# E·XF



Welcome to E-XFL.COM

#### Understanding Embedded - FPGAs (Field Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

#### **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

| D | e | t | a | I | IS | 5 |
|---|---|---|---|---|----|---|
|   |   |   |   |   |    |   |

| Details                        |                                                              |
|--------------------------------|--------------------------------------------------------------|
| Product Status                 | Active                                                       |
| Number of LABs/CLBs            | 896                                                          |
| Number of Logic Elements/Cells | 8064                                                         |
| Total RAM Bits                 | 368640                                                       |
| Number of I/O                  | 251                                                          |
| Number of Gates                | 400000                                                       |
| Voltage - Supply               | 1.14V ~ 1.26V                                                |
| Mounting Type                  | Surface Mount                                                |
| Operating Temperature          | -40°C ~ 100°C (TJ)                                           |
| Package / Case                 | 320-BGA                                                      |
| Supplier Device Package        | 320-FBGA (19x19)                                             |
| Purchase URL                   | https://www.e-xfl.com/product-detail/xilinx/xc3s400a-4fg320i |
|                                |                                                              |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



# Spartan-3A FPGA Family: DC and Switching Characteristics

DS529-3 (v2.0) August 19, 2010

### **Product Specification**

# **DC Electrical Characteristics**

In this section, specifications may be designated as Advance, Preliminary, or Production. These terms are defined as follows:

**Advance:** Initial estimates are based on simulation, early characterization, and/or extrapolation from the characteristics of other families. Values are subject to change. Use as estimates, not for production.

**Preliminary:** Based on characterization. Further changes are not expected.

**Production:** These specifications are approved once the silicon has been characterized over numerous production lots. Parameter values are considered stable with no future changes expected.

All parameter limits are representative of worst-case supply voltage and junction temperature conditions. **Unless** otherwise noted, the published parameter values apply to all Spartan®-3A devices. AC and DC characteristics are specified using the same numbers for both commercial and industrial grades.

# **Absolute Maximum Ratings**

Stresses beyond those listed under Table 4: Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions is not implied. Exposure to absolute maximum conditions for extended periods of time adversely affects device reliability.

| Symbol             | Description                                                | Conditions                                | Min   | Max                   | Units |
|--------------------|------------------------------------------------------------|-------------------------------------------|-------|-----------------------|-------|
| V <sub>CCINT</sub> | Internal supply voltage                                    |                                           | -0.5  | 1.32                  | V     |
| V <sub>CCAUX</sub> | Auxiliary supply voltage                                   |                                           | -0.5  | 3.75                  | V     |
| V <sub>CCO</sub>   | Output driver supply voltage                               |                                           | -0.5  | 3.75                  | V     |
| V <sub>REF</sub>   | Input reference voltage                                    |                                           | -0.5  | V <sub>CCO</sub> +0.5 | V     |
| Vin                | Voltage applied to all User I/O pins and dual-purpose pins | Driver in a high-impedance state          | -0.95 | 4.6                   | V     |
|                    | Voltage applied to all Dedicated pins                      |                                           | -0.5  | 4.6                   | V     |
| I <sub>IK</sub>    | Input clamp current per I/O pin                            | $-0.5V < V_{IN} < (V_{CCO} + 0.5V)^{(1)}$ | -     | ±100                  | mA    |
|                    |                                                            | Human body model                          | -     | ±2000                 | V     |
| V <sub>ESD</sub>   | Electrostatic Discharge Voltage                            | Charged device model                      | -     | ±500                  | V     |
|                    |                                                            | Machine model                             | -     | ±200                  | V     |
| TJ                 | Junction temperature                                       |                                           | -     | 125                   | °C    |
| T <sub>STG</sub>   | Storage temperature                                        |                                           | -65   | 150                   | °C    |

### Table 4: Absolute Maximum Ratings

Notes:

1. Upper clamp applies only when using PCI IOSTANDARDs.

2. For soldering guidelines, see UG112: Device Packaging and Thermal Characteristics and XAPP427: Implementation and Solder Reflow Guidelines for Pb-Free Packages.

© Copyright 2006–2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. PCI is a registered trademark of the PCI-SIG. All other trademarks are the property of their respective owners.

www.xilinx.com

# **Power Supply Specifications**

#### Table 5: Supply Voltage Thresholds for Power-On Reset

| Symbol              | Description                                      | Min | Max | Units |
|---------------------|--------------------------------------------------|-----|-----|-------|
| V <sub>CCINTT</sub> | Threshold for the V <sub>CCINT</sub> supply      | 0.4 | 1.0 | V     |
| V <sub>CCAUXT</sub> | Threshold for the V <sub>CCAUX</sub> supply      | 1.0 | 2.0 | V     |
| V <sub>CCO2T</sub>  | Threshold for the V <sub>CCO</sub> Bank 2 supply | 1.0 | 2.0 | V     |

#### Notes:

 V<sub>CCINT</sub>, V<sub>CCAUX</sub>, and V<sub>CCO</sub> supplies to the FPGA can be applied in any order. However, the FPGA's configuration source (Platform Flash, SPI Flash, parallel NOR Flash, microcontroller) might have specific requirements. Check the data sheet for the attached configuration source. Apply V<sub>CCINT</sub> last for lowest overall power consumption (see <u>UG331</u> chapter "Powering Spartan-3 Generation FPGAs" for more information).

2. To ensure successful power-on, V<sub>CCINT</sub>, V<sub>CCO</sub> Bank 2, and V<sub>CCAUX</sub> supplies must rise through their respective threshold-voltage ranges with no dips at any point.

#### Table 6: Supply Voltage Ramp Rate

| Symbol              | Description                                                   | Min | Max | Units |
|---------------------|---------------------------------------------------------------|-----|-----|-------|
| V <sub>CCINTR</sub> | Ramp rate from GND to valid V <sub>CCINT</sub> supply level   | 0.2 | 100 | ms    |
| V <sub>CCAUXR</sub> | Ramp rate from GND to valid $V_{\mbox{CCAUX}}$ supply level   | 0.2 | 100 | ms    |
| V <sub>CCO2R</sub>  | Ramp rate from GND to valid $V_{\rm CCO}$ Bank 2 supply level | 0.2 | 100 | ms    |

#### Notes:

 V<sub>CCINT</sub>, V<sub>CCAUX</sub>, and V<sub>CCO</sub> supplies to the FPGA can be applied in any order. However, the FPGA's configuration source (Platform Flash, SPI Flash, parallel NOR Flash, microcontroller) might have specific requirements. Check the data sheet for the attached configuration source. Apply V<sub>CCINT</sub> last for lowest overall power consumption (see <u>UG331</u> chapter "Powering Spartan-3 Generation FPGAs" for more information).

2. To ensure successful power-on, V<sub>CCINT</sub>, V<sub>CCO</sub> Bank 2, and V<sub>CCAUX</sub> supplies must rise through their respective threshold-voltage ranges with no dips at any point.

# *Table 7:* Supply Voltage Levels Necessary for Preserving CMOS Configuration Latch (CCL) Contents and RAM Data

| Symbol             | Description                                                                             | Min | Units |
|--------------------|-----------------------------------------------------------------------------------------|-----|-------|
| V <sub>DRINT</sub> | $V_{CCINT}$ level required to retain CMOS Configuration Latch (CCL) and RAM data        | 1.0 | V     |
| V <sub>DRAUX</sub> | $V_{\mbox{CCAUX}}$ level required to retain CMOS Configuration Latch (CCL) and RAM data | 2.0 | V     |

# **Switching Characteristics**

All Spartan-3A FPGAs ship in two speed grades: -4 and the higher performance -5. Switching characteristics in this document are designated as Advance, Preliminary, or Production, as shown in Table 16. Each category is defined as follows:

Advance: These specifications are based on simulations only and are typically available soon after establishing FPGA specifications. Although speed grades with this designation are considered relatively stable and conservative, some under-reporting might still occur.

**Preliminary**: These specifications are based on complete early silicon characterization. Devices and speed grades with this designation are intended to give a better indication of the expected performance of production silicon. The probability of under-reporting preliminary delays is greatly reduced compared to Advance data.

**Production**: These specifications are approved once enough production silicon of a particular device has been characterized to provide full correlation between speed files and devices over numerous production lots. There is no under-reporting of delays, and customers receive formal notification of any subsequent changes. Typically, the slowest speed grades transition to Production before faster speed grades.

# **Software Version Requirements**

Production-quality systems must use FPGA designs compiled using a speed file designated as PRODUCTION status. FPGA designs using a less mature speed file designation should only be used during system prototyping or pre-production qualification. FPGA designs with speed files designated as Advance or Preliminary should not be used in a production-quality system.

Whenever a speed file designation changes, as a device matures toward Production status, rerun the latest Xilinx® ISE® software on the FPGA design to ensure that the FPGA design incorporates the latest timing information and software updates.

All parameter limits are representative of worst-case supply voltage and junction temperature conditions. **Unless** otherwise noted, the published parameter values apply to all Spartan-3A devices. AC and DC characteristics are specified using the same numbers for both commercial and industrial grades. To create a Xilinx user account and sign up for automatic E-mail notification whenever this data sheet is updated:

### • Sign Up for Alerts www.xilinx.com/support/answers/18683.htm

Timing parameters and their representative values are selected for inclusion below either because they are important as general design requirements or they indicate fundamental device performance characteristics. The Spartan-3A FPGA speed files (v1.41), part of the Xilinx Development Software, are the original source for many but not all of the values. The speed grade designations for these files are shown in Table 16. For more complete, more precise, and worst-case data, use the values reported by the Xilinx static timing analyzer (TRACE in the Xilinx development software) and back-annotated to the simulation netlist.

