

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	1472
Number of Logic Elements/Cells	13248
Total RAM Bits	368640
Number of I/O	372
Number of Gates	700000
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	484-BBGA
Supplier Device Package	484-FBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc3s700a-4fgg484c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Spartan-3A FPGA Family: Introduction and Ordering Information

DS529-1 (v2.0) August 19, 2010

Product Specification

Introduction

The Spartan®-3A family of Field-Programmable Gate Arrays (FPGAs) solves the design challenges in most high-volume, cost-sensitive, I/O-intensive electronic applications. The five-member family offers densities ranging from 50,000 to 1.4 million system gates, as shown in Table 1.

The Spartan-3A FPGAs are part of the Extended Spartan-3A family, which also include the non-volatile Spartan-3AN and the higher density Spartan-3A DSP FPGAs. The Spartan-3A family builds on the success of the earlier Spartan-3E and Spartan-3 FPGA families. New features improve system performance and reduce the cost of configuration. These Spartan-3A family enhancements, combined with proven 90 nm process technology, deliver more functionality and bandwidth per dollar than ever before, setting the new standard in the programmable logic industry.

Because of their exceptionally low cost, Spartan-3A FPGAs are ideally suited to a wide range of consumer electronics applications, including broadband access, home networking, display/projection, and digital television equipment.

The Spartan-3A family is a superior alternative to mask programmed ASICs. FPGAs avoid the high initial cost, lengthy development cycles, and the inherent inflexibility of conventional ASICs, and permit field design upgrades.

Features

- Very low cost, high-performance logic solution for high-volume, cost-conscious applications
- Dual-range V_{CCAUX} supply simplifies 3.3V-only design
- Suspend, Hibernate modes reduce system power
- Multi-voltage, multi-standard SelectIO[™] interface pins
 - Up to 502 I/O pins or 227 differential signal pairs
 - LVCMOS, LVTTL, HSTL, and SSTL single-ended I/O
 - 3.3V, 2.5V, 1.8V, 1.5V, and 1.2V signaling
 - Selectable output drive, up to 24 mA per pin
 - QUIETIO standard reduces I/O switching noise
 - + Full 3.3V \pm 10% compatibility and hot swap compliance

Table 1: Summary of Spartan-3A FPGA Attributes

- 640+ Mb/s data transfer rate per differential I/O
- LVDS, RSDS, mini-LVDS, HSTL/SSTL differential I/O with integrated differential termination resistors
- Enhanced Double Data Rate (DDR) support
- DDR/DDR2 SDRAM support up to 400 Mb/s
- Fully compliant 32-/64-bit, 33/66 MHz PCI® technology support
- Abundant, flexible logic resources
 - Densities up to 25,344 logic cells, including optional shift register or distributed RAM support
 - Efficient wide multiplexers, wide logic
 - Fast look-ahead carry logic
 - Enhanced 18 x 18 multipliers with optional pipeline
 - IEEE 1149.1/1532 JTAG programming/debug port
- Hierarchical SelectRAM™ memory architecture
 - Up to 576 Kbits of fast block RAM with byte write enables for processor applications
 - Up to 176 Kbits of efficient distributed RAM
- Up to eight Digital Clock Managers (DCMs)
 - Clock skew elimination (delay locked loop)
 - Frequency synthesis, multiplication, division
 - High-resolution phase shifting
 - Wide frequency range (5 MHz to over 320 MHz)
- Eight low-skew global clock networks, eight additional clocks per half device, plus abundant low-skew routing
- Configuration interface to industry-standard PROMs
 - Low-cost, space-saving SPI serial Flash PROM
 - x8 or x8/x16 BPI parallel NOR Flash PROM
 - Low-cost Xilinx® Platform Flash with JTAG
 - Unique Device DNA identifier for design authentication
 - Load multiple bitstreams under FPGA control
 - Post-configuration CRC checking
 Complete Xiling ISE® and WebBACKIN
- Complete Xilinx <u>ISE</u>® and <u>WebPACK</u>[™] development system software support plus <u>Spartan-3A Starter Kit</u>
- MicroBlaze[™] and PicoBlaze[™] embedded processors
- Low-cost QFP and BGA packaging, Pb-free options
 - Common footprints support easy density migration
 - Compatible with select Spartan-3AN nonvolatile FPGAs
 - Compatible with higher density Spartan-3A DSP FPGAs
- XA Automotive version available

