

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	2816
Number of Logic Elements/Cells	25344
Total RAM Bits	589824
Number of I/O	502
Number of Gates	1400000
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	676-BGA
Supplier Device Package	676-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc3s1400a-5fgg676c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General DC Characteristics for I/O Pins

Table	9:	General DC	Characteristics of	of User I/O.	Dual-Purpose.	and Dedicated Pi	ns ⁽¹⁾
rabio	υ.		0114140101101100	0.0000,	Baarr arpooo,	and Bouloutou i i	

Symbol	Description	Test Co	onditions	Min	Тур	Max	Units
ا _ل (2)	Leakage current at User I/O, input-only, dual-purpose, and dedicated pins, FPGA powered	Driver is in a high-impeda $V_{IN} = 0V$ or V_{CCO} max, sa	nce state, ample-tested	-10	-	+10	μA
I _{HS}	Leakage current on pins during hot socketing, FPGA unpowered	All pins except INIT_B, PF pins when PUDC_B = 1.	ROG_B, DONE, and JTAG	-10	_	+10	μA
		INIT_B, PROG_B, DONE pins when PUDC_B = 0.	, and JTAG pins or other	Ado	d I _{HS} + I _I	RPU	μA
I _{RPU} ⁽³⁾	Current through pull-up resistor at User I/O, dual-purpose,	V _{IN} = GND	V_{CCO} or $V_{CCAUX} = 3.0V$ to 3.6V	-151	-315	-710	μA
	Dedicated pins are powered by VCCAUX.		V _{CCO} or V _{CCAUX} = 2.3V to 2.7V	-82	-182	-437	μA
	CONOX		V _{CCO} = 1.7V to 1.9V	-36	-88	-226	μA
			V _{CCO} = 1.4V to 1.6V	-22	-56	-148	μA
			V _{CCO} = 1.14V to 1.26V	-11	-31	-83	μA
R _{PU} ⁽³⁾	Equivalent pull-up resistor value	V _{IN} = GND	V _{CCO} = 3.0V to 3.6V	5.1	11.4	23.9	kΩ
	input-only, and dedicated pins		V _{CCO} = 2.3V to 2.7V	6.2	14.8	33.1	kΩ
	(based on I _{RPU} per Note 3)		V _{CCO} = 1.7V to 1.9V	8.4	21.6	52.6	kΩ
			V _{CCO} = 1.4V to 1.6V	10.8	28.4	74.0	kΩ
			V _{CCO} = 1.14V to 1.26V	15.3	41.1	119.4	kΩ
I _{RPD} ⁽³⁾	Current through pull-down	$V_{IN} = V_{CCO}$	V _{CCAUX} = 3.0V to 3.6V	167	346	659	μA
	dual-purpose, input-only, and dedicated pins. Dedicated pins are powered by V _{CCAUX} .		V _{CCAUX} = 2.25V to 2.75V	100	225	457	μA
R _{PD} ⁽³⁾	Equivalent pull-down resistor	V _{CCAUX} = 3.0V to 3.6V	V _{IN} = 3.0V to 3.6V	5.5	10.4	20.8	kΩ
	input-only, and dedicated pins		V _{IN} = 2.3V to 2.7V	4.1	7.8	15.7	kΩ
	(based on I _{RPD} per Note 3)		V _{IN} = 1.7V to 1.9V	3.0	5.7	11.1	kΩ
			V _{IN} = 1.4V to 1.6V	2.7	5.1	9.6	kΩ
			V _{IN} = 1.14V to 1.26V	2.4	4.5	8.1	kΩ
		V _{CCAUX} = 2.25V to 2.75V	V _{IN} = 3.0V to 3.6V	7.9	16.0	35.0	kΩ
			V _{IN} = 2.3V to 2.7V	5.9	12.0	26.3	kΩ
			V _{IN} = 1.7V to 1.9V	4.2	8.5	18.6	kΩ
			V _{IN} = 1.4V to 1.6V	3.6	7.2	15.7	kΩ
			V _{IN} = 1.14V to 1.26V	3.0	6.0	12.5	kΩ
I _{REF}	V _{REF} current per pin	All V _{CCO} levels		-10	-	+10	μA
C _{IN}	Input capacitance		-	_	-	10	pF
R _{DT}	Resistance of optional differential termination circuit within a differential I/O pair. Not available on Input-only pairs.	$V_{CCO} = 3.3V \pm 10\%$	LVDS_33, MINI_LVDS_33, RSDS_33	90	100	115	Ω
		$V_{CCO} = 2.5V \pm 10\%$	LVDS_25, MINI_LVDS_25, RSDS_25	90	110	_	Ω

Notes:

1. The numbers in this table are based on the conditions set forth in Table 8.

 For single-ended signals that are placed on a differential-capable I/O, V_{IN} of -0.2V to -0.5V is supported but can cause increased leakage between the two pins. See "Parasitic Leakage" in <u>UG331</u>, Spartan-3 Generation FPGA User Guide.

3. This parameter is based on characterization. The pull-up resistance $R_{PU} = V_{CCO} / I_{RPU}$. The pull-down resistance $R_{PD} = V_{IN} / I_{RPD}$.

Differential I/O Standards

Differential Input Pairs

Figure 4: Differential Input Voltages

Table	13:	Recommended	Operating	Conditions	for User I	/Os Using	Differential S	Signal Standards
								3

	Vcc	o for Drive	rs ⁽¹⁾		V _{ID}		V _{ICM} ⁽²⁾			
IOSTANDARD Attribute	Min (V)	Nom (V)	Max (V)	Min (mV)	Nom (mV)	Max (mV)	Min (V)	Nom (V)	Max (V)	
LVDS_25 ⁽³⁾	2.25	2.5	2.75	100	350	600	0.3	1.25	2.35	
LVDS_33 ⁽³⁾	3.0	3.3	3.6	100	350	600	0.3	1.25	2.35	
BLVDS_25 ⁽⁴⁾	2.25	2.5	2.75	100	300	-	0.3	1.3	2.35	
MINI_LVDS_25 ⁽³⁾	2.25	2.5	2.75	200	-	600	0.3	1.2	1.95	
MINI_LVDS_33 ⁽³⁾	3.0	3.3	3.6	200	-	600	0.3	1.2	1.95	
LVPECL_25 ⁽⁵⁾		Inputs Only		100	800	1000	0.3	1.2	1.95	
LVPECL_33 ⁽⁵⁾		Inputs Only		100	800	1000	0.3	1.2	2.8 ⁽⁶⁾	
RSDS_25 ⁽³⁾	2.25	2.5	2.75	100	200	-	0.3	1.2	1.5	
RSDS_33 ⁽³⁾	3.0	3.3	3.6	100	200	-	0.3	1.2	1.5	
TMDS_33 ^(3, 4, 7)	3.14	3.3	3.47	150	-	1200	2.7	-	3.23	
PPDS_25 ⁽³⁾	2.25	2.5	2.75	100	-	400	0.2	-	2.3	
PPDS_33 ⁽³⁾	3.0	3.3	3.6	100	-	400	0.2	-	2.3	
DIFF_HSTL_I_18	1.7	1.8	1.9	100	-	-	0.8	-	1.1	
DIFF_HSTL_II_18 ⁽⁸⁾	1.7	1.8	1.9	100	-	-	0.8	-	1.1	
DIFF_HSTL_III_18	1.7	1.8	1.9	100	-	-	0.8	-	1.1	
DIFF_HSTL_I	1.4	1.5	1.6	100	-	-	0.68		0.9	
DIFF_HSTL_III	1.4	1.5	1.6	100	-	-	-	0.9	_	
DIFF_SSTL18_I	1.7	1.8	1.9	100	-	-	0.7	-	1.1	
DIFF_SSTL18_II ⁽⁸⁾	1.7	1.8	1.9	100	-	-	0.7	-	1.1	
DIFF_SSTL2_I	2.3	2.5	2.7	100	-	-	1.0	-	1.5	
DIFF_SSTL2_II ⁽⁸⁾	2.3	2.5	2.7	100	-	-	1.0	-	1.5	
DIFF_SSTL3_I	3.0	3.3	3.6	100	-	-	1.1	-	1.9	
DIFF_SSTL3_II	3.0	3.3	3.6	100	-	-	1.1	-	1.9	

Notes:

The V_{CCO} rails supply only differential output drivers, not input circuits. 1.