### Table 16: Spartan-3A v1.41 Speed Grade Designation

| Device    | Advance | Preliminary | Production |
|-----------|---------|-------------|------------|
| XC3S50A   |         |             | -4, -5     |
| XC3S200A  |         |             | -4, -5     |
| XC3S400A  |         |             | -4, -5     |
| XC3S700A  |         |             | -4, -5     |
| XC3S1400A |         |             | -4, -5     |

Table 17 provides the recent history of the Spartan-3AFPGA speed files.

| Table | 17: | Spartan-3A | <b>Speed File</b> | Version | History |
|-------|-----|------------|-------------------|---------|---------|
|-------|-----|------------|-------------------|---------|---------|

| Version | ISE<br>Release                                                                 | Description                                                                                                                                                                     |
|---------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.41    | ISE 10.1.03                                                                    | Updated Automotive output delays                                                                                                                                                |
| 1.40    | ISE 10.1.02                                                                    | Updated Automotive input delays.                                                                                                                                                |
| 1.39    | ISE 10.1.01                                                                    | Added Automotive parts.                                                                                                                                                         |
| 1.38    | ISE 9.2.03i                                                                    | Added Absolute Minimum values.                                                                                                                                                  |
| 1.37    | ISE 9.2.01i                                                                    | Updated pin-to-pin setup and hold<br>times (Table 19), TMDS output<br>adjustment (Table 26) multiplier<br>setup/hold times (Table 34), and block<br>RAM clock width (Table 35). |
| 1.36    | ISE 9.2i;<br>previously<br>available via<br>Answer<br>Record<br><u>AR24992</u> | XC3S400A, all speed grades and all temperature grades, upgraded to Production                                                                                                   |
| 1.35    | Answer<br>Record<br>AR24992                                                    | XC3S50A, XC3S200A, XC3S700A,<br>XC3S1400A, all speed grades and all<br>temperature grades, upgraded to<br>Production.                                                           |
| 1.34    | ISE 9.1.03i                                                                    | XC3S700A and XC3S1400A -4 speed<br>grade upgraded to Production. Updated<br>pin-to-pin timing numbers.                                                                          |

| Signal Standard  |                      | Inputs                   |                          | Ou                                | tputs              | Inputs and<br>Outputs |
|------------------|----------------------|--------------------------|--------------------------|-----------------------------------|--------------------|-----------------------|
| (IOSTANDARD)     | V <sub>REF</sub> (V) | V <sub>L</sub> (V)       | V <sub>H</sub> (V)       | <b>R<sub>T</sub> (</b> Ω <b>)</b> | V <sub>T</sub> (V) | V <sub>M</sub> (V)    |
| Differential     |                      | ż                        |                          |                                   |                    |                       |
| LVDS_25          | -                    | V <sub>ICM</sub> - 0.125 | V <sub>ICM</sub> + 0.125 | 50                                | 1.2                | V <sub>ICM</sub>      |
| LVDS_33          | -                    | V <sub>ICM</sub> – 0.125 | V <sub>ICM</sub> + 0.125 | 50                                | 1.2                | V <sub>ICM</sub>      |
| BLVDS_25         | -                    | V <sub>ICM</sub> - 0.125 | V <sub>ICM</sub> + 0.125 | 1M                                | 0                  | V <sub>ICM</sub>      |
| MINI_LVDS_25     | -                    | V <sub>ICM</sub> – 0.125 | V <sub>ICM</sub> + 0.125 | 50                                | 1.2                | V <sub>ICM</sub>      |
| MINI_LVDS_33     | -                    | V <sub>ICM</sub> – 0.125 | V <sub>ICM</sub> + 0.125 | 50                                | 1.2                | V <sub>ICM</sub>      |
| LVPECL_25        | -                    | V <sub>ICM</sub> - 0.3   | V <sub>ICM</sub> + 0.3   | N/A                               | N/A                | V <sub>ICM</sub>      |
| LVPECL_33        | -                    | V <sub>ICM</sub> - 0.3   | V <sub>ICM</sub> + 0.3   | N/A                               | N/A                | V <sub>ICM</sub>      |
| RSDS_25          | -                    | V <sub>ICM</sub> - 0.1   | V <sub>ICM</sub> + 0.1   | 50                                | 1.2                | V <sub>ICM</sub>      |
| RSDS_33          | -                    | V <sub>ICM</sub> - 0.1   | V <sub>ICM</sub> + 0.1   | 50                                | 1.2                | V <sub>ICM</sub>      |
| TMDS_33          | -                    | V <sub>ICM</sub> - 0.1   | V <sub>ICM</sub> + 0.1   | 50                                | 3.3                | V <sub>ICM</sub>      |
| PPDS_25          | -                    | V <sub>ICM</sub> - 0.1   | V <sub>ICM</sub> + 0.1   | 50                                | 0.8                | V <sub>ICM</sub>      |
| PPDS_33          | -                    | V <sub>ICM</sub> - 0.1   | V <sub>ICM</sub> + 0.1   | 50                                | 0.8                | V <sub>ICM</sub>      |
| DIFF_HSTL_I      | -                    | V <sub>ICM</sub> - 0.5   | V <sub>ICM</sub> + 0.5   | 50                                | 0.75               | V <sub>ICM</sub>      |
| DIFF_HSTL_III    | -                    | V <sub>ICM</sub> - 0.5   | V <sub>ICM</sub> + 0.5   | 50                                | 1.5                | V <sub>ICM</sub>      |
| DIFF_HSTL_I_18   | -                    | V <sub>ICM</sub> – 0.5   | V <sub>ICM</sub> + 0.5   | 50                                | 0.9                | V <sub>ICM</sub>      |
| DIFF_HSTL_II_18  | -                    | V <sub>ICM</sub> – 0.5   | V <sub>ICM</sub> + 0.5   | 50                                | 0.9                | V <sub>ICM</sub>      |
| DIFF_HSTL_III_18 | -                    | V <sub>ICM</sub> - 0.5   | V <sub>ICM</sub> + 0.5   | 50                                | 1.8                | V <sub>ICM</sub>      |
| DIFF_SSTL18_I    | -                    | V <sub>ICM</sub> – 0.5   | V <sub>ICM</sub> + 0.5   | 50                                | 0.9                | V <sub>ICM</sub>      |
| DIFF_SSTL18_II   | -                    | V <sub>ICM</sub> - 0.5   | V <sub>ICM</sub> + 0.5   | 50                                | 0.9                | V <sub>ICM</sub>      |
| DIFF_SSTL2_I     | -                    | V <sub>ICM</sub> - 0.5   | V <sub>ICM</sub> + 0.5   | 50                                | 1.25               | V <sub>ICM</sub>      |
| DIFF_SSTL2_II    | -                    | V <sub>ICM</sub> - 0.5   | V <sub>ICM</sub> + 0.5   | 50                                | 1.25               | V <sub>ICM</sub>      |
| DIFF_SSTL3_I     | -                    | V <sub>ICM</sub> - 0.5   | V <sub>ICM</sub> + 0.5   | 50                                | 1.5                | V <sub>ICM</sub>      |
| DIFF_SSTL3_II    | -                    | V <sub>ICM</sub> – 0.5   | V <sub>ICM</sub> + 0.5   | 50                                | 1.5                | V <sub>ICM</sub>      |

### Table 27: Test Methods for Timing Measurement at I/Os(Continued)

#### Notes:

1. Descriptions of the relevant symbols are as follows:

 $V_{\text{REF}}$  – The reference voltage for setting the input switching threshold

 $V_{\mbox{\scriptsize ICM}}$  – The common mode input voltage

 $V_{M}$  – Voltage of measurement point on signal transition

- V<sub>L</sub> Low-level test voltage at Input pin
- $V_{H}^{-}$  High-level test voltage at Input pin

R<sub>T</sub> – Effective termination resistance, which takes on a value of 1 MΩ when no parallel termination is required

- V<sub>T</sub> Termination voltage
- 2. The load capacitance (C<sub>L</sub>) at the Output pin is 0 pF for all signal standards.
- 3. According to the PCI specification.

The capacitive load ( $C_L$ ) is connected between the output and GND. The Output timing for all standards, as published in the speed files and the data sheet, is always based on a  $C_L$  value of zero. High-impedance probes (less than 1 pF) are used for all measurements. Any delay that the test fixture might contribute to test measurements is subtracted from those measurements to produce the final timing numbers as published in the speed files and data sheet.

# **Clock Buffer/Multiplexer Switching Characteristics**

# Table 33: Clock Distribution Switching Characteristics

|                                                                                                             |                   |         | Maxi  |             |       |  |
|-------------------------------------------------------------------------------------------------------------|-------------------|---------|-------|-------------|-------|--|
|                                                                                                             |                   |         | Speed | Speed Grade |       |  |
| Description                                                                                                 | Symbol            | Minimum | -5    | -4          | Units |  |
| Global clock buffer (BUFG, BUFGMUX, BUFGCE) I input to<br>O-output delay                                    | T <sub>GIO</sub>  | -       | 0.22  | 0.23        | ns    |  |
| Global clock multiplexer (BUFGMUX) select S-input setup to I0 and I1 inputs. Same as BUFGCE enable CE-input | T <sub>GSI</sub>  | -       | 0.56  | 0.63        | ns    |  |
| Frequency of signals distributed on global buffers (all sides)                                              | F <sub>BUFG</sub> | 0       | 350   | 334         | MHz   |  |

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 8.

| Table | 47: | Master | Mode | CCLK | Output | Frea | uencv | bv ( | Confid | nRate O | ption | Settina |
|-------|-----|--------|------|------|--------|------|-------|------|--------|---------|-------|---------|
| 10010 |     |        |      |      |        |      |       | ~, ` |        | ,       |       |         |

| Symbol              | Description                     | <i>ConfigRate</i><br>Setting | Temperature<br>Range | Minimum | Maximum | Units |
|---------------------|---------------------------------|------------------------------|----------------------|---------|---------|-------|
| F                   | Equivalent CCLK clock frequency | 1                            | Commercial           | 0.400   | 0.797   | MHz   |
| FCCLK1              | by ConfigHate setting           | (power-on value)             | Industrial           | 0.400   | 0.847   | MHz   |
| E.                  |                                 | 2                            | Commercial           | 1.00    | 2.42    | MHz   |
| LCCTK3              |                                 | 3                            | Industrial           | 1.20    | 2.57    | MHz   |
| F                   | _                               | 6                            | Commercial           | 0.40    | 4.83    | MHz   |
| CCLK6               |                                 | (default)                    | Industrial           | 2.40    | 5.13    | MHz   |
| E                   |                                 | 7                            | Commercial           | 2.90    | 5.61    | MHz   |
| FCCLK7              |                                 | Ι                            | Industrial           | 2.00    | 5.96    | MHz   |
| E                   |                                 | 0                            | Commercial           | 2.00    | 6.41    | MHz   |
| CCLK8               |                                 | 0                            | Industrial           | 3.20    | 6.81    | MHz   |
| E                   |                                 | 10                           | Commercial           | 4.00    | 8.12    | MHz   |
| CCLK10              |                                 | 10                           | Industrial           | 4.00    | 8.63    | MHz   |
| E                   |                                 | 10                           | Commercial           | 4 90    | 9.70    | MHz   |
| CCLK12              |                                 | 12                           | Industrial           | 4.00    | 10.31   | MHz   |
| E                   |                                 | 10                           | Commercial           | 5.20    | 10.69   | MHz   |
| ' CCLK13            |                                 |                              | Industrial           | 5.20    | 11.37   | MHz   |
| F                   |                                 | 17                           | Commercial           | 6.80    | 13.74   | MHz   |
| ' CCLK17            |                                 |                              | Industrial           | 0.00    | 14.61   | MHz   |
| Fagures             |                                 | 22                           | Commercial           | 8 80    | 18.44   | MHz   |
| ' CCLK22            |                                 |                              | Industrial           | 0.00    | 19.61   | MHz   |
| Fagures             |                                 | 25                           | Commercial           | 10.00   | 20.90   | MHz   |
| CCLK25              |                                 | 20                           | Industrial           | 10.00   | 22.23   | MHz   |
| Fagure              |                                 | 27                           | Commercial           | 10.80   | 22.39   | MHz   |
| ' CCLK27            |                                 | £1                           | Industrial           | 10.00   | 23.81   | MHz   |
| Fagures             |                                 | 33                           | Commercial           | 13.20   | 27.48   | MHz   |
| <sup>•</sup> CCLK33 |                                 |                              | Industrial           | 10.20   | 29.23   | MHz   |
| Fagure              |                                 | 44                           | Commercial           | 17.60   | 37.60   | MHz   |
| ' CCLK44            |                                 |                              | Industrial           | 17.00   | 40.00   | MHz   |
| Footure             |                                 | 50                           | Commercial           | 20.00   | 44.80   | MHz   |
| · CCLK50            |                                 |                              | Industrial           | 20.00   | 47.66   | MHz   |
| Footstar            |                                 | 100                          | Commercial           | 40.00   | 88.68   | MHz   |
| · CCLK100           |                                 | 100                          | Industrial           | -0.00   | 94.34   | MHz   |

