

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	2816
Number of Logic Elements/Cells	25344
Total RAM Bits	589824
Number of I/O	502
Number of Gates	1400000
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	676-BGA
Supplier Device Package	676-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc3s1400a-4fgg676i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Production Status

Table 3 indicates the production status of each Spartan-3A FPGA by temperature range and speed grade. The table also lists the earliest speed file version required for creating

a production configuration bitstream. Later versions are also supported.

Table	3:	Spartan-3A	FPGA	Production	Status	(Production	Speed	File)
-------	----	------------	-------------	------------	--------	-------------	-------	-------

Temperature Range		Comme	ercial (C)	Industrial	
Speed Grade		Standard (-4)	High-Performance (–5)	Standard (-4)	
XC3S50A		Production (v1.35)	Production (v1.35)	Production (v1.35)	
Der	XC3S200A	Production (v1.35)	Production (v1.35)	Production (v1.35)	
t Num	XC3S400A	Production (v1.36)	Production (v1.36)	Production (v1.36)	
Part	XC3S700A	Production (v1.34)	Production (v1.35)	Production (v1.34)	
	XC3S1400A Production (v1.34)		Production (v1.35)	Production (v1.34)	

Package Marking

Figure 2 provides a top marking example for Spartan-3A FPGAs in the quad-flat packages. Figure 3 shows the top marking for Spartan-3A FPGAs in BGA packages. The markings for the BGA packages are nearly identical to those for the quad-flat packages, except that the marking is rotated with respect to the ball A1 indicator.

The "5C" and "4I" Speed Grade/Temperature Range part combinations may be dual marked as "5C/4I". Devices with a single mark are only guaranteed for the marked speed grade and temperature range.

General DC Characteristics for I/O Pins

Table	9:	General DC	Characteristics of	of User I/O.	Dual-Purpose.	and Dedicated Pi	ns ⁽¹⁾
iubio	υ.		0114140101101100	0.0000,	Buui i uipooo,	and Bouloutou i i	

Symbol	Description	Test Conditions			Тур	Max	Units
ا _ل (2)	Leakage current at User I/O, input-only, dual-purpose, and dedicated pins, FPGA powered	Driver is in a high-impeda $V_{IN} = 0V$ or V_{CCO} max, sa	nce state, ample-tested	-10	-	+10	μA
I _{HS}	Leakage current on pins during hot socketing, FPGA unpowered	All pins except INIT_B, PF pins when PUDC_B = 1.	ROG_B, DONE, and JTAG	-10	_	+10	μA
		INIT_B, PROG_B, DONE pins when PUDC_B = 0.	, and JTAG pins or other	Ado	d I _{HS} + I _I	RPU	μA
I _{RPU} ⁽³⁾	Current through pull-up resistor at User I/O, dual-purpose,	V _{IN} = GND	V_{CCO} or $V_{CCAUX} = 3.0V$ to 3.6V	-151	-315	-710	μA
	Dedicated pins are powered by VCCAUX.		V _{CCO} or V _{CCAUX} = 2.3V to 2.7V	-82	-182	-437	μA
	CONOX		V _{CCO} = 1.7V to 1.9V	-36	-88	-226	μA
			V _{CCO} = 1.4V to 1.6V	-22	-56	-148	μA
			V _{CCO} = 1.14V to 1.26V	-11	-31	-83	μA
R _{PU} ⁽³⁾	Equivalent pull-up resistor value	V _{IN} = GND	V _{CCO} = 3.0V to 3.6V	5.1	11.4	23.9	kΩ
	at User I/O, dual-purpose, input-only, and dedicated pins		V _{CCO} = 2.3V to 2.7V	6.2	14.8	33.1	kΩ
	(based on I _{RPU} per Note 3)		V _{CCO} = 1.7V to 1.9V	8.4	21.6	52.6	kΩ
			V _{CCO} = 1.4V to 1.6V	10.8	28.4	74.0	kΩ
		V _{CCO} = 1.14V to 1.26V		15.3	41.1	119.4	kΩ
I _{RPD} ⁽³⁾	Current through pull-down	$V_{IN} = V_{CCO}$	V _{CCAUX} = 3.0V to 3.6V	167	346	659	μA
	dual-purpose, input-only, and dedicated pins. Dedicated pins are powered by V _{CCAUX} .		V _{CCAUX} = 2.25V to 2.75V	100	225	457	μA
R _{PD} ⁽³⁾	Equivalent pull-down resistor	V _{CCAUX} = 3.0V to 3.6V	V _{IN} = 3.0V to 3.6V	5.5	10.4	20.8	kΩ
	input-only, and dedicated pins		V _{IN} = 2.3V to 2.7V	4.1	7.8	15.7	kΩ
	(based on I _{RPD} per Note 3)		V _{IN} = 1.7V to 1.9V	3.0	5.7	11.1	kΩ
			V _{IN} = 1.4V to 1.6V	2.7	5.1	9.6	kΩ
			V _{IN} = 1.14V to 1.26V	2.4	4.5	8.1	kΩ
		V _{CCAUX} = 2.25V to 2.75V	V _{IN} = 3.0V to 3.6V	7.9	16.0	35.0	kΩ
			V _{IN} = 2.3V to 2.7V	5.9	12.0	26.3	kΩ
			V _{IN} = 1.7V to 1.9V	4.2	8.5	18.6	kΩ
			V _{IN} = 1.4V to 1.6V	3.6	7.2	15.7	kΩ
			V _{IN} = 1.14V to 1.26V	3.0	6.0	12.5	kΩ
I _{REF}	V _{REF} current per pin	All V _{CCO} levels		-10	-	+10	μA
C _{IN}	Input capacitance		-	_	-	10	pF
R _{DT}	Resistance of optional differential termination circuit within a differential I/O pair. Not available on Input-only pairs.	$V_{CCO} = 3.3V \pm 10\%$	LVDS_33, MINI_LVDS_33, RSDS_33	90	100	115	Ω
		$V_{CCO} = 2.5V \pm 10\%$	LVDS_25, MINI_LVDS_25, RSDS_25	90	110	-	Ω

Notes:

1. The numbers in this table are based on the conditions set forth in Table 8.

 For single-ended signals that are placed on a differential-capable I/O, V_{IN} of -0.2V to -0.5V is supported but can cause increased leakage between the two pins. See "Parasitic Leakage" in <u>UG331</u>, Spartan-3 Generation FPGA User Guide.

3. This parameter is based on characterization. The pull-up resistance $R_{PU} = V_{CCO} / I_{RPU}$. The pull-down resistance $R_{PD} = V_{IN} / I_{RPD}$.

