

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	2816
Number of Logic Elements/Cells	25344
Total RAM Bits	589824
Number of I/O	375
Number of Gates	1400000
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	484-BBGA
Supplier Device Package	484-FBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc3s1400a-5fg484c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

External Termination Requirements for Differential I/O

LVDS, RSDS, MINI_LVDS, and PPDS I/O Standards

Figure 6: External Input Termination for LVDS, RSDS, MINI_LVDS, and PPDS I/O Standards

BLVDS_25 I/O Standard

Figure 7: External Output and Input Termination Resistors for BLVDS_25 I/O Standard

TMDS_33 I/O Standard

Figure 8: External Input Resistors Required for TMDS_33 I/O Standard

Device DNA Read Endurance

Table 15: Device DNA Identifier Memory Characteristics

Symbol	Description	Minimum	Units
DNA_CYCLES	Number of READ operations or JTAG ISC_DNA read operations. Unaffected by HOLD or SHIFT operations.	30,000,000	Read cycles

Input Setup and Hold Times

Table 20: Setup and Hold Times for the IOB Input Path

					Speed Grade		
					-5	-4	
Symbol	Description	Conditions	VALUE	Device	Min	Min	Units
Setup Times							
TIOPICK	Time from the setup of data at the	LVCMOS25 ⁽²⁾	0	XC3S50A	1.56	1.58	ns
	ICLK input of the Input Flip-Flop (IFF).			XC3S200A	1.71	1.81	ns
	No Input Delay is programmed.			XC3S400A	1.30	1.51	ns
				XC3S700A	1.34	1.51	ns
				XC3S1400A	1.36	1.74	ns
T _{IOPICKD}	Time from the setup of data at the	LVCMOS25 ⁽²⁾	1	XC3S50A	2.16	2.18	ns
	ICLK input of the Input Flip-Flop (IFF).		2		3.10	3.12	ns
	The Input Delay is programmed.		3		3.51	3.76	ns
			4		4.04	4.32	ns
			5		3.88	4.24	ns
			6	-	4.72	5.09	ns
			7		5.47	5.94	ns
			8		5.97	6.52	ns
			1	XC3S200A	2.05	2.20	ns
			2	-	2.72	2.93	ns
			3		3.38	3.78	ns
			4		3.88	4.37	ns
			5		3.69	4.20	ns
			6		4.56	5.23	ns
			7		5.34	6.11	ns
			8		5.85	6.71	ns
			1	XC3S400A	1.79	2.02	ns
			2		2.43	2.67	ns
			3	-	3.02	3.43	ns
			4		3.49	3.96	ns
			5		3.41	3.95	ns
			6	1	4.20	4.81	ns
			7	1	4.96	5.66	ns
			8	1	5.44	6.19	ns

Using IBIS Models to Simulate Load Conditions in Application

IBIS models permit the most accurate prediction of timing delays for a given application. The parameters found in the IBIS model (V_{REF} , R_{REF} , and V_{MEAS}) correspond directly with the parameters used in Table 27 (V_T , R_T , and V_M). Do not confuse V_{REF} (the termination voltage) from the IBIS model with V_{REF} (the input-switching threshold) from the table. A fourth parameter, C_{REF} is always zero. The four parameters describe all relevant output test conditions. IBIS models are found in the Xilinx development software as well as at the following link:

www.xilinx.com/support/download/index.htm

Delays for a given application are simulated according to its specific load conditions as follows:

Simultaneously Switching Output Guidelines

This section provides guidelines for the recommended maximum allowable number of Simultaneous Switching Outputs (SSOs). These guidelines describe the maximum number of user I/O pins of a given output signal standard that should simultaneously switch in the same direction, while maintaining a safe level of switching noise. Meeting these guidelines for the stated test conditions ensures that the FPGA operates free from the adverse effects of ground and power bounce.

Ground or power bounce occurs when a large number of outputs simultaneously switch in the same direction. The output drive transistors all conduct current to a common voltage rail. Low-to-High transitions conduct to the V_{CCO} rail; High-to-Low transitions conduct to the GND rail. The resulting cumulative current transient induces a voltage difference across the inductance that exists between the die pad and the power supply or ground return. The inductance is associated with bonding wires, the package lead frame, and any other signal routing inside the package. Other variables contribute to SSO noise levels, including stray inductance on the PCB as well as capacitive loading at receivers. Any SSO-induced voltage consequently affects internal switching noise margins and ultimately signal quality.

- 1. Simulate the desired signal standard with the output driver connected to the test setup shown in Figure 9. Use parameter values V_T , R_T , and V_M from Table 27. C_{REF} is zero.
- 2. Record the time to V_{M} .
- 3. Simulate the same signal standard with the output driver connected to the PCB trace with load. Use the appropriate IBIS model (including V_{REF} , R_{REF} , C_{REF} , and V_{MEAS} values) or capacitive value to represent the load.
- 4. Record the time to V_{MEAS} .
- 5. Compare the results of steps 2 and 4. Add (or subtract) the increase (or decrease) in delay to (or from) the appropriate Output standard adjustment (Table 26) to yield the worst-case delay of the PCB trace.

Table 28 and Table 29 provide the essential SSO guidelines. For each device/package combination, Table 28 provides the number of equivalent V_{CCO} /GND pairs. The equivalent number of pairs is based on characterization and may not match the physical number of pairs. For each output signal standard and drive strength, Table 29 recommends the maximum number of SSOs, switching in the same direction, allowed per V_{CCO} /GND pair within an I/O bank. The guidelines in Table 29 are categorized by package style, slew rate, and output drive current. Furthermore, the number of SSOs is specified by I/O bank. Generally, the left and right I/O banks (Banks 1 and 3) support higher output drive current.

Multiply the appropriate numbers from Table 28 and Table 29 to calculate the maximum number of SSOs allowed within an I/O bank. Exceeding these SSO guidelines might result in increased power or ground bounce, degraded signal integrity, or increased system jitter.

SSO_{MAX}/IO Bank = Table 28 x Table 29

The recommended maximum SSO values assume that the FPGA is soldered on the printed circuit board and that the board uses sound design practices. The SSO values do not apply for FPGAs mounted in sockets, due to the lead inductance introduced by the socket.

The SSO values assume that the V_{CCAUX} is powered at 3.3V. Setting V_{CCAUX} to 2.5V provides better SSO characteristics.

The number of SSOs allowed for quad-flat packages (VQ/TQ) is lower than for ball grid array packages (FG) due to the larger lead inductance of the quad-flat packages. Ball grid array packages are recommended for applications with a large number of simultaneously switching outputs.