### Table 48: Master Mode CCLK Output Minimum Low and High Time

|                                         |                                      |            |     |     | ConfigRate Setting |      |      |      |      |      |      |      |      |      |      |      |      |     |       |
|-----------------------------------------|--------------------------------------|------------|-----|-----|--------------------|------|------|------|------|------|------|------|------|------|------|------|------|-----|-------|
| Symbol                                  | Description                          |            | 1   | 3   | 6                  | 7    | 8    | 10   | 12   | 13   | 17   | 22   | 25   | 27   | 33   | 44   | 50   | 100 | Units |
| -                                       | Master Mode                          | Commercial | 595 | 196 | 98.3               | 84.5 | 74.1 | 58.4 | 48.9 | 44.1 | 34.2 | 25.6 | 22.3 | 20.9 | 17.1 | 12.3 | 10.4 | 5.3 | ns    |
| T <sub>MCCL,</sub><br>T <sub>MCCH</sub> | CCLK<br>Minimum Low<br>and High Time | Industrial | 560 | 185 | 92.6               | 79.8 | 69.8 | 55.0 | 46.0 | 41.8 | 32.3 | 24.2 | 21.4 | 20.0 | 16.2 | 11.9 | 10.0 | 5.0 | ns    |

# Table 49: Slave Mode CCLK Input Low and High Time

| Symbol                                  | Description            | Min | Мах      | Units |
|-----------------------------------------|------------------------|-----|----------|-------|
| T <sub>SCCL,</sub><br>T <sub>SCCH</sub> | CCLK Low and High time | 5   | $\infty$ | ns    |

# Serial Peripheral Interface (SPI) Configuration Timing



Shaded values indicate specifications on attached SPI Flash PROM.

DS529-3\_06\_102506

### Figure 14: Waveforms for Serial Peripheral Interface (SPI) Configuration

### Table 52: Timing for Serial Peripheral Interface (SPI) Configuration Mode

| Symbol             | Description                                                                                                         | Minimum      | Maximum | Units |  |
|--------------------|---------------------------------------------------------------------------------------------------------------------|--------------|---------|-------|--|
| T <sub>CCLK1</sub> | Initial CCLK clock period                                                                                           | See Table 46 |         |       |  |
| T <sub>CCLKn</sub> | CCLK clock period after FPGA loads ConfigRate bitstream option setting                                              | See Table 46 |         |       |  |
| T <sub>MINIT</sub> | Setup time on VS[2:0] variant-select pins and M[2:0] mode pins before the rising edge of $\ensuremath{INIT}\xspace$ | 50           | _       | ns    |  |
| T <sub>INITM</sub> | Hold time on VS[2:0] variant-select pins and M[2:0] mode pins after the rising edge of $\ensuremath{INIT}\xspace$   | 0            | _       | ns    |  |
| T <sub>CCO</sub>   | MOSI output valid delay after CCLK falling clock edge                                                               | See Table 50 |         |       |  |
| T <sub>DCC</sub>   | Setup time on the DIN data input before CCLK rising clock edge                                                      | See Table 50 |         |       |  |
| T <sub>CCD</sub>   | Hold time on the DIN data input after CCLK rising clock edge                                                        | See Table 50 |         |       |  |

| Type / Color<br>Code | Description                                                                                                                                                                                                                                 | Pin Name(s) in Type |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| PWR<br>MGMT          | Control and status pins for the power-saving Suspend mode. SUSPEND is a dedicated pin and is powered by $V_{CCAUX}$ . AWAKE is a dual-purpose pin. Unless Suspend mode is enabled in the application, AWAKE is available as a user-I/O pin. | SUSPEND, AWAKE      |
| JTAG                 | Dedicated JTAG pin - 4 per device. Not available as a user-I/O pin. Every package has four dedicated JTAG pins. These pins are powered by VCCAUX.                                                                                           | TDI, TMS, TCK, TDO  |
| GND                  | Dedicated ground pin. The number of GND pins depends on the package used. All must be connected.                                                                                                                                            | GND                 |
| VCCAUX               | Dedicated auxiliary power supply pin. The number of VCCAUX pins depends on the package used. All must be connected. $V_{CCAUX}$ can be either 2.5V or 3.3V. Set on board and using CONFIG VCCAUX constraint.                                | VCCAUX              |
| VCCINT               | Dedicated internal core logic power supply pin. The number of VCCINT pins depends on the package used. All must be connected to +1.2V.                                                                                                      | VCCINT              |
| VCCO                 | Along with all the other VCCO pins in the same bank, this pin supplies power to the output buffers within the I/O bank and sets the input threshold voltage for some I/O standards. All must be connected.                                  | VCCO_#              |
| N.C.                 | This package pin is not connected in this specific device/package combination but may be connected in larger devices in the same package.                                                                                                   | N.C.                |

#### Notes:

1. # = I/O bank number, an integer between 0 and 3.

# Package Pins by Type

Each package has three separate voltage supply inputs—VCCINT, VCCAUX, and VCCO—and a common ground return, GND. The numbers of pins dedicated to these functions vary by package, as shown in Table 58.

| TADIE 36. Power and Ground Subdiv Pins by Packad | Table | 58: | Power and | Ground | Supply | Pins by | / Package |
|--------------------------------------------------|-------|-----|-----------|--------|--------|---------|-----------|
|--------------------------------------------------|-------|-----|-----------|--------|--------|---------|-----------|

| Package               | VCCINT | VCCAUX | VCCO | GND |
|-----------------------|--------|--------|------|-----|
| VQ100                 | 4      | 3      | 6    | 13  |
| TQ144                 | 4      | 4      | 8    | 13  |
| FT256 (50A/200A/400A) | 6      | 4      | 16   | 28  |
| FT256 (700A/1400A)    | 15     | 10     | 13   | 50  |
| FG320                 | 6      | 8      | 16   | 32  |
| FG400                 | 9      | 8      | 22   | 43  |
| FG484                 | 15     | 10     | 24   | 53  |
| FG676                 | 23     | 14     | 36   | 77  |

A majority of package pins are user-defined I/O or input pins. However, the numbers and characteristics of these I/O depend on the device type and the package in which it is available, as shown in Table 59. The table shows the maximum number of single-ended I/O pins available, assuming that all I/O-, INPUT-, DUAL-, VREF-, and CLK-type pins are used as general-purpose I/O. AWAKE is counted here as a dual-purpose I/O pin. Likewise, the table shows the maximum number of differential pin-pairs available on the package. Finally, the table shows how the total maximum user-I/Os are distributed by pin type, including the number of unconnected—N.C.—pins on the device.

Not all I/O standards are supported on all I/O banks. The left and right banks (I/O banks 1 and 3) support higher output drive current than the top and bottom banks (I/O banks 0 and 2). Similarly, true differential output standards, such as LVDS, RSDS, PPDS, miniLVDS, and TMDS, are only supported in the top or bottom banks (I/O banks 0 and 2). Inputs are unrestricted. For more details, see the chapter *"Using I/O Resources"* in UG331.

# **Package Thermal Characteristics**

The power dissipated by an FPGA application has implications on package selection and system design. The power consumed by a Spartan-3A FPGA is reported using either the <u>XPower Power Estimator</u> or the <u>XPower Analyzer</u> calculator integrated in the Xilinx® ISE® development software. Table 62 provides the thermal characteristics for the various Spartan-3A FPGA package offerings. This information is also available using the Thermal Query tool on xilinx.com (www.xilinx.com/cgi-bin/thermal/thermal.pl). The junction-to-case thermal resistance ( $\theta_{JC}$ ) indicates the difference between the temperature measured on the package body (case) and the die junction temperature per watt of power consumption. The junction-to-board ( $\theta_{JB}$ ) value similarly reports the difference between the board and junction temperature. The junction-to-ambient ( $\theta_{JA}$ ) value reports the temperature difference between the ambient environment and the junction temperature. The  $\theta_{JA}$  value is reported at different air velocities, measured in linear feet per minute (LFM). The "Still Air (0 LFM)" column shows the  $\theta_{JA}$  value in a system without a fan. The thermal resistance drops with increasing air flow.

|                 |           |                                        |                                          | Junction-to-Ambient (θ <sub>JA</sub> )<br>at Different Air Flows |         |         |         |         |
|-----------------|-----------|----------------------------------------|------------------------------------------|------------------------------------------------------------------|---------|---------|---------|---------|
| Package         | Device    | Junction-to-Case<br>(θ <sub>JC</sub> ) | Junction-to-<br>Board (θ <sub>JB</sub> ) | Still Air<br>(0 LFM)                                             | 250 LFM | 500 LFM | 750 LFM | Units   |
| VQ100           | XC3S50A   | 12.9                                   | 30.1                                     | 48.5                                                             | 40.4    | 37.6    | 36.6    | °C/Watt |
| VQG100          | XC3S200A  | 10.9                                   | 25.7                                     | 42.9                                                             | 35.7    | 33.2    | 32.4    | °C/Watt |
| TQ144<br>TQG144 | XC3S50A   | 16.5                                   | 32.0                                     | 42.4                                                             | 36.3    | 35.8    | 34.9    | °C/Watt |
| FT256<br>FTG256 | XC3S50A   | 16.0                                   | 33.5                                     | 42.3                                                             | 35.6    | 35.5    | 34.5    | °C/Watt |
|                 | XC3S200A  | 10.3                                   | 23.8                                     | 32.7                                                             | 26.6    | 26.1    | 25.2    | °C/Watt |
|                 | XC3S400A  | 8.4                                    | 19.3                                     | 29.9                                                             | 24.9    | 23.0    | 22.3    | °C/Watt |
|                 | XC3S700A  | 7.8                                    | 18.6                                     | 28.1                                                             | 22.3    | 21.2    | 20.7    | °C/Watt |
|                 | XC3S1400A | 5.4                                    | 14.1                                     | 24.2                                                             | 18.7    | 17.5    | 17.0    | °C/Watt |
| FG320           | XC3S200A  | 11.7                                   | 18.5                                     | 27.8                                                             | 22.3    | 21.1    | 20.3    | °C/Watt |
| FGG320          | XC3S400A  | 9.9                                    | 15.4                                     | 25.2                                                             | 19.8    | 18.6    | 17.8    | °C/Watt |
| FG400           | XC3S400A  | 9.8                                    | 15.5                                     | 25.6                                                             | 19.2    | 18.0    | 17.3    | °C/Watt |
| FGG400          | XC3S700A  | 8.2                                    | 13.0                                     | 23.1                                                             | 17.9    | 16.7    | 16.0    | °C/Watt |
| FG484           | XC3S700A  | 7.9                                    | 12.8                                     | 22.3                                                             | 17.4    | 16.2    | 15.5    | °C/Watt |
| FGG484          | XC3S1400A | 6.0                                    | 9.9                                      | 19.5                                                             | 14.7    | 13.5    | 12.8    | °C/Watt |
| FG676<br>FGG676 | XC3S1400A | 5.8                                    | 9.4                                      | 17.8                                                             | 13.5    | 12.4    | 11.8    | °C/Watt |

### Table 62: Spartan-3A Package Thermal Characteristics

# User I/Os by Bank

Table 64 indicates how the 68 available user-I/O pins are distributed between the four I/O banks on the VQ100 package.

| Table | 64: | User I/Os | Per Bank for | the XC3S50A | and XC3S200A | in the VQ10 | 0 Package |
|-------|-----|-----------|--------------|-------------|--------------|-------------|-----------|
|       |     |           |              |             |              |             |           |

| Package | I/O Bank | Maximum I/O | All Possible I/O Pins by Type |       |      |      |     |  |  |  |
|---------|----------|-------------|-------------------------------|-------|------|------|-----|--|--|--|
| Edge    |          |             | I/O                           | INPUT | DUAL | VREF | CLK |  |  |  |
| Тор     | 0        | 15          | 3                             | 1     | 1    | 3    | 7   |  |  |  |
| Right   | 1        | 13          | 6                             | 0     | 0    | 1    | 6   |  |  |  |
| Bottom  | 2        | 26          | 2                             | 0     | 19   | 1    | 4   |  |  |  |
| Left    | 3        | 14          | 6                             | 1     | 0    | 1    | 6   |  |  |  |
| TOTAL   |          | 68          | 17                            | 2     | 20   | 6    | 23  |  |  |  |

# **Footprint Migration Differences**

The XC3S50A and XC3S200 have common VQ100 pinouts except for some differences in alignment of differential I/O pairs.