2. VICM must be less than VCCAUX.

3. These true differential output standards are supported only on FPGA banks 0 and 2. Inputs are unrestricted. See the chapter "Using I/O Resources" in UG331.

4. See "External Termination Requirements for Differential I/O," page 20.

5. LVPECL is supported on inputs only, not outputs. LVPECL_33 requires V_{CCAUX}=3.3V ± 10%.

6.

7.

LVPECL_33 maximum V_{ICM} = the lower of 2.8V or $V_{CCAUX} - (V_{ID}/2)$ Requires $V_{CCAUX} = 3.3V \pm 10\%$ for inputs. ($V_{CCAUX} - 300 \text{ mV}$) $\leq V_{ICM} \leq (V_{CCAUX} - 37 \text{ mV})$ These higher-drive output standards are supported only on FPGA banks 1 and 3. Inputs are unrestricted. See the chapter "Using I/O Resources" in UG331. 8.

9. All standards except for LVPECL and TMDS can have V_{CCAUX} at either 2.5V or 3.3V. Define your V_{CCAUX} level using the CONFIG VCCAUX constraint.

Table 20: Setup and Hold Times for the IOB Input Path(Continued)

					Speed	Grade	
			IFD_ DELAY		-5	-4	
Symbol	Description	Conditions	VALUE	Device	Min	Min	Units
T _{IOICKPD}	Time from the active transition at the	LVCMOS25 ⁽³⁾	1	XC3S400A	-1.12	-1.12	ns
	to the point where data must be held		2	-	-1.70	-1.70	ns
	at the Input pin. The Input Delay is programmed.		3		-2.08	-2.08	ns
			4	-	-2.38	-2.38	ns
			5	-	-2.23	-2.23	ns
			6	-	-2.69	-2.69	ns
			7	-	-3.08	-3.08	ns
			8		-3.35	-3.35	ns
			1	XC3S700A	-1.67	-1.67	ns
			2	XC3S1400A	-2.27	-2.27	ns
			3		-2.59	-2.59	ns
			4		-2.92	-2.92	ns
			5		-2.89	-2.89	ns
			6		-3.22	-3.22	ns
			7		-3.52	-3.52	ns
			8		-3.81	-3.81	ns
			1		-1.60	-1.60	ns
			2		-2.06	-2.06	ns
			3	-	-2.46	-2.46	ns
			4		-2.86	-2.86	ns
			5		-2.88	-2.88	ns
			6		-3.24	-3.24	ns
			7	1	-3.55	-3.55	ns
			8		-3.89	-3.89	ns
Set/Reset Pul	se Width		•	-	•	•	
T _{RPW_IOB}	Minimum pulse width to SR control input on IOB	-	-	All	1.33	1.61	ns

Notes:

- 1. The numbers in this table are tested using the methodology presented in Table 27 and are based on the operating conditions set forth in Table 8 and Table 11.
- 2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, add the appropriate Input adjustment from Table 23.
- 3. These hold times require adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, subtract the appropriate Input adjustment from Table 23. When the hold time is negative, it is possible to change the data before the clock's active edge.

Table	21:	Sample	Window	(Source	Synchronous))
-------	-----	--------	--------	---------	--------------	---

Symbol	Description	Мах	Units
T _{SAMP}	Setup and hold capture window of an IOB flip-flop.	The input capture sample window value is highly specific to a particular application, device, package, I/O standard, I/O placement, DCM usage, and clock buffer. Please consult the appropriate Xilinx Answer Record for application-specific values. • Answer Record <u>30879</u>	ps

Table 26: Output Timing Adjustments for IOB(Continued)

Convert Output Time from	Add Adjus Bel		
LVCMOS25 with 12mA Drive and Fast Slew Rate to the Following	Speed		
Signal Standard (IOSTANDARD)	-5	-4	Units
Differential Standards			
LVDS_25	1.16	1.16	ns
LVDS_33	0.46	0.46	ns
BLVDS_25	0.11	0.11	ns
MINI_LVDS_25	0.75	0.75	ns
MINI_LVDS_33	0.40	0.40	ns
LVPECL_25			,
LVPECL_33		input Only	/
RSDS_25	1.42	1.42	ns
RSDS_33	0.58	0.58	ns
TMDS_33	0.46	0.46	ns
PPDS_25	1.07	1.07	ns
PPDS_33	0.63	0.63	ns
DIFF_HSTL_I_18	0.43	0.43	ns
DIFF_HSTL_II_18	0.41	0.41	ns
DIFF_HSTL_III_18	0.36	0.36	ns
DIFF_HSTL_I	1.01	1.01	ns
DIFF_HSTL_III	0.54	0.54	ns
DIFF_SSTL18_I	0.49	0.49	ns
DIFF_SSTL18_II	0.41	0.41	ns
DIFF_SSTL2_I	0.82	0.82	ns
DIFF_SSTL2_II	0.09	0.09	ns
DIFF_SSTL3_I	1.16	1.16	ns
DIFF_SSTL3_II	0.28	0.28	ns

Notes:

- 1. The numbers in this table are tested using the methodology presented in Table 27 and are based on the operating conditions set forth in Table 8, Table 11, and Table 13.
- 2. These adjustments are used to convert output- and three-state-path times originally specified for the LVCMOS25 standard with 12 mA drive and Fast slew rate to times that correspond to other signal standards. Do not adjust times that measure when outputs go into a high-impedance state.
- 3. Note that 16 mA drive is faster than 24 mA drive for the Slow slew rate.

 Table 29: Recommended Number of Simultaneously Switching

 Outputs per VCCO-GND Pair (V_{CCAUX}=3.3V)(Continued)

			Package Type				
			VQ100,	FG320, FG484, 676			
Signal (IOSTA	Standard		Top, Bottom (Banks 0,2)	Left, Right (Banks 1,3)	Top, Bottom (Banks 0,2)	Left, Right (Banks 1,3)	
LVCMOS25	Slow	2	16	16	76	76	
		4	10	10	46	46	
		6	8	8	33	33	
		8	7	7	24	24	
		12	6	6	18	18	
		16	-	6	-	11	
		24	-	5	-	7	
	Fast	2	12	12	18	18	
		4	10	10	14	14	
		6	8	8	6	6	
		8	6	6	6	6	
		12	3	3	3	3	
		16	-	3	_	3	
		24	-	2	-	2	
	QuietIO	2	36	36	76	76	
		4	30	30	60	60	
		6	24	24	48	48	
		8	20	20	36	36	
		12	12	12	36	36	
		16	-	12	-	36	
		24	-	8	-	8	
LVCMOS18	Slow	2	13	13	64	64	
		4	8	8	34	34	
		6	8	8	22	22	
		8	7	7	18	18	
		12	-	5	-	13	
		16	-	5	-	10	
	Fast	2	13	13	18	18	
		4	8	8	9	9	
		6	7	7	7	7	
		8	4	4	4	4	
		12	-	4	-	4	
		16	-	3	-	3	
	QuietIO	2	30	30	64	64	
		4	24	24	64	64	
		6	20	20	48	48	
		8	16	16	36	36	
		12	-	12	-	36	
		16	-	12	-	24	