Quiescent Current Requirements

Table	10:	Quiescent	Supply	Current	Characteristics
-------	-----	-----------	--------	---------	-----------------

Symbol	Description	Device	Typical ⁽²⁾	Commercial Maximum ⁽²⁾	Industrial Maximum ⁽²⁾	Units
I _{CCINTQ}	Quiescent V _{CCINT} supply current	XC3S50A	2	20	30	mA
		XC3S200A	7	50	70	mA
		XC3S400A	10	85	125	mA
		XC3S700A	13	120	185	mA
		XC3S1400A	24	220	310	mA
I _{CCOQ}	Quiescent V _{CCO} supply current	XC3S50A	0.2	2	3	mA
		XC3S200A	0.2	2	3	mA
		XC3S400A	0.3	3	4	mA
		XC3S700A	0.3	3	4	mA
		XC3S1400A	0.3	3	4	mA
I _{CCAUXQ}	Quiescent V _{CCAUX} supply current	XC3S50A	3	8	10	mA
		XC3S200A	5	12	15	mA
		XC3S400A	5	18	24	mA
		XC3S700A	6	28	34	mA
		XC3S1400A	10	50	58	mA

- 1. The numbers in this table are based on the conditions set forth in Table 8.
- 2. Quiescent supply current is measured with all I/O drivers in a high-impedance state and with all pull-up/pull-down resistors at the I/O pads disabled. Typical values are characterized using typical devices at room temperature (T_J of 25°C at V_{CCINT} = 1.2V, V_{CCO} = 3.3V, and V_{CCAUX} = 2.5V). The maximum limits are tested for each device at the respective maximum specified junction temperature and at maximum voltage limits with V_{CCINT} = 1.26V, V_{CCO} = 3.6V, and V_{CCAUX} = 3.6V. The FPGA is programmed with a "blank" configuration data file (that is, a design with no functional elements instantiated). For conditions other than those described above (for example, a design including functional elements), measured quiescent current levels will be different than the values in the table.
- For more accurate estimates for a specific design, use the Xilinx XPower tools. There are two recommended ways to estimate the total power consumption (quiescent plus dynamic) for a specific design: a) The <u>Spartan-3A FPGA XPower Estimator</u> provides quick, approximate, typical estimates, and does not require a netlist of the design. b) XPower Analyzer uses a netlist as input to provide maximum estimates as well as more accurate typical estimates.
- 4. The maximum numbers in this table indicate the minimum current each power rail requires in order for the FPGA to power-on successfully.
- 5. For information on the power-saving Suspend mode, see XAPP480: Using Suspend Mode in Spartan-3 Generation FPGAs. Suspend mode typically saves 40% total power consumption compared to quiescent current.

DC and Switching Characteristics

Input Timing Adjustments

Table 23: Input Timing Adjustments by IOSTANDARD

Convert Input Time from	Add Adjustme	l the ent Below	
LVCMOS25 to the Following Signal Standard	Speed	Grade	-
(IOSTANDARD)	-5	-4	Units
Single-Ended Standards			
LVTTL	0.62	0.62	ns
LVCMOS33	0.54	0.54	ns
LVCMOS25	0	0	ns
LVCMOS18	0.83	0.83	ns
LVCMOS15	0.60	0.60	ns
LVCMOS12	0.31	0.31	ns
PCI33_3	0.41	0.41	ns
PCI66_3	0.41	0.41	ns
HSTL_I	0.72	0.72	ns
HSTL_III	0.77	0.77	ns
HSTL_I_18	0.69	0.69	ns
HSTL_II_18	0.69	0.69	ns
HSTL_III_18	0.79	0.79	ns
SSTL18_I	0.71	0.71	ns
SSTL18_II	0.71	0.71	ns
SSTL2_I	0.68	0.68	ns
SSTL2_II	0.68	0.68	ns
SSTL3_I	0.78	0.78	ns
SSTL3_II	0.78	0.78	ns

Table 23: Input Timing Adjustments by IOSTANDARD(Continued)

Convert Input Time from	Add Adjustme	l the ent Below	
LVCMOS25 to the Following Signal Standard	Speed		
(IOSTANDARD)	-5	-4	Units
Differential Standards			
LVDS_25	0.76	0.76	ns
LVDS_33	0.79	0.79	ns
BLVDS_25	0.79	0.79	ns
MINI_LVDS_25	0.78	0.78	ns
MINI_LVDS_33	0.79	0.79	ns
LVPECL_25	0.78	0.78	ns
LVPECL_33	0.79	0.79	ns
RSDS_25	0.79	0.79	ns
RSDS_33	0.77	0.77	ns
TMDS_33	0.79	0.79	ns
PPDS_25	0.79	0.79	ns
PPDS_33	0.79	0.79	ns
DIFF_HSTL_I_18	0.74	0.74	ns
DIFF_HSTL_II_18	0.72	0.72	ns
DIFF_HSTL_III_18	1.05	1.05	ns
DIFF_HSTL_I	0.72	0.72	ns
DIFF_HSTL_III	1.05	1.05	ns
DIFF_SSTL18_I	0.71	0.71	ns
DIFF_SSTL18_II	0.71	0.71	ns
DIFF_SSTL2_I	0.74	0.74	ns
DIFF_SSTL2_II	0.75	0.75	ns
DIFF_SSTL3_I	1.06	1.06	ns
DIFF_SSTL3_II	1.06	1.06	ns

Notes:

 These adjustments are used to convert input path times originally specified for the LVCMOS25 standard to times that correspond to other signal standards.

^{1.} The numbers in this table are tested using the methodology presented in Table 27 and are based on the operating conditions set forth in Table 8, Table 11, and Table 13.

Table 28: Equivalent V_{CCO}/GND Pairs per Bank

	Package Style (including Pb-free)								
Device	VQ100	TQ144	FT256	FG320	FG400	FG484	FG676		
XC3S50A	1	2	3	-	-	-	-		
XC3S200A	1	-	4	4	-	-	-		
XC3S400A	-	_	4	4	5	-	-		
XC3S700A	-	_	4	-	5	5	-		
XC3S1400A	-	_	4	-	_	6	9		

Table 29: Recommended Number of Simultaneously Switching Outputs per VCCO-GND Pair (V_{CCAUX} =3.3V)

			Package Type				
				TQ144	FT256, FG400, FG	FG320, FG484, 676	
Signal	Top, Bottom (Banks 0,2)	Left, Right (Banks 1,3)	Top, Bottom (Banks 0,2)	Left, Right (Banks 1,3)			
Single-Ender	d Standar	ds					
LVTTL	Slow	2	20	20	60	60	
		4	10	10	41	41	
		6	10	10	29	29	
		8	6	6	22	22	
		12	6	6	13	13	
		16	5	5	11	11	
		24	4	4	9	9	
	Fast	2	10	10	10	10	
		4	6	6	6	6	
		6	5	5	5	5	
		8	3	3	3	3	
		12	3	3	3	3	
		16	3	3	3	3	
		24	2	2	2	2	
	QuietIO	2	40	40	80	80	
		4	24	24	48	48	
		6	20	20	36	36	
		8	16	16	27	27	
		12	12	12	16	16	
		16	9	9	13	13	
		24	9	9	12	12	

 Table 29: Recommended Number of Simultaneously Switching

 Outputs per VCCO-GND Pair (V_{CCAUX}=3.3V)(Continued)

				Packag	је Туре	
			VQ100,	TQ144	FT256, FG400, FG	FG320, FG484, 676
Signal Standard (IOSTANDARD)			Top, Bottom (Banks 0,2)	Left, Right (Banks 1,3)	Top, Bottom (Banks 0,2)	Left, Right (Banks 1,3)
LVCMOS33	Slow	2	24	24	76	76
		4	14	14	46	46
		6	11	11	27	27
		8	10	10	20	20
		12	9	9	13	13
		16	8	8	10	10
		24	-	8	-	9
	Fast	2	10	10	10	10
		4	8	8	8	8
		6	5	5	5	5
		8	4	4	4	4
		12	4	4	4	4
		16	2	2	2	2
		24	-	2	-	2
	QuietIO	2	36	36	76	76
		4	32	32	46	46
		6	24	24	32	32
		8	16	16	26	26
		12	16	16	18	18
		16	12	12	14	14
		24	-	10	-	10