## **Differential I/O Alignment Differences**

Some differential I/O pairs in the VQ100 on the XC3S50A FPGA are aligned differently than the corresponding pairs on the XC3S200A FPGAs, as shown in Table 65. All the mismatched pairs are in I/O Bank 2. These differences are indicated with the black diamond character ( $\blacklozenge$ ) in the footprint diagrams Figure 17 and Figure 18.

| Table | 65: | <b>Differential I</b> | /0 | Differences | in | VQ100 |
|-------|-----|-----------------------|----|-------------|----|-------|
|-------|-----|-----------------------|----|-------------|----|-------|

| VQ100 Pin | Bank | XC3S50A                   | XC3S200A                  |
|-----------|------|---------------------------|---------------------------|
| P29       |      | IIO_L04P_2/VS2            | IO_L03N_2/VS2             |
| P30       |      | IO_L03N_2/VS1             | IO_L04P_2/VS1             |
| P33       |      | IO_L06P_2                 | IO_L05N_2                 |
| P34       | 2    | IO_L05N_2/D7              | IO_L06P_2/D7              |
| P51       |      | IO_L11N_2/D0/DIN/<br>MISO | IO_L12P_2/D0/DIN/<br>MISO |
| P52       |      | IO_L12P_2/D1              | IO_L11N_2/D1              |

### Table 69: Spartan-3A FT256 Pinout (XC3S700A,

| Bank | XC3S700A<br>XC3S1400A | FT256<br>Ball | Туре   |
|------|-----------------------|---------------|--------|
| 1    | IO_L20P_1/A18         | E14           | DUAL   |
| 1    | IO_L22N_1/A21         | D15           | DUAL   |
| 1    | IO_L22P_1/A20         | D16           | DUAL   |
| 1    | IO_L23N_1/A23         | D14           | DUAL   |
| 1    | IO_L23P_1/A22         | E13           | DUAL   |
| 1    | IO_L24N_1/A25         | C15           | DUAL   |
| 1    | IO_L24P_1/A24         | C16           | DUAL   |
| 1    | IP_1/VREF_1           | H12           | VREF   |
| 1    | IP_1/VREF_1           | J14           | VREF   |
| 1    | IP_1/VREF_1           | M13           | VREF   |
| 1    | IP_1/VREF_1           | M14           | VREF   |
| 1    | VCCO_1                | E15           | VCCO   |
| 1    | VCCO_1                | J15           | VCCO   |
| 1    | VCCO_1                | N15           | VCCO   |
| 2    | IO_L01N_2/M0          | P4            | DUAL   |
| 2    | IO_L01P_2/M1          | N4            | DUAL   |
| 2    | IO_L02N_2/CSO_B       | T2            | DUAL   |
| 2    | IO_L02P_2/M2          | R2            | DUAL   |
| 2    | IO_L03N_2/VS2         | Т3            | DUAL   |
| 2    | IO_L03P_2/RDWR_B      | R3            | DUAL   |
| 2    | IO_L04N_2/VS0         | P5            | DUAL   |
| 2    | IO_L04P_2/VS1         | N6            | DUAL   |
| 2    | IO_L05N_2             | R5            | I/O    |
| 2    | IO_L05P_2             | T4            | I/O    |
| 2    | IO_L06N_2/D6          | Т6            | DUAL   |
| 2    | IO_L06P_2/D7          | T5            | DUAL   |
| 2    | IO_L08N_2/D4          | N8            | DUAL   |
| 2    | IO_L08P_2/D5          | P7            | DUAL   |
| 2    | IO_L09N_2/GCLK13      | T7            | GCLK   |
| 2    | IO_L09P_2/GCLK12      | R7            | GCLK   |
| 2    | IO_L10N_2/GCLK15      | Т8            | GCLK   |
| 2    | IO_L10P_2/GCLK14      | P8            | GCLK   |
| 2    | IO_L11N_2/GCLK1       | P9            | GCLK   |
| 2    | IO_L11P_2/GCLK0       | N9            | GCLK   |
| 2    | IO_L12N_2/GCLK3       | Т9            | GCLK   |
| 2    | IO_L12P_2/GCLK2       | R9            | GCLK   |
| 2    | IO_L14N_2/MOSI/CSI_B  | P10           | DUAL   |
| 2    | IO_L14P_2             | T10           | I/O    |
| 2    | IO_L15N_2/DOUT        | R11           | DUAL   |
| 2    | IO_L15P_2/AWAKE       | T11           | PWRMGT |

### Table 69: Spartan-3A FT256 Pinout (XC3S700A,

| Bank | XC3S700A<br>XC3S1400A  | FT256<br>Ball | Туре  |
|------|------------------------|---------------|-------|
| 2    | IO_L16N_2              | N11           | I/O   |
| 2    | IO_L16P_2              | P11           | I/O   |
| 2    | IO_L17N_2/D3           | P12           | DUAL  |
| 2    | IO_L17P_2/INIT_B       | T12           | DUAL  |
| 2    | IO_L18N_2/D1           | R13           | DUAL  |
| 2    | IO_L18P_2/D2           | T13           | DUAL  |
| 2    | IO_L19N_2              | P13           | I/O   |
| 2    | IO_L19P_2              | N12           | I/O   |
| 2    | IO_L20N_2/CCLK         | R14           | DUAL  |
| 2    | IO_L20P_2/D0/DIN/MISO  | T14           | DUAL  |
| 2    | IP_2/VREF_2            | M11           | VREF  |
| 2    | IP_2/VREF_2            | M7            | VREF  |
| 2    | IP_2/VREF_2            | M9            | VREF  |
| 2    | IP_2/VREF_2            | N5            | VREF  |
| 2    | IP_2/VREF_2            | P6            | VREF  |
| 2    | VCCO_2                 | R12           | VCCO  |
| 2    | VCCO_2                 | R4            | VCCO  |
| 2    | VCCO_2                 | R8            | VCCO  |
| 3    | IO_L01N_3              | C1            | I/O   |
| 3    | IO_L01P_3              | C2            | I/O   |
| 3    | IO_L02N_3              | D3            | I/O   |
| 3    | IO_L02P_3              | D4            | I/O   |
| 3    | IO_L03N_3              | E1            | I/O   |
| 3    | IO_L03P_3              | D1            | I/O   |
| 3    | IO_L04N_3              | F4            | I/O   |
| 3    | IO_L04P_3              | E4            | I/O   |
| 3    | IO_L05N_3              | E2            | I/O   |
| 3    | IO_L05P_3              | E3            | I/O   |
| 3    | IO_L07N_3              | G3            | I/O   |
| 3    | IO_L07P_3              | F3            | I/O   |
| 3    | IO_L08N_3/VREF_3       | G1            | VREF  |
| 3    | IO_L08P_3              | F1            | I/O   |
| 3    | IO_L11N_3/LHCLK1       | H1            | LHCLK |
| 3    | IO_L11P_3/LHCLK0       | G2            | LHCLK |
| 3    | IO_L12N_3/IRDY2/LHCLK3 | J3            | LHCLK |
| 3    | IO_L12P_3/LHCLK2       | HЗ            | LHCLK |
| 3    | IO_L14N_3/LHCLK5       | J1            | LHCLK |
| 3    | IO_L14P_3/LHCLK4       | J2            | LHCLK |
| 3    | IO_L15N_3/LHCLK7       | K1            | LHCLK |
| 3    | IO_L15P_3/TRDY2/LHCLK6 | КЗ            | LHCLK |

# **Footprint Migration Differences**

### **Unconnected Balls on XC3S50A**

Table 73 summarizes any footprint and functionality differences between the XC3S50A and the XC3S200A or XC3S400A FPGAs that might affect easy migration between these devices in the FT256 package. The XC3S200A and XC3S400A have identical pinouts. The XC3S50A pinout is compatible, but there are 52 balls that are different. Generally, designs easily migrate upward from the XC3S50A to either the XC3S200A or XC3S400A. If using differential I/O, see Table 74. If using the BPI configuration mode (parallel Flash), see Table 75.

### Table 73: FT256 XC3S50A Footprint Migration Difference

| FT256<br>Ball | Bank | XC3S50A<br>Type | Migration     | XC3S200A/<br>XC3S400A<br>Type |
|---------------|------|-----------------|---------------|-------------------------------|
| A7            | 0    | N.C.            | $\rightarrow$ | I/O                           |
| A12           | 0    | N.C.            | $\rightarrow$ | I/O                           |
| B12           | 0    | INPUT           | $\rightarrow$ | I/O                           |
| C7            | 0    | N.C.            | $\rightarrow$ | I/O                           |
| D10           | 0    | N.C.            | $\rightarrow$ | I/O                           |
| E2            | 3    | N.C.            | $\rightarrow$ | I/O                           |
| E3            | 3    | N.C.            | $\rightarrow$ | I/O                           |
| E7            | 0    | N.C.            | $\rightarrow$ | I/O                           |
| E10           | 0    | N.C.            | $\rightarrow$ | I/O                           |
| E16           | 1    | N.C.            | $\rightarrow$ | I/O                           |
| F3            | 3    | N.C.            | $\rightarrow$ | I/O                           |
| F8            | 0    | N.C.            | $\rightarrow$ | I/O                           |
| F14           | 1    | N.C.            | $\rightarrow$ | I/O                           |
| F15           | 1    | N.C.            | $\rightarrow$ | I/O                           |
| F16           | 1    | N.C.            | $\rightarrow$ | I/O                           |
| G3            | 3    | N.C.            | $\rightarrow$ | I/O                           |
| G4            | 3    | N.C.            | $\rightarrow$ | I/O                           |
| G5            | 3    | N.C.            | $\rightarrow$ | INPUT                         |
| G6            | 3    | N.C.            | $\rightarrow$ | INPUT                         |
| G13           | 1    | N.C.            | $\rightarrow$ | I/O                           |
| G14           | 1    | N.C.            | $\rightarrow$ | I/O                           |
| G16           | 1    | N.C.            | $\rightarrow$ | I/O                           |
| H4            | 3    | N.C.            | $\rightarrow$ | I/O                           |
| H5            | 3    | N.C.            | $\rightarrow$ | I/O                           |
| H6            | 3    | N.C.            | $\rightarrow$ | I/O                           |
| H13           | 1    | N.C.            | <i>→</i>      | I/O                           |
| J4            | 3    | N.C.            | $\rightarrow$ | I/O                           |
| J6            | 3    | N.C.            | $\rightarrow$ | I/O                           |
| J10           | 1    | N.C.            | $\rightarrow$ | INPUT                         |
| J11           | 1    | N.C.            | $\rightarrow$ | INPUT                         |