Digital Clock Manager (DCM) Timing

For specification purposes, the DCM consists of three key components: the Delay-Locked Loop (DLL), the Digital Frequency Synthesizer (DFS), and the Phase Shifter (PS).

Aspects of DLL operation play a role in all DCM applications. All such applications inevitably use the CLKIN and the CLKFB inputs connected to either the CLK0 or the CLK2X feedback, respectively. Thus, specifications in the DLL tables (Table 36 and Table 37) apply to any application that only employs the DLL component. When the DFS and/or the PS components are used together with the DLL, then the specifications listed in the DFS and PS tables (Table 38 through Table 41) supersede any corresponding ones in the DLL tables. DLL specifications that do not change with the addition of DFS or PS functions are presented in Table 36 and Table 37.

Period jitter and cycle-cycle jitter are two of many different ways of specifying clock jitter. Both specifications describe statistical variation from a mean value. Period jitter is the worst-case deviation from the ideal clock period over a collection of millions of samples. In a histogram of period jitter, the mean value is the clock period.

Cycle-cycle jitter is the worst-case difference in clock period between adjacent clock cycles in the collection of clock periods sampled. In a histogram of cycle-cycle jitter, the mean value is zero.

Spread Spectrum

DCMs accept typical spread spectrum clocks as long as they meet the input requirements. The DLL will track the frequency changes created by the spread spectrum clock to drive the global clocks to the FPGA logic. See <u>XAPP469</u>, *Spread-Spectrum Clocking Reception for Displays* for details.

Delay-Locked Loop (DLL)

Table 36: Recommended Operating Conditions for the DLL

				Speed Grade				
				-5		-4		
	Symbol	Descriptio	on	Min	Max	Min	Max	Units
Input Fre	equency Ranges							
F _{CLKIN}	CLKIN_FREQ_DLL	Frequency of the CLKIN cloc	ck input	5(2)	280 ⁽³⁾	5(2)	250 ⁽³⁾	MHz
Input Pu	Ise Requirements							
CLKIN_PULSE		CLKIN pulse width as a	F _{CLKIN} ≤ 150 MHz	40%	60%	40%	60%	-
		period	F _{CLKIN} > 150 MHz	45%	55%	45%	55%	_
Input Cl	ock Jitter Tolerance and	Delay Path Variation ⁽⁴⁾			1	L	L	1
CLKIN_C	CYC_JITT_DLL_LF	Cycle-to-cycle jitter at the	F _{CLKIN} ≤ 150 MHz	-	±300	-	±300	ps
CLKIN_C	CYC_JITT_DLL_HF		F _{CLKIN} > 150 MHz	-	±150	-	±150	ps
CLKIN_F	PER_JITT_DLL	Period jitter at the CLKIN inp	Period jitter at the CLKIN input		±1	-	±1	ns
CLKFB_	DELAY_VAR_EXT	T Allowable variation of off-chip feedback delay from the DCM output to the CLKFB input		-	±1	-	±1	ns

Notes:

1. DLL specifications apply when any of the DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, or CLKDV) are in use.

2. The DFS, when operating independently of the DLL, supports lower FCLKIN frequencies. See Table 38.

3. To support double the maximum effective FCLKIN limit, set the CLKIN_DIVIDE_BY_2 attribute to TRUE. This attribute divides the incoming clock frequency by two as it enters the DCM. The CLK2X output reproduces the clock frequency provided on the CLKIN input.

4. CLKIN input jitter beyond these limits might cause the DCM to lose lock.

5. The DCM specifications are guaranteed when both adjacent DCMs are locked.

Digital Frequency Synthesizer (DFS)

Table 38: Recommended Operating Conditions for the DFS

				Speed Grade				
			-5 -4			4		
	Symbol	Descriptior	Min	Max	Min	Max	Units	
Input Frequency Ranges ⁽²⁾								
F _{CLKIN}	CLKIN_FREQ_FX	Frequency for the CLKIN input		0.200	333 ⁽⁴⁾	0.200	333 ⁽⁴⁾	MHz
Input Cloc	k Jitter Tolerance ⁽³⁾							
CLKIN_CYC_JITT_FX_LF		Cycle-to-cycle jitter at the CLKIN	$F_{CLKFX} \le 150 \text{ MHz}$	-	±300	-	±300	ps
CLKIN_CYC_JITT_FX_HF		frequency	F _{CLKFX} > 150 MHz	-	±150	_	±150	ps
CLKIN_PER_JITT_FX Period jitter at the CLKIN input			-	±1	-	±1	ns	

Notes:

1. DFS specifications apply when either of the DFS outputs (CLKFX or CLKFX180) are used.

2. If both DFS and DLL outputs are used on the same DCM, follow the more restrictive CLKIN_FREQ_DLL specifications in Table 36.

3. CLKIN input jitter beyond these limits may cause the DCM to lose lock.

4. To support double the maximum effective FCLKIN limit, set the CLKIN_DIVIDE_BY_2 attribute to TRUE. This attribute divides the incoming clock frequency by two as it enters the DCM.

Table 39: Switching Characteristics for the DFS

				Speed Grade				
				-	5	-4		
Symbol	Description		Device	Min	Max	Min	Max	Units
Output Frequency Ranges								
CLKOUT_FREQ_FX ⁽²⁾	Frequency for the CLKFX and CLKFX180 or	utputs	All	5	350	5	320	MHz
Output Clock Jitter ^(3,4)								
CLKOUT_PER_JITT_FX	Period jitter at the CLKFX and CLKFX180		All	Тур	Max	Тур	Max	
	oupuis.	CLKIN ≤ 20 MHz		Use the Spartan-3A Jitter Calculator: www.xilinx.com/support/documentatio n/data_sheets/s3a_jitter_calc.zip			ps	
		CLKIN > 20 MHz		±[1% of CLKFX period + 100]	±[1% of CLKFX period + 200]	±[1% of CLKFX period + 100]	±[1% of CLKFX period + 200]	ps
Duty Cycle ^(5,6)	-	•						
CLKOUT_DUTY_CYCLE_FX	Duty cycle precision for the CLKFX and CLKFX180 outputs, including the BUFGMUX and clock tree duty-cycle distortion			-	±[1% of CLKFX period + 350]	-	±[1% of CLKFX period + 350]	ps
Phase Alignment ⁽⁶⁾								
CLKOUT_PHASE_FX	Phase offset between the DFS CLKFX outp CLK0 output when both the DFS and DLL a	ut and the DLL re used	All	-	±200	-	±200	ps
CLKOUT_PHASE_FX180	Phase offset between the DFS CLKFX180 or CLK0 output when both the DFS and DLL a	utput and the DLL re used	All	-	±[1% of CLKFX period + 200]	_	±[1% of CLKFX period + 200]	ps

