data indexed by FEExADR.
0x022 Single write Write FEExDAT at the address pointed by FEExADR. This operation takes 50 μs.
0x032 Erase write Erase the page indexed by FEExADR and write FEExDAT at the location pointed by FEExADR. This operation takes 20 ms.
0x042 Single verify Compare the contents of the location pointed by FEExADR to the data in FEExDAT. The result of the comparison is

returned in FEExSTA, Bit 1 or Bit 0.
0x052 Single erase Erase the page indexed by FEExADR.
0x062 Mass erase Erase Block 0 (32 kB) or Block 1 (64 kB) of user space. The 2 kB kernel is protected. This operation takes 1.2 sec. To

prevent accidental execution, a command sequence is required to execute this instruction (see the Command
Sequence for Executing a Mass Erase section).

0x07 Default command.
0x08 Reserved Reserved. This command should not be written by user code.
0x09 Reserved Reserved. This command should not be written by user code.
0x0A Reserved Reserved. This command should not be written by user code.
0x0B Signature FEE0CON: This command results in the generation of a 24-bit linear feedback shift register (LFSR)-based signature

that is loaded into FEE0SIG.
If FEE0ADR is less than 0x97800, this command results in a 24-bit LFSR-based signature of the user code space from
the page specified in FEE0ADR upwards, including the kernel, security bits, and Flash/EE key.
If FEE0ADR is greater than 0x97800, the kernel and manufacturing data are signed. This operation takes 120 μs.
FEE1CON: This command results in the generation of a 24-bit LFSR-based signature, beginning at FEE1ADR and
ending at the end of the 63,500 block, that is loaded into FEE1SIG. The last page of this block is not included in the
sign generation.

0x0C Protect This command can be run only once. The value of FEExPRO is saved and can be removed only with a mass erase
(0x06) or with the software protection key.

0x0D Reserved Reserved. This command should not be written by user code.
0x0E Reserved Reserved. This command should not be written by user code.
0x0F Ping No operation, interrupt generated.

1 The x represents 0 or 1, designating Flash/EE Block 0 or Block 1.
2 The FEE0CON register reads 0x07 immediately after the execution of this command.

ADuC7036

Rev. C | Page 46 of 132

ADC MMR INTERFACE
The ADC is controlled and configured using several MMRs that
are described in detail in the ADC Status Register section to the
Low Power Voltage Reference Scaling Factor section.

All bits defined in the top eight MSBs (Bits[8:15]) of the ADCSTA
MMR are used as flags only and do not generate interrupts. All
bits defined in the lower eight LSBs (Bits[0:7]) of this MMR are
logic OR’ed to produce a single ADC interrupt to the MCU core.
In response to an ADC interrupt, user code should interrogate
the ADCSTA MMR to determine the source of the interrupt.
Each ADC interrupt source can be individually masked via the
ADCMSKI MMR described in the ADC Interrupt Mask Register
section.

All ADC result ready bits are cleared by a read of the ADC0DAT
MMR. If the current channel ADC is not enabled, all ADC result
ready bits are cleared by a read of the ADC1DAT or ADC2DAT

MMRs. To ensure that I-ADC and V-/T-ADC conversion data
are synchronous, user code should first read the ADC1DAT MMR
and then the ADC0DAT MMR. New ADC conversion results
are not written to the ADCxDAT MMRs unless the respective
ADC result ready bits are first cleared. The only exception to
this rule is the data conversion result updates when the ARM
core is powered down. In this mode, ADCxDAT registers always
contain the most recent ADC conversion result, even though
the ready bits have not been cleared.

ADC Status Register

Name: ADCSTA

Address: 0xFFFF0500

Default Value: 0x0000

Access: Read only

Function: This read only register holds general status information
related to the mode of operation or current status of the ADCs.

Table 35. ADCSTA MMR Bit Designations
Bit Description
15 ADC calibration status.

Set automatically in hardware to indicate that an ADC calibration cycle has been completed.
Cleared after ADCMDE is written to.

14 ADC temperature conversion error.
Set automatically in hardware to indicate that a temperature conversion overrange or underrange has occurred. The conversion
result is clamped to negative full scale (underrange error) or positive full scale (overrange error) in this case.
Cleared when a valid (in-range) temperature conversion result is written to the ADC2DAT register.

13 ADC voltage conversion error.
Set automatically in hardware to indicate that a voltage conversion overrange or underrange has occurred. The conversion result is
clamped to negative full scale (underrange error) or positive full scale (overrange error) in this case.
Cleared when a valid (in-range) voltage conversion result is written to the ADC1DAT register.

12 ADC current conversion error.
Set automatically in hardware to indicate that a current conversion overrange or underrange has occurred. The conversion result is
clamped to negative full scale (underrange error) or positive full scale (overrange error) in this case.
Cleared when a valid (in-range) current conversion result is written to the ADC0DAT register.

11 to 5 Not used. These bits are reserved for future functionality and should not be monitored by user code.
4 Current channel ADC comparator threshold. Valid only if the current channel ADC comparator is enabled via the ADCCFG MMR.

Set by hardware if the absolute value of the I-ADC conversion result exceeds the value written in the ADC0TH MMR. However, if the
ADC threshold counter is used (ADC0TCL), this bit is set only when the specified number of I-ADC conversions equals the value in
the ADC0THV MMR.
Cleared automatically by hardware when reconfiguring the ADC or if the comparator is disabled.