| FT256<br>Ball | Bank    | XC3S50A<br>Type | Migration     | XC3S200A/<br>XC3S400A<br>Type |
|---------------|---------|-----------------|---------------|-------------------------------|
| K4            | 3       | N.C.            | $\rightarrow$ | I/O                           |
| K13           | 1       | N.C.            | $\rightarrow$ | I/O                           |
| L1            | 3       | N.C.            | $\rightarrow$ | I/O                           |
| L2            | 3       | N.C.            | $\rightarrow$ | I/O                           |
| L3            | 3       | N.C.            | $\rightarrow$ | I/O                           |
| L4            | 3       | N.C.            | $\rightarrow$ | I/O                           |
| L13           | 1       | N.C.            | $\rightarrow$ | I/O                           |
| L14           | 1       | N.C.            | $\rightarrow$ | I/O                           |
| L16           | 1       | N.C.            | $\rightarrow$ | I/O                           |
| М3            | 3       | N.C.            | $\rightarrow$ | I/O                           |
| M10           | 2       | N.C.            | $\rightarrow$ | I/O                           |
| M13           | 1       | N.C.            | $\rightarrow$ | I/O                           |
| M14           | 1       | N.C.            | $\rightarrow$ | I/O                           |
| M15           | 1       | N.C.            | $\rightarrow$ | I/O                           |
| M16           | 1       | N.C.            | $\rightarrow$ | I/O                           |
| N7            | 2       | N.C.            | $\rightarrow$ | I/O                           |
| N10           | 2       | N.C.            | $\rightarrow$ | I/O                           |
| N12           | 2       | N.C.            | $\rightarrow$ | I/O                           |
| P6            | 2       | N.C.            | $\rightarrow$ | I/O                           |
| P13           | 2       | N.C.            | $\rightarrow$ | I/O                           |
| R7            | 2       | N.C.            | $\rightarrow$ | I/O                           |
| T7            | 2       | N.C.            | $\rightarrow$ | I/O                           |
|               | DIFFERE | NCES            | 52            |                               |

Table 73: FT256 XC3S50A Footprint Migration

Legend:

→

This pin can unconditionally migrate from the device on the left to the device on the right. Migration in the other direction is possible depending on how the pin is configured for the device on the right.



### Table 77: Spartan-3A FG320 Pinout(Continued)

| Bank | Pin Name             | FG320<br>Ball | Туре        |
|------|----------------------|---------------|-------------|
| 2    | IO_L02N_2/CSO_B      | V3            | DUAL        |
| 2    | IO_L02P_2/M2         | V2            | DUAL        |
| 2    | IO_L03N_2/VS2        | U4            | DUAL        |
| 2    | IO_L03P_2/RDWR_B     | T4            | DUAL        |
| 2    | IO_L04N_2            | T5            | I/O         |
| 2    | IO_L04P_2            | R5            | I/O         |
| 2    | IO_L05N_2/VS0        | V5            | DUAL        |
| 2    | IO_L05P_2/VS1        | V4            | DUAL        |
| 2    | IO_L06N_2            | U6            | I/O         |
| 2    | IO_L06P_2            | Т6            | I/O         |
| 2    | IO_L07N_2            | P8            | I/O         |
| 2    | IO_L07P_2            | N8            | I/O         |
| 2    | IO_L08N_2/D6         | T7            | DUAL        |
| 2    | IO_L08P_2/D7         | R7            | DUAL        |
| 2    | IO_L09N_2            | R9            | I/O         |
| 2    | IO_L09P_2            | Т8            | I/O         |
| 2    | IO_L10N_2/D4         | V6            | DUAL        |
| 2    | IO_L10P_2/D5         | U7            | DUAL        |
| 2    | IO_L11N_2/GCLK13     | V8            | GCLK        |
| 2    | IO_L11P_2/GCLK12     | U8            | GCLK        |
| 2    | IO_L12N_2/GCLK15     | V9            | GCLK        |
| 2    | IO_L12P_2/GCLK14     | U9            | GCLK        |
| 2    | IO_L13N_2/GCLK1      | T10           | GCLK        |
| 2    | IO_L13P_2/GCLK0      | U10           | GCLK        |
| 2    | IO_L14N_2/GCLK3      | U11           | GCLK        |
| 2    | IO_L14P_2/GCLK2      | V11           | GCLK        |
| 2    | IO_L15N_2            | R10           | I/O         |
| 2    | IO_L15P_2            | P10           | I/O         |
| 2    | IO_L16N_2/MOSI/CSI_B | T11           | DUAL        |
| 2    | IO_L16P_2            | R11           | I/O         |
| 2    | IO_L17N_2            | V13           | I/O         |
| 2    | IO_L17P_2            | U12           | I/O         |
| 2    | IO_L18N_2/DOUT       | U13           | DUAL        |
| 2    | IO_L18P_2/AWAKE      | T12           | PWR<br>MGMT |
| 2    | IO_L19N_2            | P12           | I/O         |
| 2    | IO_L19P_2            | N12           | I/O         |
| 2    | IO_L20N_2/D3         | R13           | DUAL        |
| 2    | IO_L20P_2/INIT_B     | T13           | DUAL        |
| 2    | IO_L21N_2            | T14           | I/O         |

### Table 77: Spartan-3A FG320 Pinout(Continued)

| Bank | Pin Name                                                  | FG320<br>Ball | Туре  |
|------|-----------------------------------------------------------|---------------|-------|
| 2    | IO_L21P_2                                                 | V14           | I/O   |
| 2    | IO_L22N_2/D1                                              | U15           | DUAL  |
| 2    | IO_L22P_2/D2                                              | V15           | DUAL  |
| 2    | IO_L23N_2                                                 | T15           | I/O   |
| 2    | IO_L23P_2                                                 | R14           | I/O   |
| 2    | IO_L24N_2/CCLK                                            | U16           | DUAL  |
| 2    | IO_L24P_2/D0/DIN/MISO                                     | V16           | DUAL  |
| 2    | IP_2                                                      | M8            | INPUT |
| 2    | IP_2                                                      | M9            | INPUT |
| 2    | IP_2                                                      | M12           | INPUT |
| 2    | XC3S400A: IP_2<br>XC3S200A: N.C. (♦)                      | N7            | INPUT |
| 2    | IP_2                                                      | N9            | INPUT |
| 2    | IP_2                                                      | N11           | INPUT |
| 2    | IP_2                                                      | R6            | INPUT |
| 2    | IP_2/VREF_2                                               | M11           | VREF  |
| 2    | IP_2/VREF_2                                               | N10           | VREF  |
| 2    | IP_2/VREF_2                                               | P6            | VREF  |
| 2    | IP_2/VREF_2                                               | P7            | VREF  |
| 2    | IP_2/VREF_2                                               | P9            | VREF  |
| 2    | IP_2/VREF_2                                               | P13           | VREF  |
| 2    | <i>XC3S400A:</i> IP_2/VREF_2<br><i>XC3S200A:</i> N.C. (♦) | P14           | VREF  |
| 2    | VCCO_2                                                    | P11           | VCCO  |
| 2    | VCCO_2                                                    | R8            | VCCO  |
| 2    | VCCO_2                                                    | U5            | VCCO  |
| 2    | VCCO_2                                                    | U14           | VCCO  |
| 3    | IO_L01N_3                                                 | C1            | I/O   |
| 3    | IO_L01P_3                                                 | C2            | I/O   |
| 3    | IO_L02N_3                                                 | B1            | I/O   |
| 3    | IO_L02P_3                                                 | B2            | I/O   |
| 3    | IO_L03N_3                                                 | D2            | I/O   |
| 3    | IO_L03P_3                                                 | D3            | I/O   |
| 3    | IO_L05N_3                                                 | G5            | I/O   |
| 3    | IO_L05P_3                                                 | F5            | I/O   |
| 3    | IO_L06N_3                                                 | E3            | I/O   |
| 3    | IO_L06P_3                                                 | F4            | I/O   |
| 3    | IO_L07N_3                                                 | E1            | I/O   |
| 3    | IO_L07P_3                                                 | D1            | I/O   |
| 3    | IO_L09N_3                                                 | G4            | I/O   |
| 3    | IO_L09P_3                                                 | F3            | I/O   |

| Bank   | Pin Name | FG400<br>Ball | Туре   |  |  |
|--------|----------|---------------|--------|--|--|
| VCCAUX | TDO      | E17           | JTAG   |  |  |
| VCCAUX | TMS      | E4            | JTAG   |  |  |
| VCCAUX | VCCAUX   | A13           | VCCAUX |  |  |
| VCCAUX | VCCAUX   | E16           | VCCAUX |  |  |
| VCCAUX | VCCAUX   | H1            | VCCAUX |  |  |
| VCCAUX | VCCAUX   | K13           | VCCAUX |  |  |
| VCCAUX | VCCAUX   | L8            | VCCAUX |  |  |
| VCCAUX | VCCAUX   | N20           | VCCAUX |  |  |
| VCCAUX | VCCAUX   | T5            | VCCAUX |  |  |
| VCCAUX | VCCAUX   | Y8            | VCCAUX |  |  |
| VCCINT | VCCINT   | J10           | VCCINT |  |  |
| VCCINT | VCCINT   | J12           | VCCINT |  |  |
| VCCINT | VCCINT   | K9            | VCCINT |  |  |
| VCCINT | VCCINT   | K11           | VCCINT |  |  |
| VCCINT | VCCINT   | L10           | VCCINT |  |  |
| VCCINT | VCCINT   | L12           | VCCINT |  |  |
| VCCINT | VCCINT   | M9            | VCCINT |  |  |
| VCCINT | VCCINT   | M11           | VCCINT |  |  |
| VCCINT | VCCINT   | N10           | VCCINT |  |  |

Table 81: Spartan-3A FG400 Pinout(Continued)

# User I/Os by Bank

Table 82 indicates how the 311 available user-I/O pins are distributed between the four I/O banks on the FG400 package. The AWAKE pin is counted as a dual-purpose I/O.