18 x 18 Embedded Multiplier Timing

Table 34: 18 x 18 Embedded Multiplier Timing

			Speed	Grade		
		-	5	-	4	-
Symbol	Description	Min	Max	Min	Max	Units
Combinatoria	l Delay					
T _{MULT}	Combinational multiplier propagation delay from the A and B inputs to the P outputs, assuming 18-bit inputs and a 36-bit product (AREG, BREG, and PREG registers unused)	-	4.36	-	4.88	ns
Clock-to-Outp	out Times					
T _{MSCKP_P}	Clock-to-output delay from the active transition of the CLK input to valid data appearing on the P outputs when using the PREG register ^(2,3)	-	0.84	-	1.30	ns
T _{MSCKP_A} T _{MSCKP_B}	Clock-to-output delay from the active transition of the CLK input to valid data appearing on the P outputs when using either the AREG or BREG register $^{(2,4)}$	_	4.44	_	4.97	ns
Setup Times						
T _{MSDCK_P}	Data setup time at the A or B input before the active transition at the CLK when using only the PREG output register (AREG, BREG registers unused) $^{(3)}$	3.56	-	3.98	-	ns
T _{MSDCK_A}	Data setup time at the A input before the active transition at the CLK when using the AREG input register $^{\rm (4)}$	0.00	-	0.00	-	ns
T _{MSDCK_B}	Data setup time at the B input before the active transition at the CLK when using the BREG input register $^{\rm (4)}$	0.00	-	0.00	-	ns
Hold Times						
T _{MSCKD_P}	Data hold time at the A or B input after the active transition at the CLK when using only the PREG output register (AREG, BREG registers unused) $^{(3)}$	0.00	-	0.00	-	ns
T _{MSCKD_A}	Data hold time at the A input after the active transition at the CLK when using the AREG input register $^{\rm (4)}$	0.35	-	0.45	-	ns
T _{MSCKD_B}	Data hold time at the B input after the active transition at the CLK when using the BREG input $\mbox{register}^{(4)}$	0.35	-	0.45	-	ns
Clock Freque	ncy					
F _{MULT}	Internal operating frequency for a two-stage 18x18 multiplier using the AREG and BREG input registers and the PREG output register $^{(1)}$	0	280	0	250	MHz

Notes:

1. Combinational delay is less and pipelined performance is higher when multiplying input data with less than 18 bits.

2. The PREG register is typically used in both single-stage and two-stage pipelined multiplier implementations.

3. The PREG register is typically used when inferring a single-stage multiplier.

4. Input registers AREG or BREG are typically used when inferring a two-stage multiplier.

5. The numbers in this table are based on the operating conditions set forth in Table 8.

Digital Frequency Synthesizer (DFS)

Table 38: Recommended Operating Conditions for the DFS

				Speed Grade				
				-5 -4				
	Symbol	Descriptior	I	Min	Max	Min	Max	Units
Input Frequency Ranges ⁽²⁾								
F _{CLKIN}	CLKIN_FREQ_FX	Frequency for the CLKIN input		0.200	333 ⁽⁴⁾	0.200	333 ⁽⁴⁾	MHz
Input Cloc	k Jitter Tolerance ⁽³⁾							
CLKIN_CY	C_JITT_FX_LF	Cycle-to-cycle jitter at the CLKIN	$F_{CLKFX} \le 150 \text{ MHz}$	-	±300	-	±300	ps
CLKIN_CY	C_JITT_FX_HF	frequency	F _{CLKFX} > 150 MHz	-	±150	_	±150	ps
CLKIN_PE	R_JITT_FX	Period jitter at the CLKIN input		-	±1	-	±1	ns

Notes:

1. DFS specifications apply when either of the DFS outputs (CLKFX or CLKFX180) are used.

2. If both DFS and DLL outputs are used on the same DCM, follow the more restrictive CLKIN_FREQ_DLL specifications in Table 36.

3. CLKIN input jitter beyond these limits may cause the DCM to lose lock.

4. To support double the maximum effective FCLKIN limit, set the CLKIN_DIVIDE_BY_2 attribute to TRUE. This attribute divides the incoming clock frequency by two as it enters the DCM.

Table 39: Switching Characteristics for the DFS

					Speed	Grade		
				-	5	-	4	
Symbol	Description		Device	Min	Max	Min	Max	Units
Output Frequency Ranges								
CLKOUT_FREQ_FX ⁽²⁾	Frequency for the CLKFX and CLKFX180 or	utputs	All	5	350	5	320	MHz
Output Clock Jitter ^(3,4)								
CLKOUT_PER_JITT_FX	Period jitter at the CLKFX and CLKFX180		All	Тур	Max	Тур	Max	
	oupuis.	CLKIN ≤ 20 MHz		Use the Spartan-3A Jitter Calculator: www.xilinx.com/support/documentatio n/data_sheets/s3a_jitter_calc.zip		ps		
		CLKIN > 20 MHz		±[1% of CLKFX period + 100]	±[1% of CLKFX period + 200]	±[1% of CLKFX period + 100]	±[1% of CLKFX period + 200]	ps
Duty Cycle ^(5,6)	-	•						
CLKOUT_DUTY_CYCLE_FX	Duty cycle precision for the CLKFX and CLk including the BUFGMUX and clock tree duty	FX180 outputs, -cycle distortion	All	-	±[1% of CLKFX period + 350]	-	±[1% of CLKFX period + 350]	ps
Phase Alignment ⁽⁶⁾								
CLKOUT_PHASE_FX	Phase offset between the DFS CLKFX outp CLK0 output when both the DFS and DLL a	ut and the DLL re used	All	-	±200	-	±200	ps
CLKOUT_PHASE_FX180	Phase offset between the DFS CLKFX180 or CLK0 output when both the DFS and DLL a	utput and the DLL re used	All	-	±[1% of CLKFX period + 200]	_	±[1% of CLKFX period + 200]	ps

Table 39: Switching Characteristics for the DFS(Continued)

				Speed Grade				
				-	5		4	
Symbol	Description		Device	Min	Max	Min	Max	Units
Lock Time								
LOCK_FX ^(2, 3)	The time from deassertion at the DCM's Reset input to the rising transition at its	$\begin{array}{l} 5 \text{ MHz} \leq \text{F}_{\text{CLKIN}} \\ \leq 15 \text{ MHz} \end{array}$	All	-	5	-	5	ms
LOCKED output. The DFS asserts LOCKED when the CLKFX and CLKFX180 signals are valid. If using both the DLL and the DFS, use the longer locking time.		F _{CLKIN} > 15 MHz		-	450	-	450	μs

- 1. The numbers in this table are based on the operating conditions set forth in Table 8 and Table 38.
- 2. DFS performance requires the additional logic automatically added by ISE 9.1i and later software revisions.
- 3. For optimal jitter tolerance and faster lock time, use the CLKIN_PERIOD attribute.
- 4. Maximum output jitter is characterized within a reasonable noise environment (150 ps input period jitter, 40 SSOs and 25% CLB switching) on an XC3S1400A FPGA. Output jitter strongly depends on the environment, including the number of SSOs, the output drive strength, CLB utilization, CLB switching activities, switching frequency, power supply and PCB design. The actual maximum output jitter depends on the system application.
- 5. The CLKFX and CLKFX180 outputs always have an approximate 50% duty cycle.
- 6. Some duty-cycle and alignment specifications include a percentage of the CLKFX output period. For example, the data sheet specifies a maximum CLKFX jitter of "±[1% of CLKFX period + 200]". Assume the CLKFX output frequency is 100 MHz. The equivalent CLKFX period is 10 ns and 1% of 10 ns is 0.1 ns or 100 ps. According to the data sheet, the maximum jitter is ±[100 ps + 200 ps] = ±300 ps.