3 Current channel ADC overrange bit.
Set by hardware if the overrange detect function is enabled via the ADCCFG MMR and the I-ADC input is grossly (>30%
approximate) over range. This bit is updated every 125 μs.
Cleared by software only when ADCCFG[2] is cleared to disable the function, or the ADC gain is changed via the ADC0CON MMR.

2 Temperature conversion result ready bit.
Set by hardware, if the temperature channel ADC is enabled, as soon as a valid temperature conversion result is written in the
temperature data register (ADC2DAT MMR). It is also set at the end of a calibration.
Cleared by reading either ADC2DAT or ADC0DAT.

1 Voltage conversion result ready bit.
Set by hardware, if the voltage channel ADC is enabled, as soon as a valid voltage conversion result is written in the voltage data
register (ADC1DAT MMR). It is also set at the end of a calibration.
Cleared by reading either ADC1DAT or ADC0DAT.

0 Current conversion result ready bit.
Set by hardware, if the current channel ADC is enabled, as soon as a valid current conversion result is written in the current data
register (ADC0DAT MMR). It is also set at the end of a calibration.
Cleared by reading ADC0DAT.

 ADuC7036

Rev. C | Page 47 of 132

ADC Interrupt Mask Register

Name: ADCMSKI
Address: 0xFFFF0504
Default Value: 0x00
Access: Read/write
Function: This register allows the ADC interrupt sources to be individually enabled. The bit positions in this register are the same as the
lower eight bits in the ADCSTA MMR. If a bit is set by user code to 1, the respective interrupt is enabled. By default, all bits are 0,
meaning all ADC interrupt sources are disabled.

ADC Mode Register

Name: ADCMDE
Address: 0xFFFF0508
Default Value: 0x00
Access: Read/write
Function: This 8-bit register configures the mode of operation of the ADC subsystem.

Table 36. ADCMDE MMR Bit Designations
Bit Description
7 Not used. This bit is reserved for future functionality and should be written as 0 by user code.
6 20 kΩ resistor select.

Set to 1 to select the 20 kΩ resistor as shown in Figure 21.
Set to 0 to select the direct path to ground as shown in Figure 21 (default).

5 Low power mode reference select.
Set to 1 to enable the precision voltage reference in either low power mode or low power plus mode, thereby increasing current
consumption.
Set to 0 to enable the low power voltage reference in either low power mode or low power plus mode (default).

4 to 3 ADC power mode configuration.
00 = ADC normal mode. If enabled, the ADC operates with normal current consumption yielding optimum electrical performance.
01 = ADC low power mode. If enabled, the I-ADC operates with reduced current consumption. This limitation in current
consumption is achieved (at the expense of ADC noise performance) by fixing the gain to 128 and using the on-chip low power
(131 kHz) oscillator to directly drive the ADC circuits.

 10 = ADC low power plus mode. If enabled, the ADC operates with reduced current consumption. In this mode, the gain is fixed to
512 and the current consumed is approximately 200 μA more than the ADC low power mode. The additional current consumed
also ensures that the ADC noise performance is better than that achieved in ADC low power mode.

 11 = not defined.
2 to 0 ADC operation mode configuration.
 000 = ADC power-down mode. All ADC circuits (including internal reference) are powered down.
 001 = ADC continuous conversion mode. In this mode, any enabled ADC continuously converts.
 010 = ADC single conversion mode. In this mode, any enabled ADC performs a single conversion. The ADC enters idle mode when

the single shot conversion is complete. A single conversion takes two to three ADC clock cycles depending on the chop mode.
 011 = ADC idle mode. In this mode, the ADC is fully powered on but is held in reset.
 100 = ADC self-offset calibration. In this mode, an offset calibration is performed on any enabled ADC using an internally

generated 0 V. The calibration is carried out at the user programmed ADC settings; therefore, as with a normal single ADC
conversion, it takes two to three ADC conversion cycles before a fully settled calibration result is ready. The calibration result is
automatically written to the ADCxOF MMR of the respective ADC. The ADC returns to idle mode and the calibration and
conversion ready status bits are set at the end of an offset calibration cycle.

 101 = ADC self-gain calibration. In this mode, a gain calibration against an internal reference voltage is performed on all enabled
ADCs. A gain calibration is a two-stage process and takes twice the time of an offset calibration. The calibration result is
automatically written to the ADCxGN MMR of the respective ADC. The ADC returns to idle mode, and the calibration and
conversion ready status bits are set at the end of a gain calibration cycle. An ADC self-gain calibration should only be carried out
on the current channel ADC. Preprogrammed, factory calibration coefficients (downloaded automatically from internal Flash/EE)
should be used for voltage temperature measurements. If an external NTC is used, an ADC self-calibration should be performed
on the temperature channel.

 110 = ADC system zero-scale calibration. In this mode, a zero-scale calibration is performed on enabled ADC channels against an
external zero-scale voltage driven at the ADC input pins. The calibration is carried out at the user programmed ADC settings;
therefore, as with a normal, single ADC conversion, it takes three ADC conversion cycles before a fully settled calibration result is ready.

 111 = ADC system full-scale calibration. In this mode, a full-scale calibration is performed on enabled ADC channels against an
external full-scale voltage driven at the ADC input pins.

ADuC7036

Rev. C | Page 48 of 132

Current Channel ADC Control Register

Name: ADC0CON

Address: 0xFFFF050C

Default Value: 0x0000

Access: Read/write

Function: This 16-bit register is used to configure the I-ADC.