Table 82: User I/Os Per Bank for the XC3S400A and XC3S700A in the FG400 Package

| Package | 1/O Bank | Maximum I/O | All Possible I/O Pins by Type |       |      |      |     |
|---------|----------|-------------|-------------------------------|-------|------|------|-----|
| Edge    |          |             | I/O                           | INPUT | DUAL | VREF | CLK |
| Тор     | 0        | 77          | 50                            | 12    | 1    | 6    | 8   |
| Right   | 1        | 79          | 21                            | 12    | 30   | 8    | 8   |
| Bottom  | 2        | 76          | 35                            | 6     | 21   | 6    | 8   |
| Left    | 3        | 79          | 49                            | 16    | 0    | 6    | 8   |
| TOTAL   |          | 311         | 155                           | 46    | 52   | 26   | 32  |

# **Footprint Migration Differences**

The XC3S400A and XC3S700A FPGAs have identical footprints in the FG400 package. Designs can migrate between the XC3S400A and XC3S700A FPGAs without further consideration.

| FG400 Footprint                                            |       | Bank 0                           |                                |                                  |                            |                         |                             |                             |                                |                                |                                |
|------------------------------------------------------------|-------|----------------------------------|--------------------------------|----------------------------------|----------------------------|-------------------------|-----------------------------|-----------------------------|--------------------------------|--------------------------------|--------------------------------|
| Left Half of EG400                                         |       | 1                                | 2                              | 3                                | 4                          | 5                       | 6                           | 7                           | 8                              | 9                              | 10                             |
| Package (Top View)                                         | A     | GND                              | <b>I/O</b><br>L32P_0<br>VREF_0 | <b>I/O</b><br>L30P_0             | <b>I/O</b><br>L29P_0       | <b>I/O</b><br>L26P_0    | <b>I/O</b><br>L25P_0        | <b>I/O</b><br>L24N_0        | I/O<br>L18N_0<br>GCLK11        | I/O<br>L18P_0<br>GCLK10        | <b>I/O</b><br>L16P_0<br>GCLK6  |
| <b>I/O:</b> Unrestricted,                                  | В     | <b>I/O</b><br>L02P_3             | <b>I/O</b><br>L32N_0<br>PUDC_B | <b>I/O</b><br>L30N_0             | VCCO_0                     | <b>I/O</b><br>L26N_0    | GND                         | <b>I/O</b><br>L24P_0        | <b>I/O</b><br>L20P_0           | <b>I/O</b><br>L19P_0           | VCCO_0                         |
| 155 general-purpose user I/O                               | с     | <b>I/O</b><br>L03P_3             | <b>I/O</b><br>L02N_3           | GND                              | <b>I/O</b><br>L29N_0       | <b>I/O</b><br>L28P_0    | <b>I/O</b><br>L25N_0        | <b>I/O</b><br>L21P_0        | <b>I/O</b><br>L20N_0           | <b>I/O</b><br>L19N_0           | <b>I/O</b><br>L16N_0<br>GCLK7  |
| 46 <b>INPUT:</b> Unrestricted, general-purpose input pin   | D     | <b>I/O</b><br>L05P_3             | <b>I/O</b><br>L03N_3           | <b>I/O</b><br>L01N_3             | <b>I/O</b><br>L01P_3       | PROC P                  | <b>I/O</b><br>L28N_0        | VCCO_0                      | <b>I/O</b><br>L21N_0           | GND                            | <b>I/O</b><br>L17P_0<br>GCLK8  |
| <b>51 DUAL:</b> Configuration pins, then possible user I/O | E     | <b>I/O</b><br>L05N_3             | VCCO_3                         | <b>I/O</b><br>L10P_3             | TMS                        | GND                     | <b>I/O</b><br>L31P_0        | <b>I/O</b><br>L27P_0        | <b>I/O</b><br>L23P_0           | <b>I/O</b><br>L22P_0           | <b>I/O</b><br>L17N_0<br>GCLK9  |
| <b>VREF:</b> User I/O or input voltage reference for bank  | F     | <b>I/O</b><br>L13P_3             | <b>I/O</b><br>L10N_3           | <b>I/O</b><br>L09P_3             | <b>I/O</b><br>L06P_3       | TDI                     | <b>I/O</b><br>L31N_0        | <b>I/O</b><br>L27N_0        | <b>I/O</b><br>L23N_0           | <b>I/O</b><br>L22N_0<br>VREF_0 | VCCO_0                         |
| 32 CLK: User I/O, input, or clock buffer input             | G     | <b>I/O</b><br>L13N_3<br>VREF_3   | GND                            | <b>I/O</b><br>L12P_3             | <b>I/O</b><br>L09N_3       | <b>I/O</b><br>L06N_3    | INPUT<br>L04N_3<br>VREF_3   | INPUT<br>L04P_3             | INPUT                          | INPUT                          | INPUT                          |
| 2 CONFIG: Dedicated configuration pins                     | Н     | VCCAUX                           | <b>I/O</b><br>L12N_3           | <b>I/O</b><br>L14N_3             | <b>I/O</b><br>L08N_3       | VCCO_3                  | <b>I/O</b><br>L08P_3        | INPUT                       | GND                            | INPUT                          | INPUT                          |
| <b>JTAG:</b> Dedicated JTAG port pins                      | J     | I/O<br>L17P_3<br>LHCLK0          | <b>I/O</b><br>L16N_3           | <b>I/O</b><br>L16P_3             | <b>I/O</b><br>L14P_3       | <b>I/O</b><br>L07N_3    | <b>I/O</b><br>L07P_3        | INPUT<br>L11N_3<br>VREF_3   | INPUT<br>L11P_3                | GND                            | VCCINT                         |
| SUSPEND: Dedicated                                         | ю к   | GND                              | I/O<br>L17N_3<br>LHCLK1        | I/O<br>L18P_3<br>LHCLK2          | I/O<br>L20P_3<br>LHCLK4    | INPUT<br>L19N_3         | INPUT<br>L19P_3             | INPUT<br>L15N_3             | INPUT<br>L15P_3                | VCCINT                         | GND                            |
| 2 dual-purpose AWAKE<br>Power Management pins              | л Bar | I/O<br>L21P_3<br>TRDY2<br>LHCLK6 | VCCO_3                         | I/O<br>L18N_3<br>IRDY2<br>LHCLK3 | GND                        | I/O<br>L20N_3<br>LHCLK5 | INPUT<br>L23N_3             | INPUT<br>L23P_3             | VCCAUX                         | GND                            | VCCINT                         |
| 43 GND: Ground                                             | м     | I/O<br>L21N_3<br>LHCLK7          | <b>I/O</b><br>L22P_3<br>VREF_3 | <b>I/O</b><br>L22N_3             | <b>I/O</b><br>L24P_3       | <b>I/O</b><br>L24N_3    | INPUT<br>L31P_3             | INPUT<br>L27N_3             | INPUT<br>L27P_3                | VCCINT                         | GND                            |
| 22 VCCO: Output voltage supply for bank                    | Ν     | <b>I/O</b><br>L25P_3             | <b>I/O</b><br>L25N_3           | <b>I/O</b><br>L26P_3             | <b>I/O</b><br>L26N_3       | VCCO_3                  | INPUT<br>L35N_3             | INPUT<br>L31N_3             | GND                            | INPUT<br>VREF_2                | VCCINT                         |
| 9 Supply voltage (+1.2V)                                   | Ρ     | <b>I/O</b><br>L28P_3             | GND                            | <b>I/O</b><br>L29P_3             | <b>I/O</b><br>L29N_3       | INPUT<br>L35P_3         | INPUT<br>L39P_3             | INPUT<br>L39N_3<br>VREF_3   | INPUT<br>VREF_2                | INPUT                          | INPUT<br>VREF_2                |
| VCCAUX: Auxiliary supply                                   | R     | <b>I/O</b><br>L28N_3             | <b>I/O</b><br>L30P_3           | <b>I/O</b><br>L30N_3             | <b>I/O</b><br>L33N_3       | <b>I/O</b><br>L36P_3    | GND                         | <b>I/O</b><br>L04N_2        | INPUT                          | GND                            | INPUT                          |
| 8 voltage                                                  | т     | <b>I/O</b><br>L32P_3<br>VREF_3   | <b>I/O</b><br>L32N_3           | <b>I/O</b><br>L33P_3             | <b>I/O</b><br>L36N_3       | VCCAUX                  | <b>I/O</b><br>L04P_2        | <b>I/O</b><br>L06P_2        | <b>I/O</b><br>L07P_2<br>RDWR_B | <b>I/O</b><br>L11P_2           | <b>I/O</b><br>L14N_2<br>D4     |
|                                                            | U     | <b>I/O</b><br>L34P_3             | VCCO_3                         | <b>I/O</b><br>L34N_3             | <b>I/O</b><br>L01P_2<br>M1 | <b>I/O</b><br>L05N_2    | <b>I/O</b><br>L06N_2        | <b>I/O</b><br>L07N_2<br>VS2 | VCCO_2                         | <b>I/O</b><br>L11N_2           | <b>I/O</b><br>L14P_2<br>D5     |
|                                                            | v     | <b>I/O</b><br>L37P_3             | <b>I/O</b><br>L37N_3           | GND                              | <b>I/O</b><br>L01N_2<br>M0 | <b>I/O</b><br>L05P_2    | <b>I/O</b><br>L09P_2<br>VS1 | <b>I/O</b><br>L12P_2<br>D7  | <b>I/O</b><br>L13P_2           | <b>I/O</b><br>L13N_2           | <b>I/O</b><br>L16P_2<br>GCLK14 |
|                                                            | w     | <b>I/O</b><br>L38P_3             | <b>I/O</b><br>L38N_3           | <b>I/O</b><br>L02P_2<br>M2       | <b>I/O</b><br>L03N_2       | VCCO_2                  | <b>I/O</b><br>L09N_2<br>VS0 | GND                         | <b>I/O</b><br>L12N_2<br>D6     | <b>I/O</b><br>L15P_2<br>GCLK12 | <b>I/O</b><br>L16N_2<br>GCLK15 |
|                                                            | Ŷ     | GND                              | <b>I/O</b><br>L02N_2<br>CSO_B  | <b>I/O</b><br>L03P_2             | <b>I/O</b><br>L08P_2       | <b>I/O</b><br>L08N_2    | <b>I/O</b><br>L10P_2        | <b>I/O</b><br>L10N_2        | VCCAUX                         | <b>I/O</b><br>L15N_2<br>GCLK13 | GND                            |

## Bank 2

DS529-4\_03\_011608

Figure 24: FG400 Package Footprint (Top View)

# FG484: 484-ball Fine-pitch Ball Grid Array

The 484-ball fine-pitch ball grid array, FG484, supports both the XC3S700A and the XC3S1400A FPGAs. There are three pinout differences, as described in Table 86.

Table 83 lists all the FG484 package pins. They are sorted by bank number and then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier.

The shaded rows indicate pinout differences between the XC3S700A and the XC3S1400A FPGAs. The XC3S700A has three unconnected balls, indicated as N.C. (No Connection) in Table 83 and with the black diamond character ( $\blacklozenge$ ) in Table 83 and Figure 25.

An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at

www.xilinx.com/support/documentation/data\_sheets/ s3a\_pin.zip.