Table 39: Switching Characteristics for the DFS(Continued)

				Speed Grade				
				-	5		4	
Symbol	Description			Min	Max	Min	Max	Units
Lock Time								
LOCK_FX ^(2, 3)	The time from deassertion at the DCM's Reset input to the rising transition at its	$\begin{array}{l} 5 \text{ MHz} \leq \text{F}_{\text{CLKIN}} \\ \leq 15 \text{ MHz} \end{array}$	All	-	5	-	5	ms
	LOCKED when the CLKFX and CLKFX180 signals are valid. If using both the DLL and the DFS, use the longer locking time.	F _{CLKIN} > 15 MHz		-	450	-	450	μs

Notes:

- 1. The numbers in this table are based on the operating conditions set forth in Table 8 and Table 38.
- 2. DFS performance requires the additional logic automatically added by ISE 9.1i and later software revisions.
- 3. For optimal jitter tolerance and faster lock time, use the CLKIN_PERIOD attribute.
- 4. Maximum output jitter is characterized within a reasonable noise environment (150 ps input period jitter, 40 SSOs and 25% CLB switching) on an XC3S1400A FPGA. Output jitter strongly depends on the environment, including the number of SSOs, the output drive strength, CLB utilization, CLB switching activities, switching frequency, power supply and PCB design. The actual maximum output jitter depends on the system application.
- 5. The CLKFX and CLKFX180 outputs always have an approximate 50% duty cycle.
- 6. Some duty-cycle and alignment specifications include a percentage of the CLKFX output period. For example, the data sheet specifies a maximum CLKFX jitter of "±[1% of CLKFX period + 200]". Assume the CLKFX output frequency is 100 MHz. The equivalent CLKFX period is 10 ns and 1% of 10 ns is 0.1 ns or 100 ps. According to the data sheet, the maximum jitter is ±[100 ps + 200 ps] = ±300 ps.

Miscellaneous DCM Timing

Table 42: Miscellaneous DCM Timing

Symbol	Description	Min	Мах	Units
DCM_RST_PW_MIN	Minimum duration of a RST pulse width	3	-	CLKIN cycles
DCM_RST_PW_MAX ⁽²⁾ Maximum duration of a RST pulse width		N/A	N/A	seconds
		N/A	N/A	seconds
DCM_CONFIG_LAG_TIME ⁽³⁾	Maximum duration from V_{CCINT} applied to FPGA configuration	N/A	N/A	minutes
	applied to DCM DLL	N/A	N/A	minutes

Notes:

1. This limit only applies to applications that use the DCM DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV). The DCM DFS outputs (CLKFX, CLKFX180) are unaffected.

- 2. This specification is equivalent to the Virtex®-4 DCM_RESET specification. This specification does not apply for Spartan-3A FPGAs.
- 3. This specification is equivalent to the Virtex-4 TCONFIG specification. This specification does not apply for Spartan-3A FPGAs.

DNA Port Timing

Table 43: DNA_PORT Interface Timing

Symbol	Description	Min	Max	Units
T _{DNASSU}	Setup time on SHIFT before the rising edge of CLK	1.0	-	ns
T _{DNASH}	Hold time on SHIFT after the rising edge of CLK	0.5	-	ns
T _{DNADSU}	Setup time on DIN before the rising edge of CLK	1.0	-	ns
T _{DNADH}	Hold time on DIN after the rising edge of CLK	0.5	-	ns
T _{DNARSU}	Setup time on READ before the rising edge of CLK	5.0	10,000	ns
T _{DNARH}	Hold time on READ after the rising edge of CLK	0	-	ns
T _{DNADCKO}	Clock-to-output delay on DOUT after rising edge of CLK	0.5	1.5	ns
T _{DNACLKF}	CLK frequency	0	100	MHz
T _{DNACLKH}	CLK High time	1.0	×	ns
T _{DNACLKL}	CLK Low time	1.0	×	ns

Notes:

- 1. The minimum READ pulse width is 5 ns, the maximum READ pulse width is 10 µs.
- 2. The numbers in this table are based on the operating conditions set forth in Table 8.

Master Serial and Slave Serial Mode Timing

DS312-3_05_103105

Figure 12: Waveforms for Master Serial and Slave Serial Configuration

Table 5	50:	Timing	for the	e Master	Serial	and Slave	Serial	Configu	uration	Modes
---------	-----	--------	---------	----------	--------	-----------	--------	---------	---------	-------

			Slave/	All Speed Grades		
Symbol	Descri	ption	Master	Min	Max	Units
Clock-to-Ou	utput Times					
T _{CCO}	The time from the falling transition on the DOUT pin	ne CCLK pin to data appearing at the	Both	1.5	10	ns
Setup Time	S					
T _{DCC}	The time from the setup of data at the CCLK pin	Both	7	-	ns	
Hold Times						
T _{CCD}	CCD The time from the rising transition at the CCLK pin to the point when data is		Master	0		ns
	last held at the DIN pin		Slave	1.0	_	
Clock Timir	ng					
Т _{ССН}	High pulse width at the CCLK input pi	n	Master	See Table 48		
			Slave	See Table 49		
T _{CCL}	Low pulse width at the CCLK input pir	1	Master	Se	ee Table 48	
				See Table 49		
F _{CCSER}	Frequency of the clock signal at the	No bitstream compression	Slave	0	100	MHz
		With bitstream compression		0	100	MHz

Notes:

- 1. The numbers in this table are based on the operating conditions set forth in Table 8.
- 2. For serial configuration with a daisy-chain of multiple FPGAs, the maximum limit is 25 MHz.

Serial Peripheral Interface (SPI) Configuration Timing

Shaded values indicate specifications on attached SPI Flash PROM.