Note that if the current ADC is reconfigured via ADC0CON, the voltage ADC and temperature ADC are also reset.

Table 37. ADC0CON MMR Bit Designations
Bit Description
15 Current channel ADC enable.

Set to 1 by user code to enable the I-ADC.
Cleared to 0 to power down the I-ADC and reset the respective ADC ready bit in the ADCSTA MMR to 0.

14, 13 IIN current source enable.
00 = current sources off.
01 = enables the 50 μA current source on IIN+.
10 = enables the 50 μA current source on IIN−.
11 = enables the 50 μA current source on both IIN− and IIN+.

12 to 10 Not used. These bits are reserved for future functionality and should be written as 0.
9 Current channel ADC output coding.

Set to 1 by user code to configure I-ADC output coding as unipolar.
Cleared to 0 by user code to configure I-ADC output coding as twos complement.

8 Not used. This bit is reserved for future functionality and should be written as 0.
7, 6 Current channel ADC input select.

00 = IIN+, IIN− are selected.
01 = IIN−, IIN− are selected. Diagnostic, internal short configuration.
10 = VREF/136, 0 V, diagnostic, test voltage for gain settings ≤ 128. Note that if (REG_AVDD, AGND) divided-by-2 reference is
selected, REG_AVDD is used for VREF in this mode. This leads to ADC0DAT scaled by 2.
11 = not defined.

5, 4 Current channel ADC reference select.
00 = internal, 1.2 V precision reference selected. In ADC low power mode, the voltage reference selection is controlled by
ADCMDE[5].
01 = external reference inputs (VREF, GND_SW) selected.
10 = external reference inputs divided-by-2 (VREF, GND_SW)/2 selected, which allows an external reference up to REG_AVDD.
11 = (REG_AVDD, AGND) divided-by-2 selected.

3 to 0 Current channel ADC gain select. The nominal I-ADC full-scale input voltage = (VREF/gain).
0000 = I-ADC gain of 1.
0001 = I-ADC gain of 2.
0010 = I-ADC gain of 4.
0011 = I-ADC gain of 8.
0100 = I-ADC gain of 16.
0101 = I-ADC gain of 32.
0110 = I-ADC gain of 64.
0111 = I-ADC gain of 128.
1000 = I-ADC gain of 256.
1001 = I-ADC gain of 512.
1xxx = I-ADC gain is undefined.

 ADuC7036

Rev. C | Page 53 of 132

Current Channel ADC Data Register

Name: ADC0DAT

Address: 0xFFFF0520

Default Value: 0x0000

Access: Read only

Function: This ADC data MMR holds the 16-bit conversion
result from the I-ADC. The ADC does not update this MMR if
the ADC0 conversion result ready bit (ADCSTA[0]) is set. A
read of this MMR by the MCU clears all asserted ready flags
(ADCSTA[2:0]).

Voltage Channel ADC Data Register

Name: ADC1DAT

Address: 0xFFFF0524

Default Value: 0x0000

Access: Read only

Function: This ADC data MMR holds the 16-bit voltage
conversion result from the V-/T-ADC. The ADC does not
update this MMR if the voltage conversion result ready bit
(ADCSTA[1]) is set. If I-ADC is not active, a read of this MMR
by the MCU clears all asserted ready flags (ADCSTA[2:1]).

Temperature Channel ADC Data Register

Name: ADC2DAT

Address: 0xFFFF0528

Default Value: 0x0000

Access: Read only

Function: This ADC data MMR holds the 16-bit temperature
conversion result from the V-/T-ADC. The ADC does not
update this MMR if the temperature conversion result ready bit
(ADCSTA[2]) is set. If I-ADC and V-ADC are not active, a read
of this MMR by the MCU clears all asserted ready flags
(ADCSTA[2]). A read of this MMR clears ADCSTA[2].

Current Channel ADC Offset Calibration Register

Name: ADC0OF

Address: 0xFFFF0530

Default Value: Part specific, factory programmed

Access: Read/write

Function: This ADC offset MMR holds a 16-bit offset calibration
coefficient for the I-ADC. The register is configured at power-
on with a factory default value. However, this register automati-
cally overwrites if an offset calibration of the I-ADC is initiated
by the user via bits in the ADCMDE MMR. User code can write
to this calibration register only if the ADC is in idle mode. An
ADC must be enabled and in idle mode before being written to
any offset or gain register. The ADC must be in idle mode for at
least 23 μs.

Voltage Channel ADC Offset Calibration Register

Name: ADC1OF

Address: 0xFFFF0534

Default Value: Part specific, factory programmed

Access: Read/write

Function: This offset MMR holds a 16-bit offset calibration
coefficient for the voltage channel. The register is configured at
power-on with a factory default value. However, this register is
automatically overwritten if an offset calibration of the voltage
channel is initiated by the user via bits in the ADCMDE MMR.
User code can write to this calibration register only if the ADC
is in idle mode. An ADC must be enabled and in idle mode
before being written to any offset or gain register. The ADC
must be in idle mode for at least 23 μs.

Temperature Channel ADC Offset Calibration Register

Name: ADC2OF

Address: 0xFFFF0538

Default Value: Part specific, factory programmed

Access: Read/write

Function: This ADC offset MMR holds a 16-bit offset
calibration coefficient for the temperature channel. The register
is configured at power-on with a factory default value. However,
this register is automatically overwritten if an offset calibration
of the temperature channel is initiated by the user via bits in the
ADCMDE MMR. User code can write to this calibration register
only if the ADC is in idle mode. An ADC must be enabled and
in idle mode before being written to any offset or gain register.
The ADC must be in idle mode for at least 23 μs.