Miscellaneous DCM Timing

Table 42: Miscellaneous DCM Timing

Symbol	Description	Min	Мах	Units
DCM_RST_PW_MIN	Minimum duration of a RST pulse width	3	-	CLKIN cycles
DCM_RST_PW_MAX ⁽²⁾	Maximum duration of a RST pulse width	N/A	N/A	seconds
		N/A	N/A	seconds
DCM_CONFIG_LAG_TIME ⁽³⁾	Maximum duration from V_{CCINT} applied to FPGA configuration	N/A	N/A	minutes
	applied to DCM DLL	N/A	N/A	minutes

Notes:

1. This limit only applies to applications that use the DCM DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV). The DCM DFS outputs (CLKFX, CLKFX180) are unaffected.

- 2. This specification is equivalent to the Virtex®-4 DCM_RESET specification. This specification does not apply for Spartan-3A FPGAs.
- 3. This specification is equivalent to the Virtex-4 TCONFIG specification. This specification does not apply for Spartan-3A FPGAs.

DNA Port Timing

Table 43: DNA_PORT Interface Timing

Symbol	Description	Min	Max	Units
T _{DNASSU}	Setup time on SHIFT before the rising edge of CLK	1.0	-	ns
T _{DNASH}	Hold time on SHIFT after the rising edge of CLK	0.5	-	ns
T _{DNADSU}	Setup time on DIN before the rising edge of CLK	1.0	-	ns
T _{DNADH}	Hold time on DIN after the rising edge of CLK	0.5	-	ns
T _{DNARSU}	Setup time on READ before the rising edge of CLK	5.0	10,000	ns
T _{DNARH}	Hold time on READ after the rising edge of CLK	0	-	ns
T _{DNADCKO}	Clock-to-output delay on DOUT after rising edge of CLK	0.5	1.5	ns
T _{DNACLKF}	CLK frequency	0	100	MHz
T _{DNACLKH}	CLK High time	1.0	×	ns
T _{DNACLKL}	CLK Low time	1.0	×	ns

- 1. The minimum READ pulse width is 5 ns, the maximum READ pulse width is 10 µs.
- 2. The numbers in this table are based on the operating conditions set forth in Table 8.

Master Serial and Slave Serial Mode Timing

DS312-3_05_103105

Figure 12: Waveforms for Master Serial and Slave Serial Configuration

Table 5	50:	Timing	for the	e Master	Serial	and Slave	Serial	Configu	uration	Modes
---------	-----	--------	---------	----------	--------	-----------	--------	---------	---------	-------

			Slave/	All Spee	d Grades	
Symbol	Descri	ption	Master	Min	Max	Units
Clock-to-Ou	utput Times					
T _{CCO}	The time from the falling transition on the DOUT pin	ne CCLK pin to data appearing at the	Both	1.5	10	ns
Setup Time	S					
T _{DCC}	The time from the setup of data at the CCLK pin	DIN pin to the rising transition at the	Both	7	-	ns
Hold Times						
T _{CCD}	The time from the rising transition at th	Master	0		ns	
	last held at the DIN pin		Slave	1.0	_	
Clock Timir	ng					
Т _{ССН}	High pulse width at the CCLK input pi	n	Master	Se	ee Table 48	
			Slave	Se	ee Table 49	
T _{CCL}	Low pulse width at the CCLK input pir	1	Master	· See Table 48		
			Slave	Se	ee Table 49	
F _{CCSER}	Frequency of the clock signal at the	No bitstream compression	Slave	0	100	MHz
		With bitstream compression		0	100	MHz

- 1. The numbers in this table are based on the operating conditions set forth in Table 8.
- 2. For serial configuration with a daisy-chain of multiple FPGAs, the maximum limit is 25 MHz.

Type / Color Code	Description	Pin Name(s) in Type
PWR MGMT	Control and status pins for the power-saving Suspend mode. SUSPEND is a dedicated pin and is powered by V_{CCAUX} . AWAKE is a dual-purpose pin. Unless Suspend mode is enabled in the application, AWAKE is available as a user-I/O pin.	SUSPEND, AWAKE
JTAG	Dedicated JTAG pin - 4 per device. Not available as a user-I/O pin. Every package has four dedicated JTAG pins. These pins are powered by VCCAUX.	TDI, TMS, TCK, TDO
GND	Dedicated ground pin. The number of GND pins depends on the package used. All must be connected.	GND
VCCAUX	Dedicated auxiliary power supply pin. The number of VCCAUX pins depends on the package used. All must be connected. V_{CCAUX} can be either 2.5V or 3.3V. Set on board and using CONFIG VCCAUX constraint.	VCCAUX
VCCINT	Dedicated internal core logic power supply pin. The number of VCCINT pins depends on the package used. All must be connected to +1.2V.	VCCINT
VCCO	Along with all the other VCCO pins in the same bank, this pin supplies power to the output buffers within the I/O bank and sets the input threshold voltage for some I/O standards. All must be connected.	VCCO_#
N.C.	This package pin is not connected in this specific device/package combination but may be connected in larger devices in the same package.	N.C.

Notes:

1. # = I/O bank number, an integer between 0 and 3.

Package Pins by Type

Each package has three separate voltage supply inputs—VCCINT, VCCAUX, and VCCO—and a common ground return, GND. The numbers of pins dedicated to these functions vary by package, as shown in Table 58.

TADIE 36. Power and Ground Subdiv Pins by Packad	Table	58:	Power and	Ground	Supply	Pins by	/ Package
--	-------	-----	-----------	--------	--------	---------	-----------

Package	VCCINT	VCCAUX	VCCO	GND
VQ100	4	3	6	13
TQ144	4	4	8	13
FT256 (50A/200A/400A)	6	4	16	28
FT256 (700A/1400A)	15	10	13	50
FG320	6	8	16	32
FG400	9	8	22	43
FG484	15	10	24	53
FG676	23	14	36	77

A majority of package pins are user-defined I/O or input pins. However, the numbers and characteristics of these I/O depend on the device type and the package in which it is available, as shown in Table 59. The table shows the maximum number of single-ended I/O pins available, assuming that all I/O-, INPUT-, DUAL-, VREF-, and CLK-type pins are used as general-purpose I/O. AWAKE is counted here as a dual-purpose I/O pin. Likewise, the table shows the maximum number of differential pin-pairs available on the package. Finally, the table shows how the total maximum user-I/Os are distributed by pin type, including the number of unconnected—N.C.—pins on the device.

Not all I/O standards are supported on all I/O banks. The left and right banks (I/O banks 1 and 3) support higher output drive current than the top and bottom banks (I/O banks 0 and 2). Similarly, true differential output standards, such as LVDS, RSDS, PPDS, miniLVDS, and TMDS, are only supported in the top or bottom banks (I/O banks 0 and 2). Inputs are unrestricted. For more details, see the chapter *"Using I/O Resources"* in UG331.

Package Overview

Table 60 shows the six low-cost, space-saving production package styles for the Spartan-3A family.