DS529-3_06_102506

Figure 14: Waveforms for Serial Peripheral Interface (SPI) Configuration

Table 52: Timing for Serial Peripheral Interface (SPI) Configuration Mode

Symbol	Description	Minimum	Maximum	Units		
T _{CCLK1}	Initial CCLK clock period	See Table 46				
T _{CCLKn}	CCLK clock period after FPGA loads ConfigRate bitstream option setting	:	See Table 46			
T _{MINIT}	Setup time on VS[2:0] variant-select pins and M[2:0] mode pins before the rising edge of $\ensuremath{INIT}\xspace$	50	_	ns		
T _{INITM}	Hold time on VS[2:0] variant-select pins and M[2:0] mode pins after the rising edge of $\ensuremath{INIT}\xspace$	0 – r				
T _{CCO}	MOSI output valid delay after CCLK falling clock edge	:	See Table 50			
T _{DCC}	Setup time on the DIN data input before CCLK rising clock edge	See Table 50				
T _{CCD}	Hold time on the DIN data input after CCLK rising clock edge	See Table 50				

Symbol	Description	Requirement	Units
T _{CCS}	SPI serial Flash PROM chip-select time	$T_{CCS} \leq T_{MCCL1} - T_{CCO}$	ns
T _{DSU}	SPI serial Flash PROM data input setup time	$T_{DSU} \leq T_{MCCL1} - T_{CCO}$	ns
T _{DH}	SPI serial Flash PROM data input hold time	T _{DH} ≤ T _{MCCH1}	ns
T _V	SPI serial Flash PROM data clock-to-output time	$T_V \leq T_{MCCLn} - T_{DCC}$	ns
f _C or f _R	Maximum SPI serial Flash PROM clock frequency (also depends on specific read command used)	$f_C \ge \frac{1}{T_{CCLKn(min)}}$	MHz

Table 53: Configuration Timing Requirements for Attached SPI Serial Flash

Notes:

These requirements are for successful FPGA configuration in SPI mode, where the FPGA generates the CCLK signal. The post-configuration timing can be different to support the specific needs of the application loaded into the FPGA. 1.

Subtract additional printed circuit board routing delay as required by the application. 2.

Package Thermal Characteristics

The power dissipated by an FPGA application has implications on package selection and system design. The power consumed by a Spartan-3A FPGA is reported using either the <u>XPower Power Estimator</u> or the <u>XPower Analyzer</u> calculator integrated in the Xilinx® ISE® development software. Table 62 provides the thermal characteristics for the various Spartan-3A FPGA package offerings. This information is also available using the Thermal Query tool on xilinx.com (www.xilinx.com/cgi-bin/thermal/thermal.pl). The junction-to-case thermal resistance (θ_{JC}) indicates the difference between the temperature measured on the package body (case) and the die junction temperature per watt of power consumption. The junction-to-board (θ_{JB}) value similarly reports the difference between the board and junction temperature. The junction-to-ambient (θ_{JA}) value reports the temperature difference between the ambient environment and the junction temperature. The θ_{JA} value is reported at different air velocities, measured in linear feet per minute (LFM). The "Still Air (0 LFM)" column shows the θ_{JA} value in a system without a fan. The thermal resistance drops with increasing air flow.

				J				
Package	Device	Junction-to-Case (θ _{JC})	Junction-to- Board (θ _{JB})	Still Air (0 LFM)	250 LFM	500 LFM	750 LFM	Units
VQ100	XC3S50A	12.9	30.1	48.5	40.4	37.6	36.6	°C/Watt
VQG100	XC3S200A	10.9	25.7	42.9	35.7	33.2	32.4	°C/Watt
TQ144 TQG144 XC3S50A 16.5 32.0 42.4 36.3					36.3	35.8	34.9	°C/Watt
	XC3S50A	16.0	33.5	42.3	35.6	35.5	34.5	°C/Watt
	XC3S200A	10.3	23.8	32.7	26.6	26.1	25.2	°C/Watt
FT256 FTG256	XC3S400A	8.4	19.3	29.9	24.9	23.0	22.3	°C/Watt
	XC3S700A	7.8	18.6	28.1	22.3	21.2	20.7	°C/Watt
	XC3S1400A	5.4	14.1	24.2	18.7	17.5	17.0	°C/Watt
FG320	XC3S200A	11.7	18.5	27.8	22.3	21.1	20.3	°C/Watt
FGG320	XC3S400A	9.9	15.4	25.2	19.8	18.6	17.8	°C/Watt
FG400	XC3S400A	9.8	15.5	25.6	19.2	18.0	17.3	°C/Watt
FGG400	XC3S700A	8.2	13.0	23.1	17.9	16.7	16.0	°C/Watt
FG484	XC3S700A	7.9	12.8	22.3	17.4	16.2	15.5	°C/Watt
FGG484	XC3S1400A	6.0	9.9	19.5	14.7	13.5	12.8	°C/Watt
FG676 FGG676	XC3S1400A	5.8	9.4	17.8	13.5	12.4	11.8	°C/Watt

Table 62: Spartan-3A Package Thermal Characteristics

VQ100: 100-lead Very Thin Quad Flat Package

The XC3S50A and XC3S200 are available in the 100-lead very thin quad flat package, VQ100.

Table 63 lists all the package pins. They are sorted by bank number and then by pin name. Pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier.

The VQ100 does not support Suspend mode (SUSPEND and AWAKE are not connected), the address output pins for the Byte-wide Peripheral Interface (BPI) configuration mode, or daisy chain configuration (DOUT is not connected).

Table 63 also indicates that some differential I/O pairs havedifferent assignments between the XC3S50A and theXC3S200A, highlighted in light blue. See "FootprintMigration Differences," page 72 for additional information.

An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at

www.xilinx.com/support/documentation/data_sheets/ s3a_pin.zip.

Pinout Table

Table 63:	Spartan-3A VQ100 Pinout							
Bank	Pin Name	Pin	Туре					
0	IO_0/GCLK11	P90	CLK					
0	IO_L01N_0	P78	IO					
0	IO_L01P_0/VREF_0	P77	VREF					
0	IO_L02N_0/GCLK5	P84	CLK					
0	IO_L02P_0/GCLK4	P83	CLK					
0	IO_L03N_0/GCLK7	P86	CLK					
0	IO_L03P_0/GCLK6	P85	CLK					
0	IO_L04N_0/GCLK9	_0/GCLK9 P89						
0	IO_L04P_0/GCLK8	P88	CLK					
0	IO_L05N_0	P94	IO					
0	IO_L05P_0	P93	IO					
0	IO_L06N_0/PUDC_B	P99	DUAL					
0	IO_L06P_0/VREF_0	P98	VREF					
0	IP_0	P97	IP					
0	IP_0/VREF_0	P82	VREF					
0	VCCO_0	P79	VCCO					
0	VCCO_0	P96	VCCO					
1	IO_L01N_1	P57	IO					
1	IO_L01P_1	P56	IO					
1	IO_L02N_1/RHCLK1	P60	CLK					