Current Channel ADC Gain Calibration Register

Name: ADC0GN

Address: 0xFFFF053C

Default Value: Part specific, factory programmed

Access: Read/write

Function: This gain MMR holds a 16-bit gain calibration
coefficient for scaling the I-ADC conversion result. The register
is configured at power-on with a factory default value. However,
this register is automatically overwritten if a gain calibration of
the I-ADC is initiated by the user via bits in the ADCMDE
MMR. User code can write to this calibration register only if the
ADC is in idle mode. An ADC must be enabled and in idle
mode before being written to any offset or gain register. The
ADC must be in idle mode for at least 23 μs.

ADuC7036

Rev. C | Page 82 of 132

TIMER4—STI TIMER
Timer4 is a general-purpose, 16-bit up/down counter timer with
a programmable prescaler. Timer4 can be clocked from the core
clock or from the low power 32.768 kHz oscillator with a prescaler
of 1, 16, 256, or 32,768.

Timer4 has a capture register (T4CAP) that can be triggered
by the initial assertion of a selected IRQ source. After the capture
register is triggered, the current timer value is copied to T4CAP,
and the timer continues running. This feature can be used to
determine the assertion of an event with increased accuracy.

Timer4 can also be used to drive the serial test interface (STI)
peripheral.

The Timer4 interface consists of five MMRs: T4LD, T4VAL,
T4CAP, T4CLRI, and T4CON. T4LD, T4VAL, and T4CAP are
16-bit registers that hold 16-bit unsigned integers. T4VAL and
T4CAP are read only. T4CLRI is an 8-bit register. Writing any
value to this register clears the interrupt. T4CON is a configuration
MMR and is described in Table 57.

Timer4 Load Register

Name: T4LD

Address: 0xFFFF0380

Default Value: 0x0000

Access: Read/write

Function: This 16-bit register holds the 16-bit value that is
loaded into the counter.

Timer4 Clear Register

Name: T4CLRI

Address: 0xFFFF038C

Access: Write only

Function: This 8-bit, write only MMR is written (with any value)
by user code to clear the interrupt.

Timer4 Value Register

Name: T4VAL

Address: 0xFFFF0384

Default Value: 0xFFFF

Access: Read only

Function: This 16-bit register holds the current value of Timer4.

Time4 Capture Register

Name: T4CAP

Address: 0xFFFF0390

Default Value: 0x0000

Access: Read only

Function: This 16-bit register holds the 32-bit value captured by
an enabled IRQ event.

Timer4 Control Register

Name: T4CON

Address: 0xFFFF0388

Default Value: 0x00000000

Access: Read/write

Function: This 32-bit MMR configures the mode of operation
of Timer4.

PRESCALER
1, 16, 256, OR 32,768 STI

TIMER4 IRQ16-BIT
UP/DOWN COUNTER

LOW POWER
32.768kHz OSCILLATOR

CORE
CLOCK FREQUENCY

16-BIT LOAD

TIMER4
VALUE

CAPTUREIRQ[31:0]

07
47

4-
03

6

Figure 39. Timer4 Block Diagram

 ADuC7036

Rev. C | Page 85 of 132

Table 58. External GPIO Pin to Internal Port Signal Assignments
Port GPIO Pin Port Signal Functionality (Defined by GPxCON)
Port0 GPIO_0 P0.0 General-purpose I/O.
 IRQ0 External Interrupt Request 0.
 SS Slave select I/O for SPI.

 GPIO_1 P0.1 General-purpose I/O.
 SCLK Serial clock I/O for SPI.
 GPIO_2 P0.2 General-purpose I/O.
 MISO Master input, slave output for SPI.
 GPIO_3 P0.3 General-purpose I/O.
 MOSI Master output, slave input for SPI.
 GPIO_4 P0.4 General-purpose I/O.
 ECLK 2.56 MHz clock output.
 P0.51 High voltage serial interface.
 P0.61 High voltage serial interface.
Port1 GPIO_5 P1.0 General-purpose I/O.
 IRQ1 External Interrupt Request 1.
 RxD Pin for UART.
 GPIO_6 P1.1 General-purpose I/O.
 TxD Pin for UART.
Port2 GPIO_7 Port 2.0 General-purpose I/O.
 IRQ4 External Interrupt Request 4.
 LIN output pin2 Used to read directly from LIN pin for conformance testing.
 GPIO_8 P2.1 General-purpose I/O.
 IRQ5 External Interrupt Request 5.
 LIN HV input pin2 Used to directly drive LIN pin for conformance testing.
 GPIO_112 P2.42 General-purpose I/O.
 LINRXX

2 LIN input pin.
 GPIO_122 P2.52 General-purpose I/O.
 LINTXX

2 LIN output pin.
 GPIO_131 P2.61 General-purpose I/O; STI data output.

1 These signals are internal signals only and do not appear on an external pin. These pins are used along with HVCON as the 2-wire interface to the high voltage

interface circuits.
2 These pins/signals are internal signals only and do not appear on an external pin. The signals are used to provide the external pin diagnostic write (GPIO_12) and

readback (GPIO_11) capability.

ADuC7036

Rev. C | Page 92 of 132

GPIO Port0 Set Register

Name: GP0SET

Address: 0xFFFF0D24

Access: Write only

Function: This 32-bit MMR allows user code to individually bit-address external GPIO pins to set them high only. User code can accomplish
this using the GP0SET MMR without having to modify or maintain the status of the GPIO pins (as user code requires when using
GP0DAT).