	System	Equivalent	(CLB Array (One CLB = Four Slices)		Distributed	Block BAM	Dedicated		Maximum	Maximum Differential	
Device	Gates	Logic Cells	Rows	Columns	CLBs	Slices		bits ⁽¹⁾	Multipliers	DCMs	User I/O	I/O Pairs
XC3S50A	50K	1,584	16	12	176	704	11K	54K	3	2	144	64
XC3S200A	200K	4,032	32	16	448	1,792	28K	288K	16	4	248	112
XC3S400A	400K	8,064	40	24	896	3,584	56K	360K	20	4	311	142
XC3S700A	700K	13,248	48	32	1,472	5,888	92K	360K	20	8	372	165
XC3S1400A	1400K	25,344	72	40	2,816	11,264	176K	576K	32	8	502	227

Notes:

1. By convention, one Kb is equivalent to 1,024 bits.

[©] Copyright 2006–2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. PCI is a registered trademark of the PCI-SIG. All other trademarks are the property of their respective owners.

Pin-to-Pin Setup and Hold Times

Table 19: Pin-to-Pin Setup and Hold Times for the IOB Input Path (System Synchronous)

				Speed	Grade	
				-5	-4	
Symbol	Description	Conditions	Device	Min	Min	Units
Setup Times						
T _{PSDCM}	T _{PSDCM} When writing to the Input I Flip-Flop (IFF), the time from the I setup of data at the Input pin to	LVCMOS25 ⁽²⁾ ,	XC3S50A	2.45	2.68	ns
		with DCM ⁽⁴⁾	XC3S200A	2.59	2.84	ns
	the active transition at a Global Clock pin. The DCM is in use. No		XC3S400A	2.38	2.68	ns
	Input Delay is programmed.		XC3S700A	2.38	2.57	ns
			XC3S1400A	1.91	2.17	ns
T _{PSFD}	When writing to IFF, the time from	LVCMOS25 ⁽²⁾ ,	XC3S50A	2.55	2.76	ns
	to an active transition at the	iFD_DELAY_VALUE = 5, without DCM	XC3S200A	2.32	2.76	ns
	Global Clock pin. The DCM is not in use. The Input Delay is		XC3S400A	2.21	2.60	ns
	programmed.		XC3S700A	2.28	2.63	ns
				2.33	2.41	ns
Hold Times						
T _{PHDCM}	When writing to IFF, the time from	LVCMOS25 ⁽³⁾ ,	XC3S50A	-0.36	-0.36	ns
	Clock pin to the point when data	with DCM ⁽⁴⁾ with DCM ⁽⁴⁾	XC3S200A	-0.52	-0.52	ns
	must be held at the Input pin. The DCM is in use. No Input Delay is		XC3S400A	-0.33	-0.29	ns
	programmed.		XC3S700A	-0.17	-0.12	ns
			XC3S1400A	-0.07	0.00	ns
T _{PHFD}	When writing to IFF, the time from	LVCMOS25 ⁽³⁾ ,	XC3S50A	-0.63	-0.58	ns
	the active transition at the Global Clock pin to the point when data must be held at the Input pin. The DCM is not in use. The Input	without DCM $= 5$,	XC3S200A	-0.56	-0.56	ns
			XC3S400A	-0.42	-0.42	ns
	Delay is programmed.		XC3S700A	-0.80	-0.75	ns
			XC3S1400A	-0.69	-0.69	ns

Notes:

1. The numbers in this table are tested using the methodology presented in Table 27 and are based on the operating conditions set forth in Table 8 and Table 11.

 This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the data Input. If this is true of the Global Clock Input, subtract the appropriate adjustment from Table 23. If this is true of the data Input, add the appropriate Input adjustment from the same table.

3. This hold time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the data Input. If this is true of the Global Clock Input, add the appropriate Input adjustment from Table 23. If this is true of the data Input, subtract the appropriate Input adjustment from the same table. When the hold time is negative, it is possible to change the data before the clock's active edge.

4. DCM output jitter is included in all measurements.

Output Timing Adjustments

Table 26: Output Timing Adjustments for IOB

Convert Output Time from			Add Adjus Bel	l the tment low	
LVCMOS25 wi Fast Slew Bat	th 12mA [te to the F	Drive and	Speed		
Signal Standard (IOSTANDARD)			-5	-4	Units
Single-Ended	Standard	S			
LVTTL	Slow	2 mA	5.58	5.58	ns
		4 mA	3.16	3.16	ns
		6 mA	3.17	3.17	ns
		8 mA	2.09	2.09	ns
		12 mA	1.62	1.62	ns
		16 mA	1.24	1.24	ns
		24 mA	2.74 ⁽³⁾	2.74 ⁽³⁾	ns
	Fast	2 mA	3.03	3.03	ns
		4 mA	1.71	1.71	ns
		6 mA	1.71	1.71	ns
		8 mA	0.53	0.53	ns
		12 mA	0.53	0.53	ns
		16 mA	0.59	0.59	ns
		24 mA	0.60	0.60	ns
	QuietIO	2 mA	27.67	27.67	ns
		4 mA	27.67	27.67	ns
		6 mA	27.67	27.67	ns
		8 mA	16.71	16.71	ns
		12 mA	16.67	16.67	ns
		16 mA	16.22	16.22	ns
		24 mA	12.11	12.11	ns