1	IO_L02P_1/RHCLK0	P59	CLK
1	IO_L03N_1/TRDY1/RHCLK3	P62	CLK
1	IO_L03P_1/RHCLK2	P61	CLK
1	IO_L04N_1/RHCLK7	P65	CLK
1	IO_L04P_1/IRDY1/RHCLK6	P64	CLK
1	IO_L05N_1	P71	IO
1	IO_L05P_1	P70	IO
1	IO_L06N_1	P73	ю
1	IO_L06P_1	P72	ю
1	IP_1/VREF_1	P68	VREF
1	VCCO_1	P67	VCCO
2	IO_2/MOSI/CSI_B	P46	DUAL
2	IO_L01N_2/M0	P25	DUAL
2	IO_L01P_2/M1	P23	DUAL
2	IO_L02N_2/CSO_B	P27	DUAL
2	IO_L02P_2/M2	P24	DUAL
2	IO_L03N_2/VS1 (3S50A) IO_L04P_2/VS1 (3S200A)	P30	DUAL
2	IO_L03P_2/RDWR_B	P28	DUAL
2	IO_L04N_2/VS0	P31	DUAL
2	IO_L04P_2/VS2 (3S50A) IO_L03N_2/VS2 (3S200A)	P29	DUAL
2	IO_L05N_2/D7 (3S50A) IO_L06P_2/D7 (3S200A)	P34	DUAL
2	IO_L05P_2	P32	ю
2	IO_L06N_2/D6	P35	DUAL
2	IO_L06P_2 (3S50A) IO_L05N_2 (3S200A)	P33	IO
2	IO_L07N_2/D4	P37	DUAL
2	IO_L07P_2/D5	P36	DUAL
2	IO_L08N_2/GCLK15	P41	CLK
2	IO_L08P_2/GCLK14	P40	CLK
2	IO_L09N_2/GCLK1	P44	CLK
2	IO_L09P_2/GCLK0	P43	CLK
2	IO_L10N_2/D3	P49	DUAL
2	IO_L10P_2/INIT_B	P48	DUAL
2	IO_L11N_2/D0/DIN/MISO (3S50A) IO_L12P_2/D0/DIN/MISO (3S200A)	P51	DUAL
2	IO_L11P_2/D2	P50	DUAL
2	IO_L12N_2/CCLK	P53	DUAL

Table 63: Spartan-3A VQ100 Pinout(Continued)

VQ100 Footprint (XC3S50A)

Note pin 1 indicator in top-left corner and logo orientation.

XC3S50A Differential I/O Alignment Differences

Also, some differential I/O pairs on the XC3S50A FPGA are aligned differently than the corresponding pairs on the XC3S200A or XC3S400A FPGAs, as shown in Table 74. All the mismatched pairs are in I/O Bank 2. The shading highlights the N side of each pair.

Table 74: Differential I/O Differences in FT256

FT256 Ball	Bank	XC3S50A	XC3S200A XC3S400A
Т3		IO_L04P_2/VS2	IO_L03N_2/VS2
N6	-	IO_L03N_2/VS1	IO_L04P_2/VS1
R5		IO_L06P_2	IO_L05N_2
T5		IO_L05N_2/D7	IO_L06P_2/D7
P10	2	IO_L14P_2/MOSI /CSI_B	IO_L14N_2/MOSI /CSI_B
T10		IO_L14N_2	IO_L14P_2
R13		IO_L20P_2	IO_L18N_2
T14		IO_L18N_2	IO_L20P_2

XC3S50A Does Not Have BPI Mode Address Outputs

The XC3S50A FPGA does not generate the BPI-mode address pins during configuration. Table 75 summarizes these differences.

Table	75:	XC3S50A	BPI	Functional	Differences
-------	-----	---------	-----	-------------------	-------------

FT256 Ball	Bank	XC3S50A	XC3S200A XC3S400A
N16		IO_L03N_1	IO_L03N_1/A1
P16		IO_L03P_1	IO_L03P_1/A0
J13		IO_L10N_1	IO_L10N_1/A9
J12		IO_L10P_1	IO_L10P_1/A8
F13		IO_L20N_1	IO_L20N_1/A19
E14	- 1	IO_L20P_1	IO_L20P_1/A18
D15	I	IO_L22N_1	IO_L22N_1/A21
D16		IO_L22P_1	IO_L22P_1/A20
D14		IO_L23N_1	IO_L23N_1/A23
E13	-	IO_L23P_1	IO_L23P_1/A22
C15		IO_L24N_1	IO_L24N_1/A25
C16		IO_L24P_1	IO_L24P_1/A24

User I/Os by Bank

Table 78 and Table 79 indicate how the available user-I/O pins are distributed between the four I/O banks on the FG320 package. The AWAKE pin is counted as a dual-purpose I/O.

Table 78: User I/Os Per Bank for XC3S200A in the FG320 Package

Package	1/O Bonk	Maximum I/O	All Possible I/O Pins by Type									
Edge	I/O Ballk		I/O	INPUT	DUAL	VREF	CLK					
Тор	0	60	35	11	1	5	8					
Right	1	64	9	10	30	7	8					
Bottom	2	60	19	6	21	6	8					
Left 3		64	38	13	0	5	8					
TOTAL		248	101	40	52	23	32					

Table 79: User I/Os Per Bank for XC3S400A in the FG320 Package

Package	VO Bonk	Maximum I/O	All Possible I/O Pins by Type									
Edge	I/O Balik		I/O	INPUT	DUAL	VREF	CLK					
Тор	0	61	35	12	1	5	8					
Right	1	64	9	10	30	7	8					
Bottom	2	62	19	7	21	7	8					
Left 3		64	38	13	0	5	8					
TOTAL		251	101	42	52	24	32					

Footprint Migration Differences

Table 80 summarizes any footprint and functionality differences between the XC3S200A and the XC3S400A FPGAs that might affect easy migration between devices available in the FG320 package. There are three such balls. All other pins not listed in Table 80 unconditionally migrate between Spartan-3A devices available in the FG320 package.

The arrows indicate the direction for easy migration.

Table	80:	FG320	Footprint	Migration	Differences
-------	-----	-------	-----------	-----------	-------------

Pin	Bank	XC3S200A	Migration	XC3S400A
E13	0	N.C.	\rightarrow	INPUT
N7	2	N.C.	\rightarrow	INPUT
P14	2	N.C.	\rightarrow	INPUT/VREF
Γ	DIFFERE	NCES	3	

Legend:

→

This pin can unconditionally migrate from the device on the left to the device on the right. Migration in the other direction is possible depending on how the pin is configured for the device on the right.