 Table 29:
 Recommended Number of Simultaneously Switching

 Outputs per VCCO-GND Pair (V_{CCAUX}=3.3V)(Continued)

			Package Type					
			VQ100,	TQ144	FT256, FG400, FG	FT256, FG320, FG400, FG484, FG676		
Signal : (IOSTA	Standard NDARD)		Top, Bottom (Banks 0,2)	Left, Right (Banks 1,3)	Top, Bottom (Banks 0,2)	Left, Right (Banks 1,3)		
LVCMOS15	Slow	2	12	12	55	55		
	-	4	7	7	31	31		
		6	7	7	18	18		
		8	-	6	-	15		
		12	-	5	-	10		
	Fast	2	10	10	25	25		
		4	7	7	10	10		
		6	6	6	6	6		
		8	-	4	-	4		
		12	-	3	-	3		
	QuietIO	2	30	30	70	70		
		4	21	21	40	40		
		6	18	18	31	31		
		8	-	12	-	31		
		12	-	12	-	20		
LVCMOS12	Slow	2	17	17	40	40		
		4	-	13	-	25		
		6	-	10	-	18		
	Fast	2	12	9	31	31		
		4	-	9	-	13		
		6	-	9	-	9		
	QuietIO	2	36	36	55	55		
		4	-	33	-	36		
		6	_	27	—	36		
PCI33_3			9	9	16	16		
PCI66_3			—	9	—	13		
HSTL_I			-	11	—	20		
HSTL_III			-	7	_	8		
HSTL_I_18			13	13	17	17		
HSTL_II_18			—	5	—	5		
HSTL_III_18			8	8	10	8		
SSTL18_I			7	13	7	15		
SSTL18_II			-	9	_	9		
SSTL2_I			10	10	18	18		
SSTL2_II			_	6	-	9		
SSTL3_I			7	8	8	10		
SSTL3_II			5	6	6	7		

Block RAM Timing

Table 35: Block RAM Timing

		Speed Grade				
		-	5	-	4	
Symbol	Description	Min	Max	Min	Max	Units
Clock-to-Out	tput Times					
Т _{RCKO}	When reading from block RAM, the delay from the active transition at the CLK input to data appearing at the DOUT output	-	2.06	_	2.49	ns
Setup Times						
T _{RCCK_ADDR}	Setup time for the ADDR inputs before the active transition at the CLK input of the block RAM	0.32	-	0.36	-	ns
T _{RDCK_DIB}	Setup time for data at the DIN inputs before the active transition at the CLK input of the block RAM	0.28	-	0.31	-	ns
T _{RCCK_ENB}	Setup time for the EN input before the active transition at the CLK input of the block RAM	0.69	-	0.77	-	ns
T _{RCCK_WEB}	Setup time for the WE input before the active transition at the CLK input of the block RAM		-	1.26	-	ns
Hold Times						
T _{RCKC_ADDR}	Hold time on the ADDR inputs after the active transition at the CLK input	0	-	0	-	ns
T _{RCKD_DIB}	Hold time on the DIN inputs after the active transition at the CLK input	0	-	0	-	ns
T _{RCKC_ENB}	Hold time on the EN input after the active transition at the CLK input	0	-	0	-	ns
T _{RCKC_WEB}	Hold time on the WE input after the active transition at the CLK input	0	-	0	-	ns
Clock Timing	9					
T _{BPWH}	High pulse width of the CLK signal	1.56	-	1.79	-	ns
T _{BPWL}	Low pulse width of the CLK signal	1.56	-	1.79	-	ns
Clock Frequ	ency					
F _{BRAM}	Block RAM clock frequency	0	320	0	280	MHz

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 8.

Table 37: Switching Characteristics for the DLL

			Speed Grade					
					-5		-4	
Symbol	Descriptio	n	Device	Min	Max	Min	Max	Units
Output Frequency Ranges								
CLKOUT_FREQ_CLK0	Frequency for the CLK0 and CLK18	0 outputs	All	5	280	5	250	MHz
CLKOUT_FREQ_CLK90	Frequency for the CLK90 and CLK2	70 outputs		5	200	5	200	MHz
CLKOUT_FREQ_2X	Frequency for the CLK2X and CLK2	2X180 outputs		10	334	10	334	MHz
CLKOUT_FREQ_DV	Frequency for the CLKDV output			0.3125	186	0.3125	166	MHz
Output Clock Jitter ^(2,3,4)	•			-j		·!		
CLKOUT_PER_JITT_0	Period jitter at the CLK0 output		All	-	±100	-	±100	ps
CLKOUT_PER_JITT_90	Period jitter at the CLK90 output			_	±150	-	±150	ps
CLKOUT_PER_JITT_180	Period jitter at the CLK180 output			-	±150	-	±150	ps
CLKOUT_PER_JITT_270	Period jitter at the CLK270 output			_	±150	-	±150	ps
CLKOUT_PER_JITT_2X	Period jitter at the CLK2X and CLK2	Period jitter at the CLK2X and CLK2X180 outputs			±[0.5% of CLKIN period + 100]	_	±[0.5% of CLKIN period + 100]	ps
CLKOUT_PER_JITT_DV1	Period jitter at the CLKDV output wh division	nen performing integer		_	±150	-	±150	ps
CLKOUT_PER_JITT_DV2	Period jitter at the CLKDV output wh division		_	±[0.5% of CLKIN period + 100]	_	±[0.5% of CLKIN period + 100]	ps	
Duty Cycle ⁽⁴⁾			1	1			1	L
CLKOUT_DUTY_CYCLE_DLL	Duty cycle variation for the CLK0, C CLK2X, CLK2X180, and CLKDV ou BUFGMUX and clock tree duty-cycl	LK90, CLK180, CLK270, tputs, including the e distortion	All	-	±[1% of CLKIN period + 350]	_	±[1% of CLKIN period + 350]	ps
Phase Alignment ⁽⁴⁾	-		1					
CLKIN_CLKFB_PHASE	Phase offset between the CLKIN ar	d CLKFB inputs	All	-	±150	-	±150	ps
CLKOUT_PHASE_DLL	Phase offset between DLL outputs	CLK0 to CLK2X (not CLK2X180)		_	±[1% of CLKIN period + 100]	_	±[1% of CLKIN period + 100]	ps
		All others		_	±[1% of CLKIN period + 150]	_	±[1% of CLKIN period + 150]	ps
Lock Time								
LOCK_DLL ⁽³⁾	When using the DLL alone: The	$5 \text{ MHz} \le \text{F}_{\text{CLKIN}} \le 15 \text{ MHz}$	All	-	5	-	5	ms
	Reset input to the rising transition at its LOCKED output. When the DCM is locked, the CLKIN and CLKFB signals are in phase	F _{CLKIN} > 15 MHz		_	600	_	600	μs
Delay Lines								
DCM_DELAY_STEP ⁽⁵⁾	Finest delay resolution, averaged ov	ver all steps	All	15	35	15	35	ps

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 8 and Table 36.

2. Indicates the maximum amount of output jitter that the DCM adds to the jitter on the CLKIN input.

3. For optimal jitter tolerance and faster lock time, use the CLKIN_PERIOD attribute.

Some jitter and duty-cycle specifications include 1% of input clock period or 0.01 UI. For example, the data sheet specifies a maximum jitter of "±[1% of CLKIN period + 150]". Assume the CLKIN frequency is 100 MHz. The equivalent CLKIN period is 10 ns and 1% of 10 ns is 0.1 ns or 100 ps. According to the data sheet, the maximum jitter is ±[100 ps + 150 ps] = ±250ps.