Table	60:	Spartan-3A	Family	Package	Options
-------	-----	------------	--------	---------	---------

Package	Leads	Туре	Maximum I/O	Lead Pitch (mm)	Body Area (mm)	Height (mm)	Mass ⁽¹⁾ (g)
VQ100 / VQG100	100	Very Thin Quad Flat Pack (VQFP)	68	0.5	14 x 14	1.20	0.6
TQ144 / TQG144	144	Thin Quad Flat Pack (TQFP)	108	0.5	20 x 20	1.60	1.4
FT256 / FTG256	256	Fine-pitch Thin Ball Grid Array (FBGA)	195	1.0	17 x 17	1.55	0.9
FG320 / FGG320	320	Fine-pitch Ball Grid Array (FBGA)	251	1.0	19 x 19	2.00	1.4
FG400 / FGG400	400	Fine-pitch Ball Grid Array (FBGA)	311	1.0	21 x 21	2.43	2.2
FG484 / FGG484	484	Fine-pitch Ball Grid Array (FBGA)	375	1.0	23 x 23	2.60	2.2
FG676 / FGG676	676	Fine-pitch Ball Grid Array (FBGA)	502	1.0	27 x 27	2.60	3.4

Notes:

1. Package mass is $\pm 10\%$.

Each package style is available in an environmentally friendly lead-free (Pb-free) option. The Pb-free packages include an extra 'G' in the package style name. For example, the standard "CS484" package becomes "CSG484" when ordered as the Pb-free option. The mechanical dimensions of the standard and Pb-free packages are similar, as shown in the mechanical drawings provided in Table 61.

For additional package information, see <u>UG112</u>: *Device Package User Guide*.

Mechanical Drawings

Detailed mechanical drawings for each package type are available from the Xilinx web site at the specified location in Table 61.

Material Declaration Data Sheets (MDDS) are also available on the Xilinx web site for each package.

Table	61:	Xilinx	Package	Documentation
-------	-----	--------	---------	---------------

Package	Drawing	MDDS
VQ100	Package Drawing	PK173_VQ100
VQG100		PK130_VQG100
TQ144	Package Drawing	PK169_TQ144
TQG144		PK126_TQG144
FT256	Package Drawing	PK158_FT256
FTG256		PK115_FTG256
FG320	Package Drawing	PK152_FG320
FGG320		PK106_FGG320
FG400	Package Drawing	PK182_FG400
FGG400		PK108_FGG400
FG484	Package Drawing	PK183_FG484
FGG484		PK110_FGG484
FG676	Package Drawing	PK155_FG676
FGG676		PK111_FGG676

VQ100: 100-lead Very Thin Quad Flat Package

The XC3S50A and XC3S200 are available in the 100-lead very thin quad flat package, VQ100.

Table 63 lists all the package pins. They are sorted by bank number and then by pin name. Pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier.

The VQ100 does not support Suspend mode (SUSPEND and AWAKE are not connected), the address output pins for the Byte-wide Peripheral Interface (BPI) configuration mode, or daisy chain configuration (DOUT is not connected).

Table 63 also indicates that some differential I/O pairs havedifferent assignments between the XC3S50A and theXC3S200A, highlighted in light blue. See "FootprintMigration Differences," page 72 for additional information.

An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at

www.xilinx.com/support/documentation/data_sheets/ s3a_pin.zip.

Pinout Table

Table 63:	Spartan-3A VQ100 Pinout		
Bank	Pin Name	Pin	Туре
0	IO_0/GCLK11	P90	CLK
0	IO_L01N_0	P78	IO
0	IO_L01P_0/VREF_0	P77	VREF
0	IO_L02N_0/GCLK5	P84	CLK
0	IO_L02P_0/GCLK4	P83	CLK
0	IO_L03N_0/GCLK7	P86	CLK
0	IO_L03P_0/GCLK6	P85	CLK
0	IO_L04N_0/GCLK9	P89	CLK
0	IO_L04P_0/GCLK8	P88	CLK
0	IO_L05N_0	P94	IO
0	IO_L05P_0	P93	IO
0	IO_L06N_0/PUDC_B	P99	DUAL
0	IO_L06P_0/VREF_0	P98	VREF
0	IP_0	P97	IP
0	IP_0/VREF_0	P82	VREF
0	VCCO_0	P79	VCCO
0	VCCO_0	P96	VCCO
1	IO_L01N_1	P57	IO
1	IO_L01P_1	P56	IO
1	IO_L02N_1/RHCLK1	P60	CLK

1	IO_L02P_1/RHCLK0	P59	CLK
1	IO_L03N_1/TRDY1/RHCLK3	P62	CLK
1	IO_L03P_1/RHCLK2	P61	CLK
1	IO_L04N_1/RHCLK7	P65	CLK
1	IO_L04P_1/IRDY1/RHCLK6	P64	CLK
1	IO_L05N_1	P71	IO
1	IO_L05P_1	P70	IO
1	IO_L06N_1	P73	ю
1	IO_L06P_1	P72	ю
1	IP_1/VREF_1	P68	VREF
1	VCCO_1	P67	VCCO
2	IO_2/MOSI/CSI_B	P46	DUAL
2	IO_L01N_2/M0	P25	DUAL
2	IO_L01P_2/M1	P23	DUAL
2	IO_L02N_2/CSO_B	P27	DUAL
2	IO_L02P_2/M2	P24	DUAL
2	IO_L03N_2/VS1 (3S50A) IO_L04P_2/VS1 (3S200A)	P30	DUAL
2	IO_L03P_2/RDWR_B	P28	DUAL
2	IO_L04N_2/VS0	P31	DUAL
2	IO_L04P_2/VS2 (3S50A) IO_L03N_2/VS2 (3S200A)	P29	DUAL
2	IO_L05N_2/D7 (3S50A) IO_L06P_2/D7 (3S200A)	P34	DUAL
2	IO_L05P_2	P32	ю
2	IO_L06N_2/D6	P35	DUAL
2	IO_L06P_2 (3S50A) IO_L05N_2 (3S200A)	P33	IO
2	IO_L07N_2/D4	P37	DUAL
2	IO_L07P_2/D5	P36	DUAL
2	IO_L08N_2/GCLK15	P41	CLK
2	IO_L08P_2/GCLK14	P40	CLK
2	IO_L09N_2/GCLK1	P44	CLK
2	IO_L09P_2/GCLK0	P43	CLK
2	IO_L10N_2/D3	P49	DUAL
2	IO_L10P_2/INIT_B	P48	DUAL
2	IO_L11N_2/D0/DIN/MISO (3S50A) IO_L12P_2/D0/DIN/MISO (3S200A)	P51	DUAL
2	IO_L11P_2/D2	P50	DUAL
2	IO_L12N_2/CCLK	P53	DUAL

Table 63: Spartan-3A VQ100 Pinout(Continued)

r			
2	IO_L12P_2/D1 (3S50A) IO_L11N_2/D1 (3S200A)	P52	DUAL
2	IP_2/VREF_2	P39	VREF
2	VCCO_2	P26	VCCO
2	VCCO_2	P45	VCCO
3	IO_L01N_3	P4	IO
3	IO_L01P_3	P3	IO
3	IO_L02N_3	P6	IO
3	IO_L02P_3	P5	Ю
3	IO_L03N_3/LHCLK1	P10	CLK
3	IO_L03P_3/LHCLK0	P9	CLK
3	IO_L04N_3/IRDY2/LHCLK3	P13	CLK
3	IO_L04P_3/LHCLK2	P12	CLK
3	IO_L05N_3/LHCLK7	P16	CLK
3	IO_L05P_3/TRDY2/LHCLK6	P15	CLK
3	IO_L06N_3	P20	IO
3	IO_L06P_3	P19	IO
3	IP_3	P21	IP
3	IP_3/VREF_3	P7	VREF
3	VCCO_3	P11	VCCO
GND	GND	P14	GND
GND	GND	P18	GND
GND	GND	P42	GND
GND	GND	P47	GND
GND	GND	P58	GND
GND	GND	P63	GND
GND	GND	P69	GND
GND	GND	P74	GND
GND	GND	P8	GND
GND	GND	P80	GND
GND	GND	P87	GND
GND	GND	P91	GND
GND	GND	P95	GND
VCCAUX	DONE	P54	CONFIG
VCCAUX	PROG_B	P100	CONFIG
VCCAUX	ТСК	P76	JTAG
VCCAUX	TDI	P2	JTAG
VCCAUX	TDO	P75	JTAG
VCCAUX	TMS	P1	JTAG
VCCAUX	VCCAUX	P22	VCCAUX
VCCAUX	VCCAUX	P55	VCCAUX
VCCAUX	VCCAUX	P92	VCCAUX