Table 65. GP0SET MMR Bit Designations
Bit Description
31 to 21 Reserved. These bits are reserved and should be written as 0 by user code.
20 Port 0.4 set bit.
 Set to 1 by user code to set the external GPIO_4 pin high.
 Clearing this bit to 0 via user software has no effect on the external GPIO_4 pin.
19 Port 0.3 set bit.
 Set to 1 by user code to set the external GPIO_3 pin high.
 Clearing this bit to 0 via user software has no effect on the external GPIO_3 pin.
18 Port 0.2 set bit.
 Set to 1 by user code to set the external GPIO_2 pin high.
 Clearing this bit to 0 via user software has no effect on the external GPIO_2 pin.
17 Port 0.1 set bit.
 Set to 1 by user code to set the external GPIO_1 pin high.
 Clearing this bit to 0 via user software has no effect on the external GPIO_1 pin.
16 Port 0.0 set bit.
 Set to 1 by user code to set the external GPIO_0 pin high.
 Clearing this bit to 0 via user software has no effect on the external GPIO_0 pin.
15 to 0 Reserved. These bits are reserved and should be written as 0 by user code.

GPIO Port1 Set Register

Name: GP1SET

Address: 0xFFFF0D34

Access: Write only

Function: This 32-bit MMR allows user code to individually bit-address external GPIO pins to set them high only. User code can accomplish
this using the GP1SET MMR without having to modify or maintain the status of the GPIO pins (as user code requires when using
GP1DAT).

Table 66. GP1SET MMR Bit Designations
Bit Description
31 to 18 Reserved. These bits are reserved and should be written as 0 by user code.
17 Port 1.1 set bit.
 Set to 1 by user code to set the external GPIO_6 pin high.
 Clearing this bit to 0 via user software has no effect on the external GPIO_6 pin.
16 Port 1.0 set bit.
 Set to 1 by user code to set the external GPIO_5 pin high.
 Clearing this bit to 0 via user software has no effect on the external GPIO_5 pin.
15 to 0 Reserved. These bits are reserved and should be written as 0 by user code.

 ADuC7036

Rev. C | Page 93 of 132

GPIO Port2 Set Register

Name: GP2SET

Address: 0xFFFF0D44

Access: Write only

Function: This 32-bit MMR allows user code to individually bit-address external GPIO pins to set them high only. User code can accomplish this
using the GP2SET MMR without having to modify or maintain the status of the GPIO pins (as user code requires when using GP2DAT).

Table 67. GP2SET MMR Bit Designations
Bit Description
31 to 23 Reserved. These bits are reserved and should be written as 0 by user code.
22 Port 2.6 set bit.
 Set to 1 by user code to set the external GPIO_13 pin high.
 Clearing this bit to 0 via user software has no effect on the external GPIO_13 pin.
21 Port 2.5 set bit.
 Set to 1 by user code to set the external GPIO_12 pin high.
 Clearing this bit to 0 via user software has no effect on the external GPIO_12 pin.
20 to 18 Reserved. These bits are reserved and should be written as 0 by user code.
17 Port 2.1 set bit.
 Set to 1 by user code to set the external GPIO_8 pin high.
 Clearing this bit to 0 via user software has no effect on the external GPIO_8 pin.
16 Port 2.0 set bit.
 Set to 1 by user code to set the external GPIO_7 pin high.
 Clearing this bit to 0 via user software has no effect on the external GPIO_7 pin.
15 to 0 Reserved. These bits are reserved and should be written as 0 by user code.

GPIO Port0 Clear Register

Name: GP0CLR

Address: 0xFFFF0D28

Access: Write only

Function: This 32-bit MMR allows user code to individually bit-address external GPIO pins to clear them low only. User code can accomplish
this using the GP0CLR MMR without having to modify or maintain the status of the GPIO pins (as user code requires when using GP0DAT).

Table 68. GP0CLR MMR Bit Designations
Bit Description
31 to 21 Reserved. These bits are reserved and should be written as 0 by user code.
20 Port 0.4 clear bit.
 Set to 1 by user code to clear the external GPIO_4 pin low.
 Clearing this bit to 0 via user software has no effect on the external GPIO_4 pin.
19 Port 0.3 clear bit.
 Set to 1 by user code to clear the external GPIO_3 pin low.
 Clearing this bit to 0 via user software has no effect on the external GPIO_3 pin.
18 Port 0.2 clear bit.
 Set to 1 by user code to clear the external GPIO_2 pin low.
 Clearing this bit to 0 via user software has no effect on the external GPIO_2 pin.
17 Port 0.1 clear bit.
 Set to 1 by user code to clear the external GPIO_1 pin low.
 Clearing this bit to 0 via user software has no effect on the external GPIO_1 pin.
16 Port 0.0 clear bit.
 Set to 1 by user code to clear the external GPIO_0 pin low.
 Clearing this bit to 0 via user software has no effect on the external GPIO_0 pin.
15 to 0 Reserved. These bits are reserved and should be written as 0 by user code.

ADuC7036

Rev. C | Page 96 of 132

High Voltage Interface Control Register

Name: HVCON

Address: 0xFFFF0804

Default Value: Updated by kernel

Access: Read/write

Function: This 8-bit register acts as a command byte interpreter for the high voltage control interface. Bytes written to this register are
interpreted as read or write commands to a set of four indirect registers related to the high voltage circuits. The HVDAT register is used to
store data to be written to, or read back from, the indirect registers.