5. The typical delay step size is 23 ps.

Table	47:	Master	Mode	CCLK	Output	Frea	uencv	bv (Confid	nRate O	ption	Settina
10010								~, `		,		

Symbol	Description	<i>ConfigRate</i> Setting	Temperature Range	Minimum	Maximum	Units
F	Equivalent CCLK clock frequency	1	Commercial	0.400	0.797	MHz
FCCLK1	by ConfigHate setting	(power-on value)	Industrial	0.400	0.847	MHz
E.		2	Commercial	1.00	2.42	MHz
LCCTK3		3	Industrial	1.20	2.57	MHz
F	_	6	Commercial	0.40	4.83	MHz
CCLK6		(default)	Industrial	2.40	5.13	MHz
E		7	Commercial	2.90	5.61	MHz
FCCLK7		1	Industrial	2.00	5.96	MHz
E		0	Commercial	2.00	6.41	MHz
CCLK8		0	Industrial	3.20	6.81	MHz
E		10	Commercial	4.00	8.12	MHz
CCLK10		10	Industrial	4.00	8.63	MHz
E		10	Commercial	4.80	9.70	MHz
CCLK12		12	Industrial	4.80	10.31	MHz
E		10	Commercial	5.20	10.69	MHz
' CCLK13		10	Industrial	- 5.20	11.37	MHz
F		17	Commercial	- 6.80	13.74	MHz
' CCLK17		17	Industrial		14.61	MHz
Fagures		22	Commercial	8 80	18.44	MHz
' CCLK22			Industrial	0.00	19.61	MHz
Fagures		25	Commercial	10.00	20.90	MHz
CCLK25		20	Industrial	10.00	22.23	MHz
Fagure		27	Commercial	10.80	22.39	MHz
' CCLK27		£1	Industrial	10.00	23.81	MHz
Fagures		33	Commercial	13.20	27.48	MHz
^I CCLK33			Industrial	10.20	29.23	MHz
Fagure		44	Commercial	17.60	37.60	MHz
' CCLK44			Industrial	17.00	40.00	MHz
Footure		50	Commercial	20.00	44.80	MHz
· CCLK50			Industrial	20.00	47.66	MHz
Footstar		100	Commercial	40.00	88.68	MHz
· CCLK100		100	Industrial	-0.00	94.34	MHz

Table 48: Master Mode CCLK Output Minimum Low and High Time

				ConfigRate Setting															
Symbol	Descrip	otion	1	3	6	7	8	10	12	13	17	22	25	27	33	44	50	100	Units
-	Master Mode	Commercial	595	196	98.3	84.5	74.1	58.4	48.9	44.1	34.2	25.6	22.3	20.9	17.1	12.3	10.4	5.3	ns
T _{MCCL} , T _{MCCH}	Minimum Low and High Time	Industrial	560	185	92.6	79.8	69.8	55.0	46.0	41.8	32.3	24.2	21.4	20.0	16.2	11.9	10.0	5.0	ns

Table 49: Slave Mode CCLK Input Low and High Time

Symbol	Description	Min	Мах	Units
T _{SCCL,} T _{SCCH}	CCLK Low and High time	5	∞	ns

Slave Parallel Mode Timing

Notes:

- 1. It is possible to abort configuration by pulling CSI_B Low in a given CCLK cycle, then switching RDWR_B Low or High in any subsequent cycle for which CSI_B remains Low. The RDWR_B pin asynchronously controls the driver impedance of the D0 D7 bus. When RDWR_B switches High, be careful to avoid contention on the D0 D7 bus.
- 2. To pause configuration, pause CCLK instead of de-asserting CSI_B. See UG332 Chapter 7 section "Non-Continuous SelectMAP Data Loading" for more details.

Figure 13: Waveforms for Slave Parallel Configuration

Table 51: Timing for the Slave Parallel Configuration Mode

			All Spee	d Grades	
Symbol		Description	Min	Max	Units
Setup Times					
T _{SMDCC} ⁽²⁾	The time from the setup of data	at the D0-D7 pins to the rising transition at the CCLK pin	7	-	ns
T _{SMCSCC}	Setup time on the CSI_B pin b	efore the rising transition at the CCLK pin	7	-	ns
T _{SMCCW}	Setup time on the RDWR_B p	15	-	ns	
Hold Times					
T _{SMCCD}	The time from the rising transition at the CCLK pin to the point when data is last held at the D0-D7 pins			-	ns
T _{SMCCCS}	The time from the rising transit held at the CSO_B pin	ion at the CCLK pin to the point when a logic level is last	0	-	ns
T _{SMWCC}	The time from the rising transit held at the RDWR_B pin	ion at the CCLK pin to the point when a logic level is last	0	-	ns
Clock Timing					
Т _{ССН}	The High pulse width at the CO	CLK input pin	5	-	ns
T _{CCL}	The Low pulse width at the CCLK input pin			-	ns
F _{CCPAR}	Frequency of the clock signal No bitstream compression		0	80	MHz
	at the COLK input pin	With bitstream compression	0	80	MHz

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 8.

2. Some Xilinx documents refer to Parallel modes as "SelectMAP" modes.

Table 55: Configuration Timing Requirements for Attached Parallel NOR BPI Flash

Symbol	Description	Requirement	Units
T _{CE} (t _{ELQV})	Parallel NOR Flash PROM chip-select time	T _{CE} ≤ T _{INITADDR}	ns
T _{OE} (t _{GLQV})	Parallel NOR Flash PROM output-enable time	T _{OE} ≤ T _{INITADDR}	ns
T _{ACC} (t _{AVQV})	Parallel NOR Flash PROM read access time	$T_{ACC} \leq 50\% T_{CCLKn(min)} - T_{CCO} - T_{DCC} - PCB$	ns
T _{BYTE} (t _{FLQV} , t _{FHQV})	For x8/x16 PROMs only: BYTE# to output valid time ⁽³⁾	T _{BYTE} ≤ T _{INITADDR}	ns

Notes:

1. These requirements are for successful FPGA configuration in BPI mode, where the FPGA generates the CCLK signal. The post-configuration timing can be different to support the specific needs of the application loaded into the FPGA.

- 2. Subtract additional printed circuit board routing delay as required by the application.
- 3. The initial BYTE# timing can be extended using an external, appropriately sized pull-down resistor on the FPGA's LDC2 pin. The resistor value also depends on whether the FPGA's PUDC_B pin is High or Low.

Package Thermal Characteristics

The power dissipated by an FPGA application has implications on package selection and system design. The power consumed by a Spartan-3A FPGA is reported using either the <u>XPower Power Estimator</u> or the <u>XPower Analyzer</u> calculator integrated in the Xilinx® ISE® development software. Table 62 provides the thermal characteristics for the various Spartan-3A FPGA package offerings. This information is also available using the Thermal Query tool on xilinx.com (www.xilinx.com/cgi-bin/thermal/thermal.pl). The junction-to-case thermal resistance (θ_{JC}) indicates the difference between the temperature measured on the package body (case) and the die junction temperature per watt of power consumption. The junction-to-board (θ_{JB}) value similarly reports the difference between the board and junction temperature. The junction-to-ambient (θ_{JA}) value reports the temperature difference between the ambient environment and the junction temperature. The θ_{JA} value is reported at different air velocities, measured in linear feet per minute (LFM). The "Still Air (0 LFM)" column shows the θ_{JA} value in a system without a fan. The thermal resistance drops with increasing air flow.