FG320 Footprint

Bank 0																				
		1	2	3	4 I/O	5	6	7	8 I/O	9	10 I/O	11 1/0	12	13 I/O	14	15	16 1/0	17	18	
_	А - В	GND I/O	1/O L23N_0	1/O L21N_0	L18N_0 VREF_0	L18P_0	1/O L17P_0	GND	L13P_0 GCLK8 I/O L14P_0	VCCAUX	L12P_0 GCLK6 I/O L11P 0	1/O L09N_0	GND I/O	L06N_0 VREF_0		1/O L03P_0	1/O L02N_0	TCK	GND I/O L30N 1	—
	с	L02N_3	L02P_3	L23P_0	L21P_0	I/O L22P_0	L17N_0 I/O L20P_0	GCLK9 I/O L15N_0	GCLK10	GCLK7	GCLK4	L09P_0 I/O L10P_0	L07N_0	L06P_0 I/O L05P_0	I/O L04N_0	L04P_0 I/O L01N_0	VREF_0	A25	A23	
	D	I/O L07P_3	I/O L03N_3	I/O L03P_3	GND	I/O L22N_0	I/O L20N_0	GND	I/O L15P_0	I/O L16P_0	I/O L10N_0	VCCO_0	I/O L05N_0	INPUT	INPUT	GND	I/O L29P_1 A20	I/O L25N_1	1/O L25P_1	
	E	I/O L07N_3	VCCO_3	I/O L06N_3	TDI	I/O L24N_0 PUDC_B	I/O L24P_0 VREF_0	I/O L19N_0	VCCO_0	I/O L16N_0	INPUT VREF_0	I/O L08P_0	INPUT		TDO	I/O L29N_1 A21	I/O L26N_1 A17	VCCO_1	I/O L22N_1 A13	
	F	I/O L10N_3 VREF_3	I/O L10P_3	1/O L09P_3	1/0 L06P_3	I/O L05P_3	GND	INPUT	I/O L19P_0	INPUT	INPUT	I/O L08N_0	INPUT	INPUT L32N_1	INPUT L32P_1 VREF_1	I/O L27N_1 A19	I/O L26P_1 A16	I/O L21N_1	I/O L22P_1 A12	
	G	GND	INPUT L12N_3	INPUT L12P_3	I/O L09N_3	1/O L05N_3	INPUT L04P_3	INPUT	INPUT	INPUT	VCCAUX	INPUT	GND	INPUT L28N_1	INPUT L24N_1	I/O L27P_1 A18	I/O L19N_1 A11	I/O L21P_1	GND	
	н	I/O L13N_3	I/O L13P_3	I/O L14P_3 LHCLK0	VCCO_3	INPUT L08N_3 VREF_3	INPUT L08P_3	INPUT L04N_3 VREF_3	GND	VCCINT	GND	VCCINT	INPUT L28P_1 VREF_1	INPUT L24P_1	VCCO_1	I/O L23N_1 A15	I/O L19P_1 A10	I/O L18N_1 RHCLK7	I/O L18P_1 IRDY1 RHCLK6	
nk 3	J	I/O L15N_3 IRDY2 LHCLK3	I/O L15P_3 LHCLK2	I/O L14N_3 LHCLK1	I/O L17P_3 LHCLK4	INPUT L16P_3	I/O L11N_3	I/O L11P_3	VCCINT	````		GND	VCCAUX	INPUT L20N_1	I/O L23P_1 A14	GND	I/O L17P_1 RHCLK4	I/O L15N_1 TRDY1 RHCLK3	VCCAUX	nk 1
ä	к	VCCAUX	I/O L18P_3 TRDY2 LHCLK6	I/O L18N_3 LHCLK7	GND	I/O L17N_3 LHCLK5	INPUT L16N_3	VCCAUX	GND			VCCINT	INPUT L20P_1 VREF_1	INPUT L16P_1	INPUT L16N_1	I/O L17N_1 RHCLK5	I/O L13N_1 A9	I/O L14N_1 RHCLK1	I/O L15P_1 RHCLK2	Ba
	L	I/O L19P_3 VREF_3	I/O L19N_3	I/O L23P_3	I/O L23N_3	VCCO_3	INPUT L20N_3	INPUT L20P_3	VCCINT	GND	VCCINT	GND	I/O L11N_1 A7	I/O L11P_1 A6	INPUT L08N_1 VREF_1	VCCO_1	INPUT L12N_1	I/O L13P_1 A8	I/O L14P_1 RHCLK0	
	м	GND	I/O L21N_3	INPUT L24P_3	INPUT L24N_3	INPUT L28N_3	INPUT L28P_3	GND	INPUT	INPUT	VCCAUX	INPUT VREF_2	INPUT	INPUT L08P_1	I/O L06N_1	INPUT L12P_1 VREF_1	I/O L09P_1 A2	I/O L09N_1 A3	GND	
	N	I/O L21P_3	I/O L22N_3	I/O L26P_3	I/O L26N_3	I/O L29P_3	I/O L29N_3		I/O L07P_2	INPUT	INPUT VREF_2	INPUT	I/O L19P_2	GND	INPUT L04N_1 VREF_1	I/O L06P_1	1/O L05N_1	I/O L10P_1 A4	I/O L10N_1 A5	
	Ρ	I/O L22P_3	VCCO_3	I/O L30P_3	INPUT L32N_3 VREF_3	INPUT L32P_3	INPUT VREF_2	INPUT VREF_2	I/O L07N_2	INPUT VREF_2	I/O L15P_2	VCCO_2	I/O L19N_2	INPUT VREF_2	INPUT VREF_2	INPUT L04P_1	I/O L05P_1	VCCO_1	I/O L07N_1 VREF_1	
	R	I/O L25P_3	I/O L25N_3	I/O L30N_3	GND	I/O L04P_2	INPUT	I/O L08P_2 D7	VCCO_2	I/O L09N_2	I/O L15N_2	1/0 L16P_2	GND	I/O L20N_2 D3	I/O L23P_2	GND	I/O L01P_1 HDC	I/O L03N_1 A1	I/O L07P_1	
	т	I/O L27P_3	I/O L27N_3	I/O L01P_2 M1	I/O L03P_2 RDWR_B	I/O L04N_2	I/O L06P_2	I/O L08N_2 D6	I/O L09P_2	GND	I/O L13N_2 GCLK1	L16N_2 MOSI CSI_B	I/O L18P_2 AWAKE	I/O L20P_2 INIT_B	I/O L21N_2	I/O L23N_2	SUSPERI	I/O L01N_1 LDC2	I/O L03P_1 A0	
	U -	I/O L31P_3	I/O L31N_3	I/O L01N_2 M0	I/O L03N_2 VS2	VCCO_2	I/O L06N_2	I/O L10P_2 D5	I/O L11P_2 GCLK12	I/O L12P_2 GCLK14	I/O L13P_2 GCLK0	I/O L14N_2 GCLK3	I/O L17P_2	I/O L18N_2 DOUT	VCCO_2	I/O L22N_2 D1	I/O L24N_2 CCLK	I/O L02P_1 LDC1	I/O L02N_1 LDC0	_
	v	GND	1/O L02P_2 M2	I/O L02N_2 CSO_B	I/O L05P_2 VS1	I/O L05N_2 VS0	I/O L10N_2 D4	GND	I/O L11N_2 GCLK13	I/O L12N_2 GCLK15	VCCAUX	I/O L14P_2 GCLK2	GND	I/O L17N_2	I/O L21P_2	I/O L22P_2 D2	L24P_2 D0 DIN/MISO	DONE	GND	
						Figu	ıre 23	: FG	320 P	Bank 2 acka	2 ge Fo	otpri	nt (To	op Vie	€w)			DS	529-4_05_0	012009
I/O gei	: Ur nera	nrestri al-purp	cted, ose u	ser I/C	51	DL pir us	JAL: (ns, the er-I/O	Config n pos	uratior sible	۱	23 - 24	VRE volta bank	i F: Us ige ref	er I/O erence	or inp e for	ut	2	SUSP SUSP dual-p	END: I END a urpose Mana	Dedicated Ind AWAKE gement pins
INI gei pin	PUT nera	: Unre al-purp	estricte ose ir	ed, iput	32	2 Glo	_K: Us obal bi	ser I/O uffer in	, input iput	, or	16	VCC supp	Ο: Οι bly for	ıtput v bank	oltage		·			3e.ii piilo
CC COI	NF nfigu	IG: De	edicate n pins	əd	4	JT po	AG: D ort pins	edicat	ted JT	AG	6	VCC supp	INT: I	nterna age (+	al core ⊦1.2V)					
N.C On the	D.: I ly th se p	Not co ne XC3 pins (•	nnecte 3S200 ♦).	ed.)A has	32	2 GI	ND: G	round			8	VCC supp	AUX:	Auxilia age	ary					