Table 71. HVCON MMR Write Bit Designations
Bit Description
7 to 0 Command byte. Interpreted as
 0x00 = read back High Voltage Register HVCFG0 into HVDAT.
 0x01 = read back High Voltage Register HVCFG1 into HVDAT.
 0x02 = read back High Voltage Status Register HVSTA into HVDAT.
 0x03 = read back High Voltage Status Register HVMON into HVDAT.
 0x08 = write the value in HVDAT to the High Voltage Register HVCFG0.
 0x09 = write the value in HVDAT to the High Voltage Register HVCFG1.

Table 72. HVCON MMR Read Bit Designations
Bit Description
7 to 3 Reserved.
2 Transmit command to high voltage die status.
 1 = command completed successfully.
 0 = command failed.
1 Read command from high voltage die status.
 1 = command completed successfully.
 0 = command failed.
0 Busy bit (read only). When user code reads this register, Bit 0 should be interpreted as the busy signal for the high voltage

interface. This bit can be used to determine if a read request has completed. High voltage (read/write) commands as
described in this table should not be written to HVCON unless busy = 0.

 Busy = 1, high voltage interface is busy and has not completed the previous command written to HVCON. Bit 1 and Bit 2
are not valid.

 Busy = 0, high voltage interface is not busy and has completed the command written to HVCON. Bit 1 and Bit 2 are valid.

ADuC7036

Rev. C | Page 104 of 132

UART SERIAL INTERFACE
The ADuC7036 features a 16,450-compatible UART. The UART
is a full-duplex, universal, asynchronous receiver/transmitter. A
UART performs serial-to-parallel conversion on data characters
received from a peripheral device and performs parallel-to-serial
conversion on data characters received from the ARM7TDMI.
The UART features a fractional divider that facilitates high accu-
racy baud rate generation and a network addressable mode. The
UART functionality is available on the GPIO_5/IRQ1/RxD and
GPIO_6/ TxD pins of the ADuC7036.

The serial communication adopts an asynchronous protocol that
supports various word lengths, stop bits, and parity generation
options selectable in the configuration register.

BAUD RATE GENERATION
The ADuC7036 features two methods of generating the UART
baud rate: normal 450 UART baud rate generation and ADuC7036
fractional divider baud rate generation.

Normal 450 UART Baud Rate Generation

The baud rate is a divided version of the core clock using the
value in COMDIV0 and COMDIV1 MMRs (each is a 16-bit
value, DL). The standard baud rate generator formula is

DL
RateBaud CD ×××

=
2162

MHz48.20
 (1)

Table 79 lists common baud rate values.

Table 79. Baud Rate Using the Standard Baud Rate Generator
Baud Rate (bps) CD DL Actual Baud Rate % Error
9600 0 0x43 9552 0.50%
19,200 0 0x21 19,394 1.01%
115,200 0 0x6 106,667 7.41%
9600 3 0x8 10,000 4.17%
19,200 3 0x4 20,000 4.17%
115,200 3 0x1 80,000 30.56%

Fractional Divider

The fractional divider, combined with the normal baud rate
generator, allows the generation of accurate, high speed baud rates.

/2

/(M+N/2048)
/16DL UART

CORE
CLOCK

FBEN

07
47

4-
04

0

Figure 43. Fractional Divider Baud Rate Generation

Calculation of the baud rate using a fractional divider is as follows:

)
2048

(2162

MHz48.20
NMDL

RateBaud
CD +××××

= (2)

2162
MHz48.20

2048 ××××
=+

DLRateBaud
NM CD

where:
CD is the clock divider.
DL is the divisor latch.
M is the integer part of the divisor; a fractional divider divides
an input by a nonwhole number, M.N.
N is the fractional part of the divisor; a fractional divider
divides an input by a nonwhole number, M.N.

Table 80 lists common baud rate values.

Table 80. Baud Rate Using the Fractional Baud Rate Generator
Baud Rate
(bps) CD DL M N

Actual
Baud Rate % Error

9600 0 0x42 1 21 9598.55 0.015%
19,200 0 0x21 1 21 19,197.09 0.015%
115,200 0 0x5 1 228 115,177.51 0.0195%

ADuC7036

Rev. C | Page 108 of 132

UART Interrupt Enable Register 0

Name: COMIEN0

Address: 0xFFFF0704

Default Value: 0x00

Access: Read/write

Function: This 8-bit register enables and disables the individual UART interrupt sources.

Table 84. COMIEN0 MMR Bit Designations
Bit Name Description
7 to 4 Reserved. Not used.
3 EDSSI Reserved. This bit should be written as 0.
2 ELSI RxD status interrupt enable bit.
 Set by the user to enable generation of an interrupt if any of the COMSTA0[3:1] register bits are set.
 Cleared by the user.
1 ETBEI Enable transmit buffer empty interrupt.
 Set by the user to enable an interrupt when the buffer is empty during a transmission, that is, when

COMSTA0[5] is set.
 Cleared by the user.
0 ERBFI Enable receive buffer full interrupt.
 Set by the user to enable an interrupt when the buffer is full during a reception.
 Cleared by the user.

UART Interrupt Identification Register 0

Name: COMIID0

Address: 0xFFFF0708

Default Value: 0x01

Access: Read only

Function: This 8-bit register reflects the source of the UART interrupt.