Table 26: Output Timing Adjustments for IOB(Continued)

Convert Ou	Itput Time	e from	Add Adjus Bel	the tment low	
LVCMOS25 with 12mA Drive and Fast Slew Rate to the Following			Speed		
Signal Standa	rd (IOSTA	NDARD)	-5	-4	Units
LVCMOS33	Slow	2 mA	5.58	5.58	ns
		4 mA	3.17	3.17	ns
		6 mA	3.17	3.17	ns
		8 mA	2.09	2.09	ns
		12 mA	1.24	1.24	ns
		16 mA	1.15	1.15	ns
		24 mA	2.55 ⁽³⁾	2.55 ⁽³⁾	ns
	Fast	2 mA	3.02	3.02	ns
		4 mA	1.71	1.71	ns
		6 mA	1.72	1.72	ns
		8 mA	0.53	0.53	ns
		12 mA	0.59	0.59	ns
		16 mA	0.59	0.59	ns
		24 mA	0.51	0.51	ns
	QuietIO	2 mA	27.67	27.67	ns
		4 mA	27.67	27.67	ns
		6 mA	27.67	27.67	ns
		8 mA	16.71	16.71	ns
		12 mA	16.29	16.29	ns
		16 mA	16.18	16.18	ns
		24 mA	12.11	12.11	ns

Table 26: Output Timing Adjustments for IOB(Continued)

Convert Ou	Add Adjus Bel				
LVCMOS25 with 12mA Drive and Fast Slew Rate to the Following			Speed	Grade	
Signal Standa	rd (IOSTA	NDARD)	-5	-4	Units
LVCMOS25	Slow	2 mA	5.33	5.33	ns
		4 mA	2.81	2.81	ns
		6 mA	2.82	2.82	ns
		8 mA	1.14	1.14	ns
		12 mA	1.10	1.10	ns
		16 mA	0.83	0.83	ns
		24 mA	2.26 ⁽³⁾	2.26 ⁽³⁾	ns
	Fast	2 mA	4.36	4.36	ns
		4 mA	1.76	1.76	ns
		6 mA	1.25	1.25	ns
		8 mA	0.38	0.38	ns
		12 mA	0	0	ns
		16 mA	0.01	0.01	ns
		24 mA	0.01	0.01	ns
	QuietIO	2 mA	25.92	25.92	ns
		4 mA	25.92	25.92	ns
		6 mA	25.92	25.92	ns
		8 mA	15.57	15.57	ns
		12 mA	15.59	15.59	ns
		16 mA	14.27	14.27	ns
		24 mA	11.37	11.37	ns
LVCMOS18	Slow	2 mA	4.48	4.48	ns
		4 mA	3.69	3.69	ns
		6 mA	2.91	2.91	ns
		8 mA	1.99	1.99	ns
		12 mA	1.57	1.57	ns
		16 mA	1.19	1.19	ns
	Fast	2 mA	3.96	3.96	ns
		4 mA	2.57	2.57	ns
		6 mA	1.90	1.90	ns
		8 mA	1.06	1.06	ns
		12 mA	0.83	0.83	ns
		16 mA	0.63	0.63	ns
	QuietIO	2 mA	24.97	24.97	ns
		4 mA	24.97	24.97	ns
		6 mA	24.08	24.08	ns
		8 mA	16.43	16.43	ns
		12 mA	14.52	14.52	ns
		16 mA	13.41	13.41	ns

Table 26: Output Timing Adjustments for IOB(Continued)