Table 63: Spartan-3A VQ100 Pinout(Continued)

VCCINT	VCCINT	P17	VCCINT
VCCINT	VCCINT	P38	VCCINT
VCCINT	VCCINT	P66	VCCINT
VCCINT	VCCINT	P81	VCCINT

Table 68: Spartan-3A FT256 Pinout (XC3S50A, XC3S200A, XC3S400) (Continued)

Bank	XC3S50A	XC3S200A XC3S400A	FT256 Ball	Туре
0	IO_L17P_0	IO_L17P_0	A5	I/O
0	IO_L18N_0	IO_L18N_0	B4	I/O
0	IO_L18P_0	IO_L18P_0	A4	I/O
0	IO_L19N_0	IO_L19N_0	B3	I/O
0	IO_L19P_0	IO_L19P_0	A3	I/O
0	IO_L20N_0/ PUDC_B	IO_L20N_0/ PUDC_B	D5	DUAL
0	IO_L20P_0/ VREF_0	IO_L20P_0/ VREF_0	C4	VREF
0	IP_0	IP_0	D6	INPUT
0	IP_0	IP_0	D12	INPUT
0	IP_0	IP_0	E6	INPUT
0	IP_0	IP_0	F7	INPUT
0	IP_0	IP_0	F9	INPUT
0	IP_0	IP_0	F10	INPUT
0	IP_0/VREF_0	IP_0/VREF_0	E9	VREF
0	VCCO_0	VCCO_0	B5	VCCO
0	VCCO_0	VCCO_0	B9	VCCO
0	VCCO_0	VCCO_0	B13	VCCO
0	VCCO_0	VCCO_0	E8	VCCO
1	IO_L01N_1/ LDC2	IO_L01N_1/ LDC2	N14	DUAL
1	IO_L01P_1/ HDC	IO_L01P_1/ HDC	N13	DUAL
1	IO_L02N_1/ LDC0	IO_L02N_1/ LDC0	P15	DUAL
1	IO_L02P_1/ LDC1	IO_L02P_1/ LDC1	R15	DUAL
1	IO_L03N_1	IO_L03N_1/A1	N16	DUAL
1	IO_L03P_1	IO_L03P_1/A0	P16	DUAL
1	N.C. (♦)	IO_L05N_1/ VREF_1	M14	VREF
1	N.C. (♠)	IO_L05P_1	M13	I/O
1	N.C. (�)	IO_L06N_1/A3	K13	DUAL
1	N.C. (�)	IO_L06P_1/A2	L13	DUAL
1	N.C. (�)	IO_L07N_1/A5	M16	DUAL
1	N.C. (♦)	IO_L07P_1/A4	M15	DUAL
1	N.C. (♦)	IO_L08N_1/A7	L16	DUAL
1	N.C. (♦)	IO_L08P_1/A6	L14	DUAL
1	IO_L10N_1	IO_L10N_1/A9	J13	DUAL
1	IO_L10P_1	IO_L10P_1/A8	J12	DUAL
1	IO_L11N_1/ RHCLK1	IO_L11N_1/ RHCLK1	K14	RHCLK
1	IO_L11P_1/ RHCLK0	IO_L11P_1/ RHCLK0	K15	RHCLK

Table 68: Spartan-3A FT256 Pinout (XC3S50A, XC3S200A, XC3S400) (Continued)

Bank	XC3S50A	XC3S200A XC3S400A	FT256 Ball	Туре
1	IO_L12N_1/ TRDY1/RHCLK3	IO_L12N_1/ TRDY1/RHCLK3	J16	RHCLK
1	IO_L12P_1/ RHCLK2	IO_L12P_1/ RHCLK2	K16	RHCLK
1	IO_L14N_1/ RHCLK5	IO_L14N_1/ RHCLK5	H14	RHCLK
1	IO_L14P_1/ RHCLK4	IO_L14P_1/ RHCLK4	J14	RHCLK
1	IO_L15N_1/ RHCLK7	IO_L15N_1/ RHCLK7	H16	RHCLK
1	IO_L15P_1/ IRDY1/RHCLK6	IO_L15P_1/ IRDY1/RHCLK6	H15	RHCLK
1	N.C. (♦)	IO_L16N_1/A11	F16	DUAL
1	N.C. (♦)	IO_L16P_1/A10	G16	DUAL
1	N.C. (♦)	IO_L17N_1/A13	G14	DUAL
1	N.C. (♦)	IO_L17P_1/A12	H13	DUAL
1	N.C. (♦)	IO_L18N_1/A15	F15	DUAL
1	N.C. (♦)	IO_L18P_1/A14	E16	DUAL
1	N.C. (♦)	IO_L19N_1/A17	F14	DUAL
1	N.C. (♦)	IO_L19P_1/A16	G13	DUAL
1	IO_L20N_1	IO_L20N_1/A19	F13	DUAL
1	IO_L20P_1	IO_L20P_1/A18	E14	DUAL
1	IO_L22N_1	IO_L22N_1/A21	D15	DUAL
1	IO_L22P_1	IO_L22P_1/A20	D16	DUAL
1	IO_L23N_1	IO_L23N_1/A23	D14	DUAL
1	IO_L23P_1	IO_L23P_1/A22	E13	DUAL
1	IO_L24N_1	IO_L24N_1/A25	C15	DUAL
1	IO_L24P_1	IO_L24P_1/A24	C16	DUAL
1	IP_L04N_1/ VREF_1	IP_L04N_1/ VREF_1	K12	VREF
1	IP_L04P_1	IP_L04P_1	K11	INPUT
1	N.C. (♦)	IP_L09N_1	J11	INPUT
1	N.C. (�)	IP_L09P_1/ VREF_1	J10	VREF
1	IP_L13N_1	IP_L13N_1	H11	INPUT
1	IP_L13P_1	IP_L13P_1	H10	INPUT
1	IP_L21N_1	IP_L21N_1	G11	INPUT
1	IP_L21P_1/ VREF_1	IP_L21P_1/ VREF_1	G12	VREF
1	IP_L25N_1	IP_L25N_1	F11	INPUT
1	IP_L25P_1/ VREF_1	IP_L25P_1/ VREF_1	F12	VREF
1	VCCO_1	VCCO_1	E15	VCCO
1	VCCO_1	VCCO_1	H12	VCCO
1	VCCO_1	VCCO_1	J15	VCCO
1	VCCO_1	VCCO_1	N15	VCCO