Table 85. COMIID0 MMR Bit Designations
Bits[2:1]
Status Bits Bit 0 NINT Priority Definition Clearing Operation
00 1 No interrupt
11 0 1 Receive line status interrupt Read COMSTA0
10 0 2 Receive buffer full interrupt Read COMRX
01 0 3 Transmit buffer empty interrupt Write data to COMTX or read COMIID0
00 0 4 Reserved Reserved

 ADuC7036

Rev. C | Page 117 of 132

LIN Hardware Synchronization Status Register

Name: LHSSTA

Address: 0xFFFF0780

Default Value: 0x00000000

Access: Read only

Function: This LHS status register is a 32-bit register whose bits reflect the current operating status of the LIN interface.

Table 92. LHSSTA MMR Bit Designations
Bit Description
31 to 7 Reserved. These read only bits are reserved for future use.
6 Rising edge detected (BSD mode only).
 Set to 1 by hardware to indicate a rising edge has been detected on the BSD bus.
 Cleared to 0 after user code reads the LHSSTA MMR.
5 LHS reset complete flag.
 Set to 1 by hardware to indicate an LHS reset command has completed successfully.
 Cleared to 0 after user code reads the LHSSTA MMR.
4 Break field error.
 Set to 1 by hardware and generates an LHS interrupt (IRQEN[7]) when the 12-bit break timer (LHSVAL1) register

overflows to indicate the LIN bus has stayed low too long, thus indicating a possible LIN bus error.
 Cleared to 0 after user code reads the LHSSTA MMR.
3 LHS compare interrupt.
 Set to 1 by hardware when the value in LHSVAL0 (LIN synchronization bit timer) equals the value in the LHSCMP register.
 Cleared to 0 after user code reads the LHSSTA MMR.
2 Stop condition interrupt.
 Set to 1 by hardware when a stop condition is detected.
 Cleared to 0 after user code reads LHSSTA MMR.
1 Start condition interrupt.
 Set to 1 by hardware when a start condition is detected.
 Cleared to 0 after user code reads LHSSTA MMR.
0 Break timer compare interrupt.
 Set to 1 by hardware when a valid LIN break condition is detected. A LIN break condition is generated when the LIN

break timer value reaches the break timer compare value (see the LHSVAL1 in the LIN Hardware Synchronization Break
Timer1 Register section for more information).

 Cleared to 0 after user code reads the LHSSTA MMR.

ADuC7036

Rev. C | Page 122 of 132

Example LIN Hardware Synchronization Routine

Using the following C-source code LIN initialization routine,
LHSVAL1 begins to count on the first falling edge received on
the LIN bus. If LHSVAL1 exceeds the value written to LHSVAL1,
in this case 0x3F, a break compare interrupt is generated.

On the next falling edge, LHSVAL0 begins counting. LHSVAL0
monitors the number of falling edges and compares it to the
value written to LHSCON1[7:4]. In this example, the number of
edges to monitor is six falling edges of the LIN frame, or the five

falling edges of the sync byte. When this number of falling edges is
received, a stop condition interrupt is generated. It is at this point
that the UART is configured to receive the protected identifier.

The UART must be gated through LHSCON0[8] before the LIN
bus returns high. If the LIN bus returns high when UART is not
gated, UART communication errors may occur. This process is
shown in detail in Figure 52. Example code to ensure the success
of this process follows Figure 49.

void LIN_INIT(void)
{

char HVstatus;
 GP2CON = 0x110000; // Enable LHS on GPIO pins

 LHSCON0 = 0x1; // Reset LHS interface

do{
HVDAT = 0x02; // Enable normal LIN Tx mode
HVCON = 0x08; // Write to Config0

 do{
 HVstatus = HVCON;
 }
 while(HVstatus & 0x1); // Wait until command is finished

}
while (!(HVstatus & 0x4)); // Transmit command is correct

 while((LHSSTA & 0x20) == 0)
 { // Wait until the LHS hardware is reset
 }

 LHSCON1 = 0x062; // Sets stop edge as the fifth falling edge
 // and the start edge as the first falling
 // edge in the sync byte
 LHSCON0 = 0x0114; // Gates UART Rx line, ensuring no interference
 // from the LIN into the UART
 // Selects the stop condition as a falling edge
 // Enables generation of an interrupt on the
 // stop condition
 // Enables the interface
 LHSVAL1 = 0x03F; // Sets number of 131 kHz periods to generate a break interrupt
 // 0x3F / 131 kHz ~ 480 μs, which is just over 9.5 Tbits

ID1ID0START
BIT

START
BIT STOP

BIT
STOP

BIT ID2 ID3 ID4 ID5 P0 P1

tBIT

LHSVAL1 = 0x3F

LHSVAL1
RESETS AND

STARTS
COUNTING

BREAK
COMPARE

INTERRUPT IS
GENERATED

LHSVAL0 STARTS
COUNTING

LHSVAL0 STOPS
COUNTING AND A
STOP INTERRUPT

IS GENERATED

UART IS CONFIGURED,
LHS INTERRUPTS

DISABLED EXCEPT
BREAK COMPARE

BEGINS
RECEIVING DATA

VIA UART
07

47
4-

04
9

Figure 52. Example LIN Configuration

 while((GP2DAT & 0x10) == 0)
 {} // Wait until LIN Bus returns high
 LHSCON0 = 0x4; // Enable LHS to detect Break Condition Ungate RX Line
 // Disable all Interrupts except Break Compare Interrupt
 IRQEN = 0x800; // Enable UART Interrupt
 // The UART is now configured and ready to be used for LIN

 ADuC7036

Rev. C | Page 123 of 132

LIN Diagnostics

The ADuC7036 features the capability to nonintrusively monitor
the current state of the LIN/BSD pin. This readback
functionality is implemented using GPIO_11. The current state
of the LIN/BSD pin is contained in GP2DAT[4].