www.xilinx.com

101

40 -42

2

3

User I/Os by Bank

Table 84 and Table 85 indicate how the user-I/O pins are distributed between the four I/O banks on the FG484 package. The AWAKE pin is counted as a dual-purpose I/O.

Table 84: User I/Os Per Bank for the XC3S700A in the FG484 Package

Package			All Possible I/O Pins by Type				
Edge	I/O Bank	Maximum I/O	I/O	INPUT	DUAL	VREF	CLK
Тор	0	92	58	17	1	8	8
Right	1	94	33	15	30	8	8
Bottom	2	92	43	11	21	9	8
Left	3	94	61	17	0	8	8
TOTAL		372	195	60	52	33	32

Table 85: User I/Os Per Bank for the XC3S1400A in the FG484 Package

Package			All Possible I/O Pins by Type				
Edge	I/O Bank	Maximum I/O	I/O	INPUT	DUAL	VREF	CLK
Тор	0	92	58	17	1	8	8
Right	1	94	33	15	30	8	8
Bottom	2	95	43	13	21	10	8
Left	3	94	61	17	0	8	8
TOTAL		375	195	62	52	34	32

Footprint Migration Differences

Table 86 summarizes any footprint and functionality differences between the XC3S700A and the XC3S1400A FPGAs that might affect easy migration between devices available in the FG484 package. There are three such balls. All other pins not listed in Table 86 unconditionally migrate between Spartan-3A devices available in the FG484 package.

The arrows indicate the direction for easy migration.

Pin	Bank	XC3S700A	Migration	XC3S1400A
Т8	2	N.C.	\rightarrow	INPUT/VREF
U7	2	N.C.	\rightarrow	INPUT
U16	2	N.C.	\rightarrow	INPUT
DIFFERENCES			3	

Table 86: FG484 Footprint Migration Differences

Legend:

→

This pin can unconditionally migrate from the device on the left to the device on the right. Migration in the other direction is possible depending on how the pin is configured for the device on the right.

Table 87: Spartan-3A FG676 Pinout(Continued)

Table 87: Spartan-3A FG676 Pinout(Continued)

Bank	Pin Name	FG676 Ball	Туре
1	IO_L03P_1/A0	AC23	DUAL
1	IO_L04N_1	W21	I/O
1	IO_L04P_1	W20	I/O
1	IO_L05N_1	AC25	I/O
1	IO_L05P_1	AD26	I/O
1	IO_L06N_1	AB26	I/O
1	IO_L06P_1	AC26	I/O
1	IO_L07N_1/VREF_1	AB24	VREF
1	IO_L07P_1	AB23	I/O
1	IO_L08N_1	V19	I/O
1	IO_L08P_1	V18	I/O
1	IO_L09N_1	AA23	I/O
1	IO_L09P_1	AA22	I/O
1	IO_L10N_1	U20	I/O
1	IO_L10P_1	V21	I/O
1	IO_L11N_1	AA25	I/O
1	IO_L11P_1	AA24	I/O
1	IO_L12N_1	U18	I/O
1	IO_L12P_1	U19	I/O
1	IO_L13N_1	Y23	I/O
1	IO_L13P_1	Y22	I/O
1	IO_L14N_1	T20	I/O
1	IO_L14P_1	U21	I/O
1	IO_L15N_1	Y25	I/O
1	IO_L15P_1	Y24	I/O
1	IO_L17N_1	T17	I/O
1	IO_L17P_1	T18	I/O
1	IO_L18N_1	V22	I/O
1	IO_L18P_1	W23	I/O
1	IO_L19N_1	V25	I/O
1	IO_L19P_1	V24	I/O
1	IO_L21N_1	U22	I/O
1	IO_L21P_1	V23	I/O
1	IO_L22N_1	R20	I/O
1	IO_L22P_1	R19	I/O
1	IO_L23N_1/VREF_1	U24	VREF
1	IO_L23P_1	U23	I/O
1	IO_L25N_1/A3	R22	DUAL
1	IO_L25P_1/A2	R21	DUAL
1	IO_L26N_1/A5	T24	DUAL