				Junction-to-Ambient (θ _{JA}) at Different Air Flows				
Package	Device	Junction-to-Case (θ _{JC})	Junction-to- Board (θ _{JB})	Still Air (0 LFM)	250 LFM	500 LFM	750 LFM	Units
VQ100	XC3S50A	12.9	30.1	48.5	40.4	37.6	36.6	°C/Watt
VQG100	XC3S200A	10.9	25.7	42.9	35.7	33.2	32.4	°C/Watt
TQ144 TQG144	XC3S50A	16.5	32.0	42.4	36.3	35.8	34.9	°C/Watt
	XC3S50A	16.0	33.5	42.3	35.6	35.5	34.5	°C/Watt
	XC3S200A	10.3	23.8	32.7	26.6	26.1	25.2	°C/Watt
FT256 FTG256	XC3S400A	8.4	19.3	29.9	24.9	23.0	22.3	°C/Watt
	XC3S700A	7.8	18.6	28.1	22.3	21.2	20.7	°C/Watt
	XC3S1400A	5.4	14.1	24.2	18.7	17.5	17.0	°C/Watt
FG320	XC3S200A	11.7	18.5	27.8	22.3	21.1	20.3	°C/Watt
FGG320	XC3S400A	9.9	15.4	25.2	19.8	18.6	17.8	°C/Watt
FG400	XC3S400A	9.8	15.5	25.6	19.2	18.0	17.3	°C/Watt
FGG400	XC3S700A	8.2	13.0	23.1	17.9	16.7	16.0	°C/Watt
FG484	XC3S700A	7.9	12.8	22.3	17.4	16.2	15.5	°C/Watt
FGG484	XC3S1400A	6.0	9.9	19.5	14.7	13.5	12.8	°C/Watt
FG676 FGG676	XC3S1400A	5.8	9.4	17.8	13.5	12.4	11.8	°C/Watt

Table 62: Spartan-3A Package Thermal Characteristics

VQ100 Footprint (XC3S50A)

Note pin 1 indicator in top-left corner and logo orientation.

FT256: 256-ball Fine-pitch, Thin Ball Grid Array

The 256-ball fine-pitch, thin ball grid array package, FT256, supports all five Spartan-3A FPGAs. The XC3S200A and XC3S400A have identical footprints, and the XC3S700A and XC3S1400A have identical footprints. The XC3S50A is compatible with the XC3S200A/XC3S400A but has 51 unconnected balls. The XC3S200A/XC3S400A is similar to the XC3S700A/XC3S1400A, but the XC3S700A/XC3S1400A adds more power and ground pins and therefore is not compatible.

Table 68 lists all the package pins for the XC3S50A, XC3S200A, and XC3S400A. They are sorted by bank number and then by pin name of the largest device. Pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier.

The highlighted rows indicate pinout differences between the XC3S50A, the XC3S200A, and the XC3S400A FPGAs. The XC3S50A has 51 unconnected balls, indicated as N.C. (No Connection) in Table 68 and Figure 20 and with the black diamond character (\blacklozenge) in Table 68. Figure 21 provides the common footprint for the XC3S200A and XC3S400A.

Table 68 also indicates that some differential I/O pairs have different assignments between the XC3S50A and the XC3S200A/XC3S400A, highlighted in light blue. See "Footprint Migration Differences," page 99 for additional information.

All other balls have nearly identical functionality on all three devices. Table 73 summarizes the XC3S50A FPGA footprint migration differences for the FT256 package.

The XC3S50A does not support the address output pins for the Byte-wide Peripheral Interface (BPI) configuration mode.

Table 69 lists all the package pins for the XC3S700A and XC3S1400A. They are sorted by bank number and then by pin name. Pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier. Figure 22 provides the common footprint for the XC3S200A and XC3S400A.

An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at

www.xilinx.com/support/documentation/data_sheets/ s3a_pin.zip.

Pinout Table

Table 68: Spartan-3A FT256 Pinout (XC3S50A, XC3S200A, XC3S400)

Bank	XC3S50A	XC3S200A XC3S400A	FT256 Ball	Туре
0	IO_L01N_0	IO_L01N_0	C13	I/O
0	IO_L01P_0	IO_L01P_0	D13	I/O
0	IO_L02N_0	IO_L02N_0	B14	I/O
0	IO_L02P_0/ VREF_0	IO_L02P_0/ VREF_0	B15	VREF
0	IO_L03N_0	IO_L03N_0	D11	I/O
0	IO_L03P_0	IO_L03P_0	C12	I/O
0	IO_L04N_0	IO_L04N_0	A13	I/O
0	IO_L04P_0	IO_L04P_0	A14	I/O
0	N.C. (�)	IO_L05N_0	A12	I/O
0	IP_0	IO_L05P_0	B12	I/O
0	N.C. (♦)	IO_L06N_0/ VREF_0	E10	VREF
0	N.C. (�)	IO_L06P_0	D10	I/O
0	IO_L07N_0	IO_L07N_0	A11	I/O
0	IO_L07P_0	IO_L07P_0	C11	I/O
0	IO_L08N_0	IO_L08N_0	A10	I/O
0	IO_L08P_0	IO_L08P_0	B10	I/O
0	IO_L09N_0/ GCLK5	IO_L09N_0/ GCLK5	D9	GCLK
0	IO_L09P_0/ GCLK4	IO_L09P_0/ GCLK4	C10	GCLK
0	IO_L10N_0/ GCLK7	IO_L10N_0/ GCLK7	A9	GCLK
0	IO_L10P_0/ GCLK6	IO_L10P_0/ GCLK6	C9	GCLK
0	IO_L11N_0/ GCLK9	IO_L11N_0/ GCLK9	D8	GCLK
0	IO_L11P_0/ GCLK8	IO_L11P_0/ GCLK8	C8	GCLK
0	IO_L12N_0/ GCLK11	IO_L12N_0/ GCLK11	B8	GCLK
0	IO_L12P_0/ GCLK10	IO_L12P_0/ GCLK10	A8	GCLK
0	N.C. (�)	IO_L13N_0	C7	I/O
0	N.C. (�)	IO_L13P_0	A7	I/O
0	N.C. (♦)	IO_L14N_0/ VREF_0	E7	VREF
0	N.C. (�)	IO_L14P_0	F8	I/O
0	IO_L15N_0	IO_L15N_0	B6	I/O
0	IO_L15P_0	IO_L15P_0	A6	I/O
0	IO_L16N_0	IO_L16N_0	C6	I/O
0	IO_L16P_0	IO_L16P_0	D7	I/O
0	IO_L17N_0	IO_L17N_0	C5	I/O

Table 68: Spartan-3A FT256 Pinout (XC3S50A, XC3S200A, XC3S400) (Continued)