Table 69: Spartan-3A FT256 Pinout (XC3S700A,

Bank	XC3S700A XC3S1400A	FT256 Ball	Туре
VCCAUX	VCCAUX	F5	VCCAUX
VCCAUX	VCCAUX	H14	VCCAUX
VCCAUX	VCCAUX	H4	VCCAUX
VCCAUX	VCCAUX	L12	VCCAUX
VCCAUX	VCCAUX	L5	VCCAUX
VCCAUX	VCCAUX	M10	VCCAUX
VCCAUX	VCCAUX	M6	VCCAUX
VCCINT	VCCINT	F10	VCCINT
VCCINT	VCCINT	G11	VCCINT
VCCINT	VCCINT	G7	VCCINT
VCCINT	VCCINT	G9	VCCINT
VCCINT	VCCINT	H10	VCCINT
VCCINT	VCCINT	H6	VCCINT
VCCINT	VCCINT	H8	VCCINT
VCCINT	VCCINT	J11	VCCINT
VCCINT	VCCINT	J7	VCCINT
VCCINT	VCCINT	J9	VCCINT
VCCINT	VCCINT	K10	VCCINT
VCCINT	VCCINT	K6	VCCINT
VCCINT	VCCINT	K8	VCCINT
VCCINT	VCCINT	L7	VCCINT
VCCINT	VCCINT	L9	VCCINT

Table 77: Spartan-3A FG320 Pinout(Continued)

Bank	Pin Name	FG320 Ball	Туре
2	IO_L02N_2/CSO_B	V3	DUAL
2	IO_L02P_2/M2	V2	DUAL
2	IO_L03N_2/VS2	U4	DUAL
2	IO_L03P_2/RDWR_B	T4	DUAL
2	IO_L04N_2	T5	I/O
2	IO_L04P_2	R5	I/O
2	IO_L05N_2/VS0	V5	DUAL
2	IO_L05P_2/VS1	V4	DUAL
2	IO_L06N_2	U6	I/O
2	IO_L06P_2	Т6	I/O
2	IO_L07N_2	P8	I/O
2	IO_L07P_2	N8	I/O
2	IO_L08N_2/D6	T7	DUAL
2	IO_L08P_2/D7	R7	DUAL
2	IO_L09N_2	R9	I/O
2	IO_L09P_2	Т8	I/O
2	IO_L10N_2/D4	V6	DUAL
2	IO_L10P_2/D5	U7	DUAL
2	IO_L11N_2/GCLK13	V8	GCLK
2	IO_L11P_2/GCLK12	U8	GCLK
2	IO_L12N_2/GCLK15	V9	GCLK
2	IO_L12P_2/GCLK14	U9	GCLK
2	IO_L13N_2/GCLK1	T10	GCLK
2	IO_L13P_2/GCLK0	U10	GCLK
2	IO_L14N_2/GCLK3	U11	GCLK
2	IO_L14P_2/GCLK2	V11	GCLK
2	IO_L15N_2	R10	I/O
2	IO_L15P_2	P10	I/O
2	IO_L16N_2/MOSI/CSI_B	T11	DUAL
2	IO_L16P_2	R11	I/O
2	IO_L17N_2	V13	I/O
2	IO_L17P_2	U12	I/O
2	IO_L18N_2/DOUT	U13	DUAL
2	IO_L18P_2/AWAKE	T12	PWR MGMT
2	IO_L19N_2	P12	I/O
2	IO_L19P_2	N12	I/O
2	IO_L20N_2/D3	R13	DUAL
2	IO_L20P_2/INIT_B	T13	DUAL
2	IO_L21N_2	T14	I/O

Table 77: Spartan-3A FG320 Pinout(Continued)

Bank	Pin Name	FG320 Ball	Туре	
2	IO_L21P_2	V14	I/O	
2	IO_L22N_2/D1	U15	DUAL	
2	IO_L22P_2/D2	V15	DUAL	
2	IO_L23N_2	T15	I/O	
2	IO_L23P_2	R14	I/O	
2	IO_L24N_2/CCLK	U16	DUAL	
2	IO_L24P_2/D0/DIN/MISO	V16	DUAL	
2	IP_2	M8	INPUT	
2	IP_2	M9	INPUT	
2	IP_2	M12	INPUT	
2	XC3S400A: IP_2 XC3S200A: N.C. (♦)	N7	INPUT	
2	IP_2	N9	INPUT	
2	IP_2	N11	INPUT	
2	IP_2	R6	INPUT	
2	IP_2/VREF_2	M11	VREF	
2	IP_2/VREF_2	N10	VREF	
2	IP_2/VREF_2	P6	VREF	
2	IP_2/VREF_2	P7	VREF	
2	IP_2/VREF_2	P9	VREF	
2	IP_2/VREF_2	P13	VREF	
2	<i>XC3S400A:</i> IP_2/VREF_2 <i>XC3S200A:</i> N.C. (♦)	P14	VREF	
2	VCCO_2	P11	VCCO	
2	VCCO_2	R8 VCCC		
2	VCCO_2	'CCO_2 U5 VC		
2	VCCO_2	U14 VCC		
3	IO_L01N_3	C1	I/O	
3	IO_L01P_3	C2	I/O	
3	IO_L02N_3	B1	I/O	
3	IO_L02P_3	B2	I/O	
3	IO_L03N_3	D2	I/O	
3	IO_L03P_3	D3	I/O	
3	IO_L05N_3	G5	I/O	
3	IO_L05P_3	F5	I/O	
3	IO_L06N_3	E3	I/O	
3	IO_L06P_3	F4	I/O	
3	IO_L07N_3	E1	I/O	
3	IO_L07P_3	D1	I/O	
3	IO_L09N_3	G4	I/O	
3	IO_L09P_3	F3	I/O	