# **Pinout Table**

### Table 83: Spartan-3A FG484 Pinout

| Bank | Pin Name         | FG484<br>Ball | Туре |
|------|------------------|---------------|------|
| 0    | IO_L01N_0        | D18           | I/O  |
| 0    | IO_L01P_0        | E17           | I/O  |
| 0    | IO_L02N_0        | C19           | I/O  |
| 0    | IO_L02P_0/VREF_0 | D19           | VREF |
| 0    | IO_L03N_0        | A20           | I/O  |
| 0    | IO_L03P_0        | B20           | I/O  |
| 0    | IO_L04N_0        | F15           | I/O  |
| 0    | IO_L04P_0        | E15           | I/O  |
| 0    | IO_L05N_0        | A18           | I/O  |
| 0    | IO_L05P_0        | C18           | I/O  |
| 0    | IO_L06N_0        | A19           | I/O  |
| 0    | IO_L06P_0/VREF_0 | B19           | VREF |
| 0    | IO_L07N_0        | C17           | I/O  |
| 0    | IO_L07P_0        | D17           | I/O  |
| 0    | IO_L08N_0        | C16           | I/O  |
| 0    | IO_L08P_0        | D16           | I/O  |
| 0    | IO_L09N_0        | E14           | I/O  |
| 0    | IO_L09P_0        | C14           | I/O  |
| 0    | IO_L10N_0        | A17           | I/O  |
| 0    | IO_L10P_0        | B17           | I/O  |
| 0    | IO_L11N_0        | C15           | I/O  |

| Bank | Pin Name         | FG484<br>Ball | Туре |
|------|------------------|---------------|------|
| 0    | IO_L11P_0        | D15           | I/O  |
| 0    | IO_L12N_0/VREF_0 | A15           | VREF |
| 0    | IO_L12P_0        | A16           | I/O  |
| 0    | IO_L13N_0        | A14           | I/O  |
| 0    | IO_L13P_0        | B15           | I/O  |
| 0    | IO_L14N_0        | E13           | I/O  |
| 0    | IO_L14P_0        | F13           | I/O  |
| 0    | IO_L15N_0        | C13           | I/O  |
| 0    | IO_L15P_0        | D13           | I/O  |
| 0    | IO_L16N_0        | A13           | I/O  |
| 0    | IO_L16P_0        | B13           | I/O  |
| 0    | IO_L17N_0/GCLK5  | E12           | GCLK |
| 0    | IO_L17P_0/GCLK4  | C12           | GCLK |
| 0    | IO_L18N_0/GCLK7  | A11           | GCLK |
| 0    | IO_L18P_0/GCLK6  | A12           | GCLK |
| 0    | IO_L19N_0/GCLK9  | C11           | GCLK |
| 0    | IO_L19P_0/GCLK8  | B11           | GCLK |
| 0    | IO_L20N_0/GCLK11 | E11           | GCLK |
| 0    | IO_L20P_0/GCLK10 | D11           | GCLK |
| 0    | IO_L21N_0        | C10           | I/O  |
| 0    | IO_L21P_0        | A10           | I/O  |
| 0    | IO_L22N_0        | A8            | I/O  |
| 0    | IO_L22P_0        | A9            | I/O  |
| 0    | IO_L23N_0        | E10           | I/O  |
| 0    | IO_L23P_0        | D10           | I/O  |
| 0    | IO_L24N_0/VREF_0 | C9            | VREF |
| 0    | IO_L24P_0        | B9            | I/O  |
| 0    | IO_L25N_0        | C8            | I/O  |
| 0    | IO_L25P_0        | B8            | I/O  |
| 0    | IO_L26N_0        | A6            | I/O  |
| 0    | IO_L26P_0        | A7            | I/O  |
| 0    | IO_L27N_0        | C7            | I/O  |
| 0    | IO_L27P_0        | D7            | I/O  |
| 0    | IO_L28N_0        | A5            | I/O  |
| 0    | IO_L28P_0        | B6            | I/O  |
| 0    | IO_L29N_0        | D6            | I/O  |
| 0    | IO_L29P_0        | C6            | I/O  |
| 0    | IO_L30N_0        | D8            | I/O  |

Table 83: Spartan-3A FG484 Pinout(Continued)



### Table 83: Spartan-3A FG484 Pinout(Continued)

| Bank | Pin Name             | FG484<br>Ball | Туре        |
|------|----------------------|---------------|-------------|
| 2    | IO_L10P_2            | Y7            | I/O         |
| 2    | IO_L11N_2/VS0        | Y8            | DUAL        |
| 2    | IO_L11P_2/VS1        | W8            | DUAL        |
| 2    | IO_L12N_2            | AB8           | I/O         |
| 2    | IO_L12P_2            | AA8           | I/O         |
| 2    | IO_L13N_2            | Y10           | I/O         |
| 2    | IO_L13P_2            | V10           | I/O         |
| 2    | IO_L14N_2/D6         | AB9           | DUAL        |
| 2    | IO_L14P_2/D7         | Y9            | DUAL        |
| 2    | IO_L15N_2            | AB10          | I/O         |
| 2    | IO_L15P_2            | AA10          | I/O         |
| 2    | IO_L16N_2/D4         | AB11          | DUAL        |
| 2    | IO_L16P_2/D5         | Y11           | DUAL        |
| 2    | IO_L17N_2/GCLK13     | V11           | GCLK        |
| 2    | IO_L17P_2/GCLK12     | U11           | GCLK        |
| 2    | IO_L18N_2/GCLK15     | Y12           | GCLK        |
| 2    | IO_L18P_2/GCLK14     | W12           | GCLK        |
| 2    | IO_L19N_2/GCLK1      | AB12          | GCLK        |
| 2    | IO_L19P_2/GCLK0      | AA12          | GCLK        |
| 2    | IO_L20N_2/GCLK3      | U12           | GCLK        |
| 2    | IO_L20P_2/GCLK2      | V12           | GCLK        |
| 2    | IO_L21N_2            | Y13           | I/O         |
| 2    | IO_L21P_2            | AB13          | I/O         |
| 2    | IO_L22N_2/MOSI/CSI_B | AB14          | DUAL        |
| 2    | IO_L22P_2            | AA14          | I/O         |
| 2    | IO_L23N_2            | Y14           | I/O         |
| 2    | IO_L23P_2            | W13           | I/O         |
| 2    | IO_L24N_2/<br>DOUT   | AA15          | DUAL        |
| 2    | IO_L24P_2/AWAKE      | AB15          | PWR<br>MGMT |
| 2    | IO_L25N_2            | Y15           | I/O         |
| 2    | IO_L25P_2            | W15           | I/O         |
| 2    | IO_L26N_2/D3         | U13           | DUAL        |
| 2    | IO_L26P_2/INIT_B     | V13           | DUAL        |
| 2    | IO_L27N_2            | Y16           | I/O         |
| 2    | IO_L27P_2            | AB16          | I/O         |
| 2    | IO_L28N_2/D1         | Y17           | DUAL        |
| 2    | IO_L28P_2/D2         | AA17          | DUAL        |
| 2    | IO_L29N_2            | AB18          | I/O         |
| 2    | IO_L29P_2            | AB17          | I/O         |

### Table 83: Spartan-3A FG484 Pinout(Continued)

| Bank | Pin Name                                                   | FG484<br>Ball | Туре  |
|------|------------------------------------------------------------|---------------|-------|
| 2    | IO_L30N_2                                                  | V15           | I/O   |
| 2    | IO_L30P_2                                                  | V14           | I/O   |
| 2    | IO_L31N_2                                                  | V16           | I/O   |
| 2    | IO_L31P_2                                                  | W16           | I/O   |
| 2    | IO_L32N_2                                                  | AA19          | I/O   |
| 2    | IO_L32P_2                                                  | AB19          | I/O   |
| 2    | IO_L33N_2                                                  | V17           | I/O   |
| 2    | IO_L33P_2                                                  | W18           | I/O   |
| 2    | IO_L34N_2                                                  | W17           | I/O   |
| 2    | IO_L34P_2                                                  | Y18           | I/O   |
| 2    | IO_L35N_2                                                  | AA21          | I/O   |
| 2    | IO_L35P_2                                                  | AB21          | I/O   |
| 2    | IO_L36N_2/CCLK                                             | AA20          | DUAL  |
| 2    | IO_L36P_2/D0/DIN/MISO                                      | AB20          | DUAL  |
| 2    | IP_2                                                       | P12           | INPUT |
| 2    | IP_2                                                       | R10           | INPUT |
| 2    | IP_2                                                       | R11           | INPUT |
| 2    | IP_2                                                       | R9            | INPUT |
| 2    | IP_2                                                       | T13           | INPUT |
| 2    | IP_2                                                       | T14           | INPUT |
| 2    | IP_2                                                       | Т9            | INPUT |
| 2    | IP_2                                                       | U10           | INPUT |
| 2    | IP_2                                                       | U15           | INPUT |
| 2    | XC3S1400A: IP_2<br>XC3S700A: N.C. (♦)                      | U16           | INPUT |
| 2    | XC3S1400A: IP_2<br>XC3S700A: N.C. (♦)                      | U7            | INPUT |
| 2    | IP_2                                                       | U8            | INPUT |
| 2    | IP_2                                                       | V7            | INPUT |
| 2    | IP_2/VREF_2                                                | R12           | VREF  |
| 2    | IP_2/VREF_2                                                | R13           | VREF  |
| 2    | IP_2/VREF_2                                                | R14           | VREF  |
| 2    | IP_2/VREF_2                                                | T10           | VREF  |
| 2    | IP_2/VREF_2                                                | T11           | VREF  |
| 2    | IP_2/VREF_2                                                | T15           | VREF  |
| 2    | IP_2/VREF_2                                                | T16           | VREF  |
| 2    | IP_2/VREF_2                                                | T7            | VREF  |
| 2    | <i>XC3S1400A:</i> IP_2/VREF_2<br><i>XC3S700A:</i> N.C. (♦) | Т8            | VREF  |
| 2    | IP_2/VREF_2                                                | V8            | VREF  |
| 2    | VCCO_2                                                     | AA13          | VCCO  |

# User I/Os by Bank

Table 84 and Table 85 indicate how the user-I/O pins are distributed between the four I/O banks on the FG484 package. The AWAKE pin is counted as a dual-purpose I/O.

### Table 84: User I/Os Per Bank for the XC3S700A in the FG484 Package

| Package All Possible I/O Pins by Type |          |             |     |       | у Туре |      |     |
|---------------------------------------|----------|-------------|-----|-------|--------|------|-----|
| Edge                                  | I/O Bank | Maximum I/O | I/O | INPUT | DUAL   | VREF | CLK |
| Тор                                   | 0        | 92          | 58  | 17    | 1      | 8    | 8   |
| Right                                 | 1        | 94          | 33  | 15    | 30     | 8    | 8   |
| Bottom                                | 2        | 92          | 43  | 11    | 21     | 9    | 8   |
| Left                                  | 3        | 94          | 61  | 17    | 0      | 8    | 8   |
| TOTAL                                 |          | 372         | 195 | 60    | 52     | 33   | 32  |

### Table 85: User I/Os Per Bank for the XC3S1400A in the FG484 Package

| Package |          |             | All Possible I/O Pins by Type |       |      |      |     |
|---------|----------|-------------|-------------------------------|-------|------|------|-----|
| Edge    | I/O Bank | Maximum I/O | I/O                           | INPUT | DUAL | VREF | CLK |
| Тор     | 0        | 92          | 58                            | 17    | 1    | 8    | 8   |
| Right   | 1        | 94          | 33                            | 15    | 30   | 8    | 8   |
| Bottom  | 2        | 95          | 43                            | 13    | 21   | 10   | 8   |
| Left    | 3        | 94          | 61                            | 17    | 0    | 8    | 8   |
| TOTAL   |          | 375         | 195                           | 62    | 52   | 34   | 32  |

# **Footprint Migration Differences**

Table 86 summarizes any footprint and functionality differences between the XC3S700A and the XC3S1400A FPGAs that might affect easy migration between devices available in the FG484 package. There are three such balls. All other pins not listed in Table 86 unconditionally migrate between Spartan-3A devices available in the FG484 package.