Bank	XC3S50A	XC3S200A XC3S400A	FT256 Ball	Туре
2	IO_L01N_2/M0	IO_L01N_2/M0	P4	DUAL
2	IO_L01P_2/M1	IO_L01P_2/M1	N4	DUAL
2	IO_L02N_2/ CSO_B	IO_L02N_2/ CSO_B	T2	DUAL
2	IO_L02P_2/M2	IO_L02P_2/M2	R2	DUAL
2	IO_L04P_2/VS2	IO_L03N_2/VS2	Т3	DUAL
2	IO_L03P_2/ RDWR_B	IO_L03P_2/ RDWR_B	R3	DUAL
2	IO_L04N_2/VS0	IO_L04N_2/VS0	P5	DUAL
2	IO_L03N_2/VS1	IO_L04P_2/VS1	N6	DUAL
2	IO_L06P_2	IO_L05N_2	R5	I/O
2	IO_L05P_2	IO_L05P_2	T4	I/O
2	IO_L06N_2/D6	IO_L06N_2/D6	T6	DUAL
2	IO_L05N_2/D7	IO_L06P_2/D7	T5	DUAL
2	N.C. (♦)	IO_L07N_2	P6	I/O
2	N.C. (�)	IO_L07P_2	N7	I/O
2	IO_L08N_2/D4	IO_L08N_2/D4	N8	DUAL
2	IO_L08P_2/D5	IO_L08P_2/D5	P7	DUAL
2	N.C. (♦)	IO_L09N_2/ GCLK13	T7	GCLK
2	N.C. (♦)	IO_L09P_2/ GCLK12	R7	GCLK
2	IO_L10N_2/ GCLK15	IO_L10N_2/ GCLK15	Т8	GCLK
2	IO_L10P_2/ GCLK14	IO_L10P_2/ GCLK14	P8	GCLK
2	IO_L11N_2/ GCLK1	IO_L11N_2/ GCLK1	P9	GCLK
2	IO_L11P_2/ GCLK0	IO_L11P_2/ GCLK0	N9	GCLK
2	IO_L12N_2/ GCLK3	IO_L12N_2/ GCLK3	Т9	GCLK
2	IO_L12P_2/ GCLK2	IO_L12P_2/ GCLK2	R9	GCLK
2	N.C. (�)	IO_L13N_2	M10	I/O
2	N.C. (�)	IO_L13P_2	N10	I/O
2	IO_L14P_2/ MOSI/CSI_B	IO_L14N_2/ MOSI/CSI_B	P10	DUAL
2	IO_L14N_2	IO_L14P_2	T10	I/O
2	IO_L15N_2/ DOUT	IO_L15N_2/ DOUT	R11	DUAL
2	IO_L15P_2/ AWAKE	IO_L15P_2/ AWAKE	T11	PWR MGMT
2	IO_L16N_2	IO_L16N_2	N11	I/O
2	IO_L16P_2	IO_L16P_2	P11	I/O
2	IO_L17N_2/D3	IO_L17N_2/D3	P12	DUAL
2	IO_L17P_2/ INIT_B	IO_L17P_2/ INIT_B	T12	DUAL

Table 68: Spartan-3A FT256 Pinout (XC3S50A, XC3S200A, XC3S400) (Continued)

Bank	XC3S50A	XC3S200A XC3S400A	FT256 Ball	Туре
2	IO_L20P_2/D1	IO_L18N_2/D1	R13	DUAL
2	IO_L18P_2/D2	IO_L18P_2/D2	T13	DUAL
2	N.C. (♦)	IO_L19N_2	P13	I/O
2	N.C. (♦)	IO_L19P_2	N12	I/O
2	IO_L20N_2/ CCLK	IO_L20N_2/ CCLK	R14	DUAL
2	IO_L18N_2/D0/ DIN/MISO	IO_L20P_2/D0/ DIN/MISO	T14	DUAL
2	IP_2	IP_2	L7	INPUT
2	IP_2	IP_2	L8	INPUT
2	IP_2/VREF_2	IP_2/VREF_2	L9	VREF
2	IP_2/VREF_2	IP_2/VREF_2	L10	VREF
2	IP_2/VREF_2	IP_2/VREF_2	M7	VREF
2	IP_2/VREF_2	IP_2/VREF_2	M8	VREF
2	IP_2/VREF_2	IP_2/VREF_2	M11	VREF
2	IP_2/VREF_2	IP_2/VREF_2	N5	VREF
2	VCCO_2	VCCO_2	M9	VCCO
2	VCCO_2	VCCO_2	R4	VCCO
2	VCCO_2	VCCO_2	R8	VCCO
2	VCCO_2	VCCO_2	R12	VCCO
3	IO_L01N_3	IO_L01N_3	C1	I/O
3	IO_L01P_3	IO_L01P_3	C2	I/O
3	IO_L02N_3	IO_L02N_3	D3	I/O
3	IO_L02P_3	IO_L02P_3	D4	I/O
3	IO_L03N_3	IO_L03N_3	E1	I/O
3	IO_L03P_3	IO_L03P_3	D1	I/O
3	N.C. (♠)	IO_L05N_3	E2	I/O
3	N.C. (♠)	IO_L05P_3	E3	I/O
3	N.C. (♦)	IO_L07N_3	G4	I/O
3	N.C. (♦)	IO_L07P_3	F3	I/O
3	IO_L08N_3/ VREF_3	IO_L08N_3/ VREF_3	G1	VREF
3	IO_L08P_3	IO_L08P_3	F1	I/O
3	N.C. (♦)	IO_L09N_3	H4	I/O
3	N.C. (♦)	IO_L09P_3	G3	I/O
3	N.C. (♠)	IO_L10N_3	H5	I/O
3	N.C. (♦)	IO_L10P_3	H6	I/O
3	IO_L11N_3/ LHCLK1	IO_L11N_3/ LHCLK1	H1	LHCLK
3	IO_L11P_3/ LHCLK0	IO_L11P_3/ LHCLK0	G2	LHCLK
3	IO_L12N_3/ IRDY2/LHCLK3	IO_L12N_3/ IRDY2/LHCLK3	J3	LHCLK
3	IO_L12P_3/ LHCLK2	IO_L12P_3/ LHCLK2	H3	LHCLK

XC3S50A Differential I/O Alignment Differences

Also, some differential I/O pairs on the XC3S50A FPGA are aligned differently than the corresponding pairs on the XC3S200A or XC3S400A FPGAs, as shown in Table 74. All the mismatched pairs are in I/O Bank 2. The shading highlights the N side of each pair.

Table 74: Differential I/O Differences in FT256

FT256 Ball	Bank	XC3S50A	XC3S200A XC3S400A
Т3		IO_L04P_2/VS2	IO_L03N_2/VS2
N6		IO_L03N_2/VS1	IO_L04P_2/VS1
R5		IO_L06P_2	IO_L05N_2
T5		IO_L05N_2/D7	IO_L06P_2/D7
P10	2	IO_L14P_2/MOSI /CSI_B	IO_L14N_2/MOSI /CSI_B
T10		IO_L14N_2	IO_L14P_2
R13		IO_L20P_2	IO_L18N_2
T14		IO_L18N_2	IO_L20P_2

XC3S50A Does Not Have BPI Mode Address Outputs

The XC3S50A FPGA does not generate the BPI-mode address pins during configuration. Table 75 summarizes these differences.

Table	75:	XC3S50A	BPI	Functional	Differences
-------	-----	---------	-----	-------------------	-------------

FT256 Ball	Bank	XC3S50A	XC3S200A XC3S400A
N16		IO_L03N_1	IO_L03N_1/A1
P16		IO_L03P_1	IO_L03P_1/A0
J13		IO_L10N_1	IO_L10N_1/A9
J12		IO_L10P_1	IO_L10P_1/A8
F13		IO_L20N_1	IO_L20N_1/A19
E14	- 1	IO_L20P_1	IO_L20P_1/A18
D15	I	IO_L22N_1	IO_L22N_1/A21
D16		IO_L22P_1	IO_L22P_1/A20
D14		IO_L23N_1	IO_L23N_1/A23
E13		IO_L23P_1	IO_L23P_1/A22
C15		IO_L24N_1	IO_L24N_1/A25
C16		IO_L24P_1	IO_L24P_1/A24

User I/Os by Bank

Table 78 and Table 79 indicate how the available user-I/O pins are distributed between the four I/O banks on the FG320 package. The AWAKE pin is counted as a dual-purpose I/O.