I			1	Bank ()						
12	13	14	15	16	17	18	19	20	21	22	1
I/O L18P_0 GCLK6	I/O L16N_0	I/O L13N_0	L12N_0 VREF_0	I/O L12P_0	I/O L10N_0	I/O L05N_0	I/O L06N_0	I/O L03N_0	тск	GND	Α
GND	I/O L16P_0	VCCO_0	I/O L13P_0	GND	I/O L10P_0	VCCO_0	I/O L06P_0 VREF_0	I/O L03P_0	I/O L45N_1 A23	I/O L45P_1 A22	в
I/O L17P_0 GCLK4	I/O L15N_0	I/O L09P_0	I/O L11N_0	I/O L08N_0	I/O L07N_0	I/O L05P_0	I/O L02N_0	GND	I/O L44N_1 A21	I/O L44P_1 A20	с
VCCAUX	I/O L15P_0	GND	I/O L11P_0	I/O L08P_0	I/O L07P_0	I/O L01N_0	I/O L02P_0 VREF_0	I/O L42N_1	I/O L42P_1	I/O L41N_1	D
I/O L17N_0 GCLK5	I/O L14N_0	I/O L09N_0	I/O L04P_0	INPUT	I/O L01P_0	VCCAUX	TDO	I/O L38P_1	VCCO_1	I/O L41P_1	E
INPUT	I/O L14P_0	VCCO_0	I/O L04N_0	INPUT	GND	I/O L40N_1	I/O L40P_1	I/O L38N_1	I/O L34N_1 A19	I/O L34P_1 A18	F
INPUT	INPUT	INPUT	INPUT	INPUT	I/O L46N_1 A25	I/O L46P_1 A24	I/O L36P_1	I/O L36N_1	GND	I/O L30N_1 A15	G
INPUT VREF_0	INPUT	INPUT	INPUT L47N_1	INPUT L47P_1 VREF_1	INPUT L39P_1	INPUT L39N_1	I/O L37N_1	I/O L33N_1 A17	I/O L33P_1 A16	I/O L30P_1 A14	н
VCCINT	GND	GND	INPUT L43N_1 VREF_1	INPUT L43P_1	VCCO_1	I/O L37P_1	GND	I/O L29N_1 A13	I/O L29P_1 A12	I/O L26N_1 A11	J
GND	VCCINT	INPUT L35P_1 VREF_1	INPUT L35N_1	INPUT L31N_1	I/O L32P_1	I/O L32N_1	I/O L25N_1 RHCLK7	I/O L25P_1 IRDY1 RHCLK6	VCCO_1	I/O L26P_1 A10	к
VCCINT	GND	VCCINT	INPUT L31P_1	INPUT L27N_1	GND	I/O L28P_1	I/O L28N_1	I/O L22N_1 TRDY1 RHCLK3	I/O L22P_1 RHCLK2	I/O L21N_1 RHCLK1	r 1
GND	VCCINT	GND	INPUT L27P_1 VREF_1	INPUT L23N_1	INPUT L23P_1	I/O L24P_1 RHCLK4	VCCAUX	I/O L24N_1 RHCLK5	GND	I/O L21P_1 RHCLK0	ы Вал
VCCINT	GND	VCCINT	INPUT L16P_1	INPUT L16N_1 VREF_1	I/O L20N_1 A9	I/O L20P_1 A8	I/O L19N_1 A7	I/O L19P_1 A6	I/O L18N_1 A5	I/O L18P_1 A4	N
INPUT	VCCINT	GND	INPUT L08P_1	INPUT L08N_1	VCCO_1	I/O L17N_1 A3	GND	I/O L15P_1	VCCO_1	I/O L15N_1 VREF_1	Ρ
INPUT VREF_2	INPUT VREF_2	INPUT VREF_2	INPUT L04P_1	INPUT L04N_1 VREF_1	INPUT L12P_1	INPUT L12N_1 VREF_1	I/O L17P_1 A2	I/O L13P_1	I/O L14P_1	I/O L14N_1	R
GND	INPUT	INPUT	INPUT VREF_2	INPUT VREF_2	I/O L03P_1 A0	I/O L03N_1 A1	I/O L13N_1	I/O L11P_1	GND	I/O L11N_1	т
I/O L20N_2 GCLK3	I/O L26N_2 D3	VCCO_2	INPUT	INPUT	GND	SUSPEND	I/O L10N_1	I/O L10P_1	I/O L09N_1	I/O L09P_1	U
I/O L20P_2 GCLK2	I/O L26P_2 INIT_B	I/O L30P_2	I/O L30N_2	I/O L31N_2	I/O L33N_2	VCCAUX	I/O L06P_1	I/O L06N_1	VCCO_1	I/O L07N_1	v
I/O L18P_2 GCLK14	I/O L23P_2	GND	I/O L25P_2	I/O L31P_2	I/O L34N_2	I/O L33P_2	I/O L02P_1 LDC1	I/O L02N_1 LDC0	I/O L05N_1	I/O L07P_1	w
I/O L18N_2 GCLK15	I/O L21N_2	I/O L23N_2	I/O L25N_2	I/O L27N_2	I/O L28N_2 D1	I/O L34P_2	DONE	GND	I/O L01N_1 LDC2	I/O L05P_1	Y
I/O L19P_2 GCLK0	VCCO_2	I/O L22P_2	I/O L24N_2 DOUT	GND	I/O L28P_2 D2	VCCO_2	I/O L32N_2	I/O L36N_2 CCLK	I/O L35N_2	I/O L01P_1 HDC	A A
I/O L19N_2 GCLK1	I/O L21P_2	I/O L22N_2 MOSI CSI_B	I/O L24P_2 AWAKE	I/O L27P_2	I/O L29P_2	I/O L29N_2	I/O L32P_2	I/O L36P_2 D0 DIN/MISO	I/O L35P_2	GND	А В
Bank 2						DS529-4	02_012009				

DS529-4_02_012009

Figure 26:

Right Half of FG484 Package (Top View)

Table 87: Spartan-3A FG676 Pinout(Continued)

Bank	Pin Name	FG676 Ball	Туре	
2	IP_2	AD10	INPUT	
2	IP_2	AD16	INPUT	
2	IP_2	AF2	INPUT	
2	IP_2	AF7	INPUT	
2	IP_2	Y11	INPUT	
2	IP_2/VREF_2	AA9	VREF	
2	IP_2/VREF_2	AA20	VREF	
2	IP_2/VREF_2	AB6	VREF	
2	IP_2/VREF_2	AB10	VREF	
2	IP_2/VREF_2	AC10	VREF	
2	IP_2/VREF_2	AD12	VREF	
2	IP_2/VREF_2	AF15	VREF	
2	IP_2/VREF_2	AF17	VREF	
2	IP_2/VREF_2	AF22	VREF	
2	IP_2/VREF_2	Y16	VREF	
2	N.C. (�)	AA8	N.C.	
2	N.C. (♦)	AC5	N.C.	
2	N.C. (♦)	AC22	N.C.	
2	N.C. (♦)	AD5	N.C.	
2	N.C. (♦)	Y18	N.C.	
2	N.C. (♦)	Y19	N.C.	
2	N.C. (♦)	AD23		
2	N.C. (♦)	W18	N.C.	
2	N.C. (♦)	Y8	N.C.	
2	VCCO_2	AB8	VCCO	
2	VCCO_2	AB14	VCCO	
2	VCCO_2	AB19	VCCO	
2	VCCO_2	AE5	VCCO	
2	VCCO_2	AE11	vcco	
2	VCCO_2	AE16	VCCO	
2	VCCO_2	AE22	VCCO	
2	VCCO_2	W11	vcco	
2	VCCO_2	W16	VCCO	
3	IO_L01N_3	J9	I/O	
3	IO_L01P_3	J8	I/O	
3	IO_L02N_3	B1	I/O	
3	IO_L02P_3	B2	I/O	
3	IO_L03N_3	H7	I/O	
3	IO_L03P_3	G6	I/O	
3	IO_L05N_3	K8	I/O	

Table 87: Spartan-3A FG676 Pinout(Continued)

Bank	Pin Name	FG676 Ball	Туре
3	IO_L05P_3	K9	I/O
3	IO_L06N_3	E4	I/O
3	IO_L06P_3	D3	I/O
3	IO_L07N_3	F4	I/O
3	IO_L07P_3	E3	I/O
3	IO_L09N_3	G4	I/O
3	IO_L09P_3	F5	I/O
3	IO_L10N_3	H6	I/O
3	IO_L10P_3	J7	I/O
3	IO_L11N_3	F2	I/O
3	IO_L11P_3	E1	I/O
3	IO_L13N_3	J6	I/O
3	IO_L13P_3	K7	I/O
3	IO_L14N_3	F3	I/O
3	IO_L14P_3	G3	I/O
3	IO_L15N_3	L9	I/O
3	IO_L15P_3	L10	I/O
3	IO_L17N_3	H1	I/O
3	IO_L17P_3	H2	I/O
3	IO_L18N_3	L7	I/O
3	IO_L18P_3	K6	I/O
3	IO_L19N_3	J4	I/O
3	IO_L19P_3	J5	I/O
3	IO_L21N_3	M9	I/O
3	IO_L21P_3	M10	I/O
3	IO_L22N_3	K4	I/O
3	IO_L22P_3	K5	I/O
3	IO_L23N_3	K2	I/O
3	IO_L23P_3	K3	I/O
3	IO_L25N_3	L3	I/O
3	IO_L25P_3	L4	I/O
3	IO_L26N_3	M7	I/O
3	IO_L26P_3	M8	I/O
3	IO_L27N_3	М3	I/O
3	IO_L27P_3	M4	I/O
3	IO_L28N_3	M6	I/O
3	IO_L28P_3	M5	I/O
3	IO_L29N_3/VREF_3	M1	VREF
3	IO_L29P_3	M2	I/O
3	IO_L30N_3	N4	I/O