Bank	Pin Name	FG676 Ball	Туре
1	IO_L26P_1/A4	T23	DUAL
1	IO_L27N_1/A7	R17	DUAL
1	IO_L27P_1/A6	R18	DUAL
1	IO_L29N_1/A9	R26	DUAL
1	IO_L29P_1/A8	R25	DUAL
1	IO_L30N_1/RHCLK1	P20	RHCLK
1	IO_L30P_1/RHCLK0	P21	RHCLK
1	IO_L31N_1/TRDY1/RHCLK3	P25	RHCLK
1	IO_L31P_1/RHCLK2	P26	RHCLK
1	IO_L33N_1/RHCLK5	N24	RHCLK
1	IO_L33P_1/RHCLK4	P23	RHCLK
1	IO_L34N_1/RHCLK7	N19	RHCLK
1	IO_L34P_1/IRDY1/RHCLK6	P18	RHCLK
1	IO_L35N_1/A11	M25	DUAL
1	IO_L35P_1/A10	M26	DUAL
1	IO_L37N_1	N21	I/O
1	IO_L37P_1	P22	I/O
1	IO_L38N_1/A13	M23	DUAL
1	IO_L38P_1/A12	L24	DUAL
1	IO_L39N_1/A15	N17	DUAL
1	IO_L39P_1/A14	N18	DUAL
1	IO_L41N_1	K26	I/O
1	IO_L41P_1	K25	I/O
1	IO_L42N_1/A17	M20	DUAL
1	IO_L42P_1/A16	N20	DUAL
1	IO_L43N_1/A19	J25	DUAL
1	IO_L43P_1/A18	J26	DUAL
1	IO_L45N_1	M22	I/O
1	IO_L45P_1	M21	I/O
1	IO_L46N_1	K22	I/O
1	IO_L46P_1	K23	I/O
1	IO_L47N_1	M18	I/O
1	IO_L47P_1	M19	I/O
1	IO_L49N_1	J22	I/O
1	IO_L49P_1	J23	I/O
1	IO_L50N_1	K21	I/O
1	IO_L50P_1	L22	I/O
1	IO_L51N_1	G24	I/O
1	IO_L51P_1	G23	I/O
1	IO_L53N_1	K20	I/O

Table 87: Spartan-3A FG676 Pinout(Continued)

Bank	Pin Name	FG676 Ball	Туре
1	IO_L53P_1	L20	I/O
1	IO_L54N_1	F24	I/O
1	IO_L54P_1	F25	I/O
1	IO_L55N_1	L17	I/O
1	IO_L55P_1	L18	I/O
1	IO_L56N_1	F23	I/O
1	IO_L56P_1	E24	I/O
1	IO_L57N_1	K18	I/O
1	IO_L57P_1	K19	I/O
1	IO_L58N_1	G22	I/O
1	IO_L58P_1/VREF_1	F22	VREF
1	IO_L59N_1	J20	I/O
1	IO_L59P_1	J19	I/O
1	IO_L60N_1	D26	I/O
1	IO_L60P_1	E26	I/O
1	IO_L61N_1	D24	I/O
1	IO_L61P_1	D25	I/O
1	IO_L62N_1/A21	H21	DUAL
1	IO_L62P_1/A20	J21	DUAL
1	IO_L63N_1/A23	C25	DUAL
1	IO_L63P_1/A22	C26	DUAL
1	IO_L64N_1/A25	G21	DUAL
1	IO_L64P_1/A24	H20	DUAL
1	IP_L16N_1	Y26	INPUT
1	IP_L16P_1	W25	INPUT
1	IP_L20N_1/VREF_1	V26	VREF
1	IP_L20P_1	W26	INPUT
1	IP_L24N_1/VREF_1	U26	VREF
1	IP_L24P_1	U25	INPUT
1	IP_L28N_1	R24	INPUT
1	IP_L28P_1/VREF_1	R23	VREF
1	IP_L32N_1	N25	INPUT
1	IP_L32P_1	N26	INPUT
1	IP_L36N_1	N23	INPUT
1	IP_L36P_1/VREF_1	M24	VREF
1	IP_L40N_1	L23	INPUT
1	IP_L40P_1	K24	INPUT
1	IP_L44N_1	H25	INPUT
1	IP_L44P_1/VREF_1	H26	VREF
1	IP_L48N_1	H24	INPUT

Table 87: Spartan-3A FG676 Pinout(Continued)

Bank	Pin Name	FG676 Ball	Туре
1	IP_L48P_1	H23	INPUT
1	IP_L52N_1/VREF_1	G25	VREF
1	IP_L52P_1	G26	INPUT
1	IP_L65N_1	B25	INPUT
1	IP_L65P_1/VREF_1	B26	VREF
1	VCCO_1	AB25	VCCO
1	VCCO_1	E25	VCCO
1	VCCO_1	H22	VCCO
1	VCCO_1	L19	VCCO
1	VCCO_1	L25	VCCO
1	VCCO_1	N22	VCCO
1	VCCO_1	T19	VCCO
1	VCCO_1	T25	VCCO
1	VCCO_1	W22	VCCO
2	IO_L01N_2/M0	AD4	DUAL
2	IO_L01P_2/M1	AC4	DUAL
2	IO_L02N_2/CSO_B	AA7	DUAL
2	IO_L02P_2/M2	Y7	DUAL
2	IO_L05N_2	Y9	I/O
2	IO_L05P_2	W9	I/O
2	IO_L06N_2	AF3	I/O
2	IO_L06P_2	AE3	I/O
2	IO_L07N_2	AF4	I/O
2	IO_L07P_2	AE4	I/O
2	IO_L08N_2	AD6	I/O
2	IO_L08P_2	AC6	I/O
2	IO_L09N_2	W10	I/O
2	IO_L09P_2	V10	I/O
2	IO_L10N_2	AE6	I/O
2	IO_L10P_2	AF5	I/O
2	IO_L11N_2	AE7	I/O
2	IO_L11P_2	AD7	I/O
2	IO_L12N_2	AA10	I/O
2	IO_L12P_2	Y10	I/O
2	IO_L13N_2	U11	I/O
2	IO_L13P_2	V11	I/O
2	IO_L14N_2	AB7	I/O
2	IO_L14P_2	AC8	I/O
2	IO_L15N_2	AC9	I/O
2	IO_L15P_2	AB9	I/O