Table 78: User I/Os Per Bank for XC3S200A in the FG320 Package

Package	I/O Bank	Maximum I/O	All Possible I/O Pins by Type				
Edge			I/O	INPUT	DUAL	VREF	CLK
Тор	0	60	35	11	1	5	8
Right	1	64	9	10	30	7	8
Bottom	2	60	19	6	21	6	8
Left	3	64	38	13	0	5	8
TOTAL		248	101	40	52	23	32

Table 79: User I/Os Per Bank for XC3S400A in the FG320 Package

Package	I/O Bank	Maximum I/O	All Possible I/O Pins by Type				
Edge			I/O	INPUT	DUAL	VREF	CLK
Тор	0	61	35	12	1	5	8
Right	1	64	9	10	30	7	8
Bottom	2	62	19	7	21	7	8
Left	3	64	38	13	0	5	8
TOTAL		251	101	42	52	24	32

Footprint Migration Differences

Table 80 summarizes any footprint and functionality differences between the XC3S200A and the XC3S400A FPGAs that might affect easy migration between devices available in the FG320 package. There are three such balls. All other pins not listed in Table 80 unconditionally migrate between Spartan-3A devices available in the FG320 package.

The arrows indicate the direction for easy migration.

Table	80:	FG320	Footprint	Migration	Differences
-------	-----	-------	-----------	-----------	-------------

Pin	Bank	XC3S200A	Migration	XC3S400A
E13	0	N.C.	\rightarrow	INPUT
N7	2	N.C.	\rightarrow	INPUT
P14	2	N.C.	\rightarrow	INPUT/VREF
DIFFERENCES			3	

Legend:

→

This pin can unconditionally migrate from the device on the left to the device on the right. Migration in the other direction is possible depending on how the pin is configured for the device on the right.

FG400: 400-ball Fine-pitch Ball Grid Array

The 400-ball fine-pitch ball grid array, FG400, supports two different Spartan-3A FPGAs, the XC3S400A and the XC3S700A. Both devices share a common footprint for this package as shown in Table 81 and Figure 24.

Table 81 lists all the FG400 package pins. They are sorted by bank number and then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier.

An electronic version of this package pinout table and footpri websit

Pino

Table

Bank	Pin Name	FG400 Ball	Туре
0	IO_L01N_0	A18	I/O
0	IO_L01P_0	B18	I/O
0	IO_L02N_0	C17	I/O
0	IO_L02P_0/VREF_0	D17	VREF
0	IO_L03N_0	E15	I/O
0	IO_L03P_0	D16	I/O
0	IO_L04N_0	A17	I/O
0	IO_L04P_0/VREF_0	B17	VREF
0	IO_L05N_0	A16	I/O
0	IO_L05P_0	C16	I/O
0	IO_L06N_0	C15	I/O
0	IO_L06P_0	D15	I/O
0	IO_L07N_0	A14	I/O
0	IO_L07P_0	C14	I/O
0	IO_L08N_0	A15	I/O
0	IO_L08P_0	B15	I/O
0	IO_L09N_0	F13	I/O
0	IO_L09P_0	E13	I/O
0	IO_L10N_0/VREF_0	C13	VREF
0	IO_L10P_0	D14	I/O
0	IO_L11N_0	C12	I/O
0	IO_L11P_0	B13	I/O
0	IO_L12N_0	F12	I/O
0	IO_L12P_0	D12	I/O
0	IO_L13N_0	A12	I/O

	en a la server a la granda de la develo de la server de la			
int d te at	agram is available for down	load from	the Xilinx	0
w/w/ >	kilinx.com/support/document	tation/data	sheets/	0
Ba_p	in.zip.			0
	T - 1, 1 -			0
ut	lable			0
81:	Spartan-3A FG400 Pinou	t		0
	Dia Marra	FG400	T	0
nĸ		Ball	Туре	0
		A18	1/0	0
		B18	1/0	0
	IO_L02N_0	C17	1/0	0
	IO_L02P_0/VREF_0	D17	VREF	0
	IO_L03N_0	E15	I/O	0
	IO_L03P_0	D16	I/O	0
	IO_L04N_0	A17	I/O	0
	IO_L04P_0/VREF_0	B17	VREF	0
	IO_L05N_0	A16	I/O	0
	IO_L05P_0	C16	I/O	0
	IO_L06N_0	C15	I/O	0
	IO_L06P_0	D15	I/O	0
	IO_L07N_0	A14	I/O	0
	IO_L07P_0	C14	I/O	0
	IO_L08N_0	A15	I/O	0
	IO_L08P_0	B15	I/O	0
	IO_L09N_0	F13	I/O	0
	IO_L09P_0	E13	I/O	0
	IO_L10N_0/VREF_0	C13	VREF	0
	IO_L10P_0	D14	I/O	0
	IO_L11N_0	C12	I/O	
	IO_L11P_0	B13	I/O	
	IO_L12N_0	F12	I/O	
	IO_L12P_0	D12	I/O	

Table	81:	Spartan-3A	FG400	Pinout(Continued)
-------	-----	------------	-------	---------	------------

Bank	Pin Name	FG400 Ball	Туре
0	IO_L13P_0	B12	I/O
0	IO_L14N_0	C11	I/O
0	IO_L14P_0	B11	I/O
0	IO_L15N_0/GCLK5	E11	GCLK
0	IO_L15P_0/GCLK4	D11	GCLK
0	IO_L16N_0/GCLK7	C10	GCLK
0	IO_L16P_0/GCLK6	A10	GCLK
0	IO_L17N_0/GCLK9	E10	GCLK
0	IO_L17P_0/GCLK8	D10	GCLK
0	IO_L18N_0/GCLK11	A8	GCLK
0	IO_L18P_0/GCLK10	A9	GCLK
0	IO_L19N_0	C9	I/O
0	IO_L19P_0	B9	I/O
0	IO_L20N_0	C8	I/O
0	IO_L20P_0	B8	I/O
0	IO_L21N_0	D8	I/O
0	IO_L21P_0	C7	I/O
0	IO_L22N_0/VREF_0	F9	VREF
0	IO_L22P_0	E9	I/O
0	IO_L23N_0	F8	I/O
0	IO_L23P_0	E8	I/O
0	IO_L24N_0	A7	I/O
0	IO_L24P_0	B7	I/O
0	IO_L25N_0	C6	I/O
0	IO_L25P_0	A6	I/O
0	IO_L26N_0	B5	I/O
0	IO_L26P_0	A5	I/O
0	IO_L27N_0	F7	I/O
0	IO_L27P_0	E7	I/O
0	IO_L28N_0	D6	I/O
0	IO_L28P_0	C5	I/O
0	IO_L29N_0	C4	I/O
0	IO_L29P_0	A4	I/O
0	IO_L30N_0	B3	I/O
0	IO_L30P_0	A3	I/O
0	IO_L31N_0	F6	I/O
0	IO_L31P_0	E6	I/O
0	IO_L32N_0/PUDC_B	B2	DUAL

Table 81: Spartan-3A FG400 Pinout(Continued)

Table 81: Spartan-3A FG400 Pinout(Continued)