The arrows indicate the direction for easy migration.

| Pin         | Bank | XC3S700A | Migration     | XC3S1400A  |
|-------------|------|----------|---------------|------------|
| Т8          | 2    | N.C.     | $\rightarrow$ | INPUT/VREF |
| U7          | 2    | N.C.     | $\rightarrow$ | INPUT      |
| U16         | 2    | N.C.     | $\rightarrow$ | INPUT      |
| DIFFERENCES |      | 3        |               |            |

Table 86: FG484 Footprint Migration Differences

Legend:

→

This pin can unconditionally migrate from the device on the left to the device on the right. Migration in the other direction is possible depending on how the pin is configured for the device on the right.

FG676

# FG676: 676-ball Fine-pitch Ball Grid Array

The 676-ball fine-pitch ball grid array, FG676, supports the XC3S1400A FPGA.

Table 87 lists all the FG676 package pins. They are sorted by bank number and then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier.

The XC3S1400A has 17 unconnected balls, indicated as N.C. (No Connection) in Table 87 and with the black diamond character ( $\blacklozenge$ ) in Table 87 and Figure 27.

An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at:

www.xilinx.com/support/documentation/data\_sheets/ s3a\_pin.zip.

# **Pinout Table**

| Table | 87: | Spartan-3A | FG676 | Pinout |
|-------|-----|------------|-------|--------|
|-------|-----|------------|-------|--------|

| Bank | Pin Name         | FG676<br>Ball | Туре |
|------|------------------|---------------|------|
| 0    | IO_L01N_0        | F20           | I/O  |
| 0    | IO_L01P_0        | G20           | I/O  |
| 0    | IO_L02N_0        | F19           | I/O  |
| 0    | IO_L02P_0/VREF_0 | G19           | VREF |
| 0    | IO_L05N_0        | C22           | I/O  |
| 0    | IO_L05P_0        | D22           | I/O  |
| 0    | IO_L06N_0        | C23           | I/O  |
| 0    | IO_L06P_0        | D23           | I/O  |
| 0    | IO_L07N_0        | A22           | I/O  |
| 0    | IO_L07P_0        | B23           | I/O  |
| 0    | IO_L08N_0        | G17           | I/O  |
| 0    | IO_L08P_0        | H17           | I/O  |
| 0    | IO_L09N_0        | B21           | I/O  |
| 0    | IO_L09P_0        | C21           | I/O  |
| 0    | IO_L10N_0        | D21           | I/O  |
| 0    | IO_L10P_0        | E21           | I/O  |
| 0    | IO_L11N_0        | C20           | I/O  |
| 0    | IO_L11P_0        | D20           | I/O  |
| 0    | IO_L12N_0        | K16           | I/O  |
| 0    | IO_L12P_0        | J16           | I/O  |
| 0    | IO_L13N_0        | E17           | I/O  |
| 0    | IO_L13P_0        | F17           | I/O  |
| 0    | IO_L14N_0        | A20           | I/O  |
| 0    | IO_L14P_0/VREF_0 | B20           | VREF |

| Вапк | Pin Name         | Ball | Туре |
|------|------------------|------|------|
| 0    | IO_L15N_0        | A19  | I/O  |
| 0    | IO_L15P_0        | B19  | I/O  |
| 0    | IO_L16N_0        | H15  | I/O  |
| 0    | IO_L16P_0        | G15  | I/O  |
| 0    | IO_L17N_0        | C18  | I/O  |
| 0    | IO_L17P_0        | D18  | I/O  |
| 0    | IO_L18N_0        | A18  | I/O  |
| 0    | IO_L18P_0        | B18  | I/O  |
| 0    | IO_L19N_0        | B17  | I/O  |
| 0    | IO_L19P_0        | C17  | I/O  |
| 0    | IO_L20N_0/VREF_0 | E15  | VREF |
| 0    | IO_L20P_0        | F15  | I/O  |
| 0    | IO_L21N_0        | C16  | I/O  |
| 0    | IO_L21P_0        | D17  | I/O  |
| 0    | IO_L22N_0        | C15  | I/O  |
| 0    | IO_L22P_0        | D16  | I/O  |
| 0    | IO_L23N_0        | A15  | I/O  |
| 0    | IO_L23P_0        | B15  | I/O  |
| 0    | IO_L24N_0        | F14  | I/O  |
| 0    | IO_L24P_0        | E14  | I/O  |
| 0    | IO_L25N_0/GCLK5  | J14  | GCLK |
| 0    | IO_L25P_0/GCLK4  | K14  | GCLK |
| 0    | IO_L26N_0/GCLK7  | A14  | GCLK |
| 0    | IO_L26P_0/GCLK6  | B14  | GCLK |
| 0    | IO_L27N_0/GCLK9  | G13  | GCLK |
| 0    | IO_L27P_0/GCLK8  | F13  | GCLK |
| 0    | IO_L28N_0/GCLK11 | C13  | GCLK |
| 0    | IO_L28P_0/GCLK10 | B13  | GCLK |
| 0    | IO_L29N_0        | B12  | I/O  |
| 0    | IO_L29P_0        | A12  | I/O  |
| 0    | IO_L30N_0        | C12  | I/O  |
| 0    | IO_L30P_0        | D13  | I/O  |
| 0    | IO_L31N_0        | F12  | I/O  |
| 0    | IO_L31P_0        | E12  | I/O  |
| 0    | IO_L32N_0/VREF_0 | D11  | VREF |
| 0    | IO_L32P_0        | C11  | I/O  |
| 0    | IO_L33N_0        | B10  | I/O  |
| 0    | IO_L33P_0        | A10  | I/O  |

Table 87: Spartan-3A FG676 Pinout(Continued)

D' N

www.xilinx.com

### Table 87: Spartan-3A FG676 Pinout(Continued)

| Bank | Pin Name         | FG676<br>Ball | Туре  |
|------|------------------|---------------|-------|
| 0    | IO_L34N_0        | D10           | I/O   |
| 0    | IO_L34P_0        | C10           | I/O   |
| 0    | IO_L35N_0        | H12           | I/O   |
| 0    | IO_L35P_0        | G12           | I/O   |
| 0    | IO_L36N_0        | B9            | I/O   |
| 0    | IO_L36P_0        | A9            | I/O   |
| 0    | IO_L37N_0        | D9            | I/O   |
| 0    | IO_L37P_0        | E10           | I/O   |
| 0    | IO_L38N_0        | B8            | I/O   |
| 0    | IO_L38P_0        | A8            | I/O   |
| 0    | IO_L39N_0        | K12           | I/O   |
| 0    | IO_L39P_0        | J12           | I/O   |
| 0    | IO_L40N_0        | D8            | I/O   |
| 0    | IO_L40P_0        | C8            | I/O   |
| 0    | IO_L41N_0        | C6            | I/O   |
| 0    | IO_L41P_0        | B6            | I/O   |
| 0    | IO_L42N_0        | C7            | I/O   |
| 0    | IO_L42P_0        | B7            | I/O   |
| 0    | IO_L43N_0        | K11           | I/O   |
| 0    | IO_L43P_0        | J11           | I/O   |
| 0    | IO_L44N_0        | D6            | I/O   |
| 0    | IO_L44P_0        | C5            | I/O   |
| 0    | IO_L45N_0        | B4            | I/O   |
| 0    | IO_L45P_0        | A4            | I/O   |
| 0    | IO_L46N_0        | H10           | I/O   |
| 0    | IO_L46P_0        | G10           | I/O   |
| 0    | IO_L47N_0        | H9            | I/O   |
| 0    | IO_L47P_0        | G9            | I/O   |
| 0    | IO_L48N_0        | E7            | I/O   |
| 0    | IO_L48P_0        | F7            | I/O   |
| 0    | IO_L51N_0        | B3            | I/O   |
| 0    | IO_L51P_0        | A3            | I/O   |
| 0    | IO_L52N_0/PUDC_B | G8            | DUAL  |
| 0    | IO_L52P_0/VREF_0 | F8            | VREF  |
| 0    | IP_0             | A5            | INPUT |
| 0    | IP_0             | A7            | INPUT |
| 0    | IP_0             | A13           | INPUT |
| 0    | IP_0             | A17           | INPUT |
| 0    | IP_0             | A23           | INPUT |
| 0    | IP_0             | C4            | INPUT |

### Table 87: Spartan-3A FG676 Pinout(Continued)

| Bank | Pin Name       | FG676<br>Ball | Туре  |
|------|----------------|---------------|-------|
| 0    | IP_0           | D12           | INPUT |
| 0    | IP_0           | D15           | INPUT |
| 0    | IP_0           | D19           | INPUT |
| 0    | IP_0           | E11           | INPUT |
| 0    | IP_0           | E18           | INPUT |
| 0    | IP_0           | E20           | INPUT |
| 0    | IP_0           | F10           | INPUT |
| 0    | IP_0           | G14           | INPUT |
| 0    | IP_0           | G16           | INPUT |
| 0    | IP_0           | H13           | INPUT |
| 0    | IP_0           | H18           | INPUT |
| 0    | IP_0           | J10           | INPUT |
| 0    | IP_0           | J13           | INPUT |
| 0    | IP_0           | J15           | INPUT |
| 0    | IP_0/VREF_0    | D7            | VREF  |
| 0    | IP_0/VREF_0    | D14           | VREF  |
| 0    | IP_0/VREF_0    | G11           | VREF  |
| 0    | IP_0/VREF_0    | J17           | VREF  |
| 0    | N.C. (♦)       | A24           | N.C.  |
| 0    | N.C. (♦)       | B24           | N.C.  |
| 0    | N.C. (♦)       | D5            | N.C.  |
| 0    | N.C. (♦)       | E9            | N.C.  |
| 0    | N.C. (♦)       | F18           | N.C.  |
| 0    | N.C. (♦)       | E6            | N.C.  |
| 0    | N.C. (♦)       | F9            | N.C.  |
| 0    | N.C. (♦)       | G18           | N.C.  |
| 0    | VCCO_0         | B5            | VCCO  |
| 0    | VCCO_0         | B11           | VCCO  |
| 0    | VCCO_0         | B16           | VCCO  |
| 0    | VCCO_0         | B22           | VCCO  |
| 0    | VCCO_0         | E8            | VCCO  |
| 0    | VCCO_0         | E13           | VCCO  |
| 0    | VCCO_0         | E19           | VCCO  |
| 0    | VCCO_0         | H11           | VCCO  |
| 0    | VCCO_0         | H16           | VCCO  |
| 1    | IO_L01N_1/LDC2 | Y21           | DUAL  |
| 1    | IO_L01P_1/HDC  | Y20           | DUAL  |
| 1    | IO_L02N_1/LDC0 | AD25          | DUAL  |
| 1    | IO_L02P_1/LDC1 | AE26          | DUAL  |
| 1    | IO_L03N_1/A1   | AC24          | DUAL  |