It is also possible to drive the LIN/BSD pin high and low
through user software, allowing the user to detect open-circuit
conditions. This functionality is implemented via GPIO_12. To
enable this functionality, GPIO_12 must be configured as a
GPIO through GP2CON[20]. After it is configured, the
LIN/BSD pin can be pulled high or low using GP2DAT.

The ADuC7036 also features short-circuit protection on the
LIN/BSD pin. If a short-circuit condition is detected on the
LIN/BSD pin, HVSTA[2] is set. This bit is cleared by reenabling
the LIN driver using HVCFG1[3]. It is possible to disable this
feature through HVCFG1[2].

LIN Operation During Thermal Shutdown

When a thermal event occurs, that is, when HVSTA[3] is set,
LIN communications continue uninterrupted.

 ADuC7036

Rev. C | Page 127 of 132

TRANSMIT DATA
TO MASTER

TRANSMIT SECOND
PARITY BIT

RECEIVE DATA
FROM MASTER

RECEIVE SECOND
PARITY BIT

RECEIVE
SYNCHRONIZATION

PULSES

RECEIVE
DIRECTION

BIT

RECEIVE
SLAVE

ADDRESS

RECEIVE
REGISTER
ADDRESS

RECEIVE FIRST
PARITY BIT

TRANSMIT
ACK/NACK

INITIALIZE BSD
HARDWARE/
SOFTWARE

07
47

4-
05

4

BSD DATA TRANSMISSION
User code forces the GPIO_12 signal low for a specified time to
transmit data in BSD mode. In addition, user code uses the sync
timer (LHSVAL0), the LHS sync capture register (LHSCAP), and
the LHS sync compare register (LHSCMP) to determine the
length of time that the BSD bus should be held low for bit
transmissions in the 0 or 1 state.

As described in the BSD Example Pulse Widths section, even
when the slave is transmitting, the master always starts the bit
transmission period by pulling the BSD bus low. If BSD mode
is selected (LHSCON0[6] = 1), the LIN sync timer value is
captured in LHSCAP on every falling edge of the BSD bus.
The LIN sync timer runs continuously in BSD mode.

Then, user code can immediately force GPIO_12 low and read
the captured timer value from LHSCAP. Next, the user can calcu-
late how many clock periods (with a 5 MHz clock) should elapse
before the GPIO_12 is driven high for a pulse width in the 0 or
1 state. The calcaulated number can be added to the LHSCAP
value and written into the LHSCMP register. If LHSCON0[5] is
set, the sync timer, which continues to count (being clocked by
a 5 MHz clock), eventually equals the LHSCMP value and
generates an LHS compare interrupt (LHSSTA[3]).

The response to this interrupt should be to force the GPIO_12
signal (and, therefore, the BSD bus) high. The software control
of the GPIO_12 signal, along with the correct use of the LIN
synchronization timers, ensures that valid pulse widths in the
0 and 1 states can be transmitted from the ADuC7036, as shown
in Figure 59. Again, care must be taken if switching from BSD
write mode to BSD read mode, as described in Table 93 (see the
LHSCON0[8] bit.)

Figure 57. BSD Slave Node State Machine

BSD PERIOD
IN 0 STATE

BSD PERIOD
IN 1 STATE

LHSVAL0 LOADED
INTO LHSCAP HERE

2

MASTER DRIVES
BSD BUS LOW

1 SOFTWARE ASSERTS
BSD LOW HERE

3

SOFTWARE DEASSERTS
BSD HIGH HERE

5

LHSCMP = LHSVAL0
INTERRUPT GENERATED
HERE

4

07
47

4-
05

6

BSD DATA RECEPTION
To receive data, the LIN/BSD peripheral must first be con-
figured in BSD mode where LHSCON0[6] = 1. In this mode,
LHSCON0[8] should be set to ensure that the LHS break timer
(see the LIN Hardware Synchronization Break Timer1 Register
section) generates an interrupt on the rising edge of the BSD bus.

The LHS break timer is cleared and starts counting on the falling
edge of the BSD bus; the timer is subsequently stopped and
generates an interrupt on the rising edge of the BSD bus. Given
that the LHS break timer is clocked by the low power 131 kHz
oscillator, the value in LHSVAL1 can be interpreted by user code
to determine if the received data bit is a BSD sync pulse, 0, or 1.

Figure 59. Master Read, Slave Transmit

WAKE-UP FROM BSD INTERFACE
The MCU core can be awakened from power-down via the BSD
physical interface. Before entering power-down mode, user code
should enable the start condition interrupt (LHSCON0[3]). When
this interrupt is enabled, a high-to-low transition on the LIN/BSD
pin generates an interrupt event and wakes up the MCU core.

BSD PERIOD
IN 0 STATE

BSD PERIOD
IN 1 STATE

LHSVAL1 CLEARED
AND STARTS COUNTING
ON THIS EDGE

1 LHSVAL1 STOPPED
AND GENERATES
INTERRUPT ON THIS EDGE

2

07
47

4-
05

5

Figure 58. Master Transmit, Slave Read