Bank	Pin Name	FG400 Ball	Туре
1	IP_1/VREF_1	N14	VREF
1	IP_L04N_1/VREF_1	P15	VREF
1	IP_L04P_1	P14	INPUT
1	IP_L11N_1/VREF_1	M15	VREF
1	IP_L11P_1	M16	INPUT
1	IP_L15N_1	M13	INPUT
1	IP_L15P_1/VREF_1	M14	VREF
1	IP_L19N_1	L13	INPUT
1	IP_L19P_1	L14	INPUT
1	IP_L23N_1	K14	INPUT
1	IP_L23P_1/VREF_1	K15	VREF
1	IP_L27N_1	J15	INPUT
1	IP_L27P_1	J16	INPUT
1	IP_L31N_1	J13	INPUT
1	IP_L31P_1/VREF_1	J14	VREF
1	IP_L35N_1	H14	INPUT
1	IP_L35P_1	H15	INPUT
1	IP_L39N_1	G14	INPUT
1	IP_L39P_1/VREF_1	G15	VREF
1	VCCO_1	D19	VCCO
1	VCCO_1	H16	VCCO
1	VCCO_1	K19	VCCO
1	VCCO_1	N16	VCCO
1	VCCO_1	T19	VCCO
2	IO_L01N_2/M0	V4	DUAL
2	IO_L01P_2/M1	U4	DUAL
2	IO_L02N_2/CSO_B	Y2	DUAL
2	IO_L02P_2/M2	W3	DUAL
2	IO_L03N_2	W4	I/O
2	IO_L03P_2	Y3	I/O
2	IO_L04N_2	R7	I/O
2	IO_L04P_2	T6	I/O
2	IO_L05N_2	U5	I/O
2	IO_L05P_2	V5	I/O
2	IO_L06N_2	U6	I/O
2	IO_L06P_2	T7	I/O
2	IO_L07N_2/VS2	U7	DUAL
2	IO_L07P_2/RDWR_B	Т8	DUAL
2	IO_L08N_2	Y5	I/O
2	IO_L08P_2	Y4	I/O

Bank	Pin Name	FG400 Ball	Туре
2	IO_L09N_2/VS0	W6	DUAL
2	IO_L09P_2/VS1	V6	DUAL
2	IO_L10N_2	Y7	I/O
2	IO_L10P_2	Y6	I/O
2	IO_L11N_2	U9	I/O
2	IO_L11P_2	Т9	I/O
2	IO_L12N_2/D6	W8	DUAL
2	IO_L12P_2/D7	V7	DUAL
2	IO_L13N_2	V9	I/O
2	IO_L13P_2	V8	I/O
2	IO_L14N_2/D4	T10	DUAL
2	IO_L14P_2/D5	U10	DUAL
2	IO_L15N_2/GCLK13	Y9	GCLK
2	IO_L15P_2/GCLK12	W9	GCLK
2	IO_L16N_2/GCLK15	W10	GCLK
2	IO_L16P_2/GCLK14	V10	GCLK
2	IO_L17N_2/GCLK1	V11	GCLK
2	IO_L17P_2/GCLK0	Y11	GCLK
2	IO_L18N_2/GCLK3	V12	GCLK
2	IO_L18P_2/GCLK2	U11	GCLK
2	IO_L19N_2	R12	I/O
2	IO_L19P_2	T12	I/O
2	IO_L20N_2/MOSI/CSI_B	W12	DUAL
2	IO_L20P_2	Y12	I/O
2	IO_L21N_2	W13	I/O
2	IO_L21P_2	Y13	I/O
2	IO_L22N_2/DOUT	V13	DUAL
2	IO_L22P_2/AWAKE	U13	PWR MGMT
2	IO_L23N_2	R13	I/O
2	IO_L23P_2	T13	I/O
2	IO_L24N_2/D3	W14	DUAL
2	IO_L24P_2/INIT_B	Y14	DUAL
2	IO_L25N_2	T14	I/O
2	IO_L25P_2	V14	I/O
2	IO_L26N_2/D1	V15	DUAL
2	IO_L26P_2/D2	Y15	DUAL
2	IO_L27N_2	T15	I/O
2	IO_L27P_2	U15	I/O
2	IO_L28N_2	W16	I/O

Table 83: Spartan-3A FG484 Pinout(Continued)

Table 83	3: Sp	artan-3A	FG484	Pinout	(Continued)
----------	--------------	----------	-------	--------	-------------

Bank	Pin Name	FG484 Ball	Туре
2	VCCO_2	AA18	VCCO
2	VCCO_2	AA5	VCCO
2	VCCO_2	AA9	VCCO
2	VCCO_2	U14	VCCO
2	VCCO_2	U9	VCCO
3	IO_L01N_3	D2	I/O
3	IO_L01P_3	C1	I/O
3	IO_L02N_3	C2	I/O
3	IO_L02P_3	B1	I/O
3	IO_L03N_3	E4	I/O
3	IO_L03P_3	D3	I/O
3	IO_L05N_3	G5	I/O
3	IO_L05P_3	G6	I/O
3	IO_L06N_3	E1	I/O
3	IO_L06P_3	D1	I/O
3	IO_L07N_3	E3	I/O
3	IO_L07P_3	F4	I/O
3	IO_L08N_3	G4	I/O
3	IO_L08P_3	F3	I/O
3	IO_L09N_3	H6	I/O
3	IO_L09P_3	H5	I/O
3	IO_L10N_3	J5	I/O
3	IO_L10P_3	K6	I/O
3	IO_L12N_3	F1	I/O
3	IO_L12P_3	F2	I/O
3	IO_L13N_3	G1	I/O
3	IO_L13P_3	G3	I/O
3	IO_L14N_3	НЗ	I/O
3	IO_L14P_3	H4	I/O
3	IO_L16N_3	H1	I/O
3	IO_L16P_3	H2	I/O
3	IO_L17N_3/VREF_3	J1	VREF
3	IO_L17P_3	JЗ	I/O
3	IO_L18N_3	K4	I/O
3	IO_L18P_3	K5	I/O
3	IO_L20N_3	K2	I/O
3	IO_L20P_3	КЗ	I/O
3	IO_L21N_3/LHCLK1	L3	LHCLK
3	IO_L21P_3/LHCLK0	L5	LHCLK
3	IO_L22N_3/IRDY2/LHCLK3	L1	LHCLK

Bank	Pin Name	FG484 Ball	Туре
3	IO_L22P_3/LHCLK2	K1	LHCLK
3	IO_L24N_3/LHCLK5	M2	LHCLK
3	IO_L24P_3/LHCLK4	M1	LHCLK
3	IO_L25N_3/LHCLK7	M4	LHCLK
3	IO_L25P_3/TRDY2/LHCLK6	MЗ	LHCLK
3	IO_L26N_3	N3	I/O
3	IO_L26P_3/VREF_3	N1	VREF
3	IO_L28N_3	P2	I/O
3	IO_L28P_3	P1	I/O
3	IO_L29N_3	P5	I/O
3	IO_L29P_3	P3	I/O
3	IO_L30N_3	N4	I/O
3	IO_L30P_3	M5	I/O
3	IO_L32N_3	R2	I/O
3	IO_L32P_3	R1	I/O
3	IO_L33N_3	R4	I/O
3	IO_L33P_3	R3	I/O
3	IO_L34N_3	T4	I/O
3	IO_L34P_3	R5	I/O
3	IO_L36N_3	Т3	I/O
3	IO_L36P_3/VREF_3	T1	VREF
3	IO_L37N_3	U2	I/O
3	IO_L37P_3	U1	I/O
3	IO_L38N_3	V3	I/O
3	IO_L38P_3	V1	I/O
3	IO_L40N_3	U5	I/O
3	IO_L40P_3	T5	I/O
3	IO_L41N_3	U4	I/O
3	IO_L41P_3	U3	I/O
3	IO_L42N_3	W2	I/O
3	IO_L42P_3	W1	I/O
3	IO_L43N_3	W3	I/O
3	IO_L43P_3	V4	I/O
3	IO_L44N_3	Y2	I/O
3	IO_L44P_3	Y1	I/O
3	IO_L45N_3	AA2	I/O
3	IO_L45P_3	AA1	I/O
3	IP_3/VREF_3	J8	VREF
3	IP_3/VREF_3	R6	VREF
3	IP_L04N_3/VREF_3	H7	VREF