Convert Ou	Add Adjus Bel	the tment ow			
LVCMOS25 wi Fast Slew Rat	Orive and ollowing	Speed	Grade		
Signal Standa	rd (IOSTA	NDARD)	-5	-4	Units
LVCMOS15	Slow	2 mA	5.82	5.82	ns
		4 mA	3.97	3.97	ns
		6 mA	3.21	3.21	ns
		8 mA	2.53	2.53	ns
		12 mA	2.06	2.06	ns
	Fast	2 mA	5.23	5.23	ns
		4 mA	3.05	3.05	ns
		6 mA	1.95	1.95	ns
		8 mA	1.60	1.60	ns
		12 mA	1.30	1.30	ns
	QuietIO	2 mA	34.11	34.11	ns
		4 mA	25.66	25.66	ns
		6 mA	24.64	24.64	ns
		8 mA	22.06	22.06	ns
		12 mA	20.64	20.64	ns
LVCMOS12	Slow	2 mA	7.14	7.14	ns
		4 mA	4.87	4.87	ns
		6 mA	5.67	5.67	ns
	Fast	2 mA	6.77	6.77	ns
		4 mA	5.02	5.02	ns
		6 mA	4.09	4.09	ns
	QuietIO	2 mA	50.76	50.76	ns
		4 mA	43.17	43.17	ns
		6 mA	37.31	37.31	ns
PCI33_3			0.34	0.34	ns
PCI66_3			0.34	0.34	ns
HSTL_I			0.78	0.78	ns
HSTL_III			1.16	1.16	ns
HSTL_I_18			0.35	0.35	ns
HSTL_II_18			0.30	0.30	ns
HSTL_III_18			0.47	0.47	ns
SSTL18_I			0.40	0.40	ns
SSTL18_II			0.30	0.30	ns
SSTL2_I			0	0	ns
SSTL2_II			-0.05	-0.05	ns
SSTL3_I			0	0	ns
SSTL3_II			0.17	0.17	ns

Using IBIS Models to Simulate Load Conditions in Application

IBIS models permit the most accurate prediction of timing delays for a given application. The parameters found in the IBIS model (V_{REF} , R_{REF} , and V_{MEAS}) correspond directly with the parameters used in Table 27 (V_T , R_T , and V_M). Do not confuse V_{REF} (the termination voltage) from the IBIS model with V_{REF} (the input-switching threshold) from the table. A fourth parameter, C_{REF} is always zero. The four parameters describe all relevant output test conditions. IBIS models are found in the Xilinx development software as well as at the following link:

www.xilinx.com/support/download/index.htm

Delays for a given application are simulated according to its specific load conditions as follows:

Simultaneously Switching Output Guidelines

This section provides guidelines for the recommended maximum allowable number of Simultaneous Switching Outputs (SSOs). These guidelines describe the maximum number of user I/O pins of a given output signal standard that should simultaneously switch in the same direction, while maintaining a safe level of switching noise. Meeting these guidelines for the stated test conditions ensures that the FPGA operates free from the adverse effects of ground and power bounce.

Ground or power bounce occurs when a large number of outputs simultaneously switch in the same direction. The output drive transistors all conduct current to a common voltage rail. Low-to-High transitions conduct to the V_{CCO} rail; High-to-Low transitions conduct to the GND rail. The resulting cumulative current transient induces a voltage difference across the inductance that exists between the die pad and the power supply or ground return. The inductance is associated with bonding wires, the package lead frame, and any other signal routing inside the package. Other variables contribute to SSO noise levels, including stray inductance on the PCB as well as capacitive loading at receivers. Any SSO-induced voltage consequently affects internal switching noise margins and ultimately signal quality.

- 1. Simulate the desired signal standard with the output driver connected to the test setup shown in Figure 9. Use parameter values V_T , R_T , and V_M from Table 27. C_{REF} is zero.
- 2. Record the time to V_{M} .
- 3. Simulate the same signal standard with the output driver connected to the PCB trace with load. Use the appropriate IBIS model (including V_{REF} , R_{REF} , C_{REF} , and V_{MEAS} values) or capacitive value to represent the load.
- 4. Record the time to V_{MEAS} .
- 5. Compare the results of steps 2 and 4. Add (or subtract) the increase (or decrease) in delay to (or from) the appropriate Output standard adjustment (Table 26) to yield the worst-case delay of the PCB trace.

Table 28 and Table 29 provide the essential SSO guidelines. For each device/package combination, Table 28 provides the number of equivalent V_{CCO} /GND pairs. The equivalent number of pairs is based on characterization and may not match the physical number of pairs. For each output signal standard and drive strength, Table 29 recommends the maximum number of SSOs, switching in the same direction, allowed per V_{CCO} /GND pair within an I/O bank. The guidelines in Table 29 are categorized by package style, slew rate, and output drive current. Furthermore, the number of SSOs is specified by I/O bank. Generally, the left and right I/O banks (Banks 1 and 3) support higher output drive current.

Multiply the appropriate numbers from Table 28 and Table 29 to calculate the maximum number of SSOs allowed within an I/O bank. Exceeding these SSO guidelines might result in increased power or ground bounce, degraded signal integrity, or increased system jitter.

SSO_{MAX}/IO Bank = Table 28 x Table 29

The recommended maximum SSO values assume that the FPGA is soldered on the printed circuit board and that the board uses sound design practices. The SSO values do not apply for FPGAs mounted in sockets, due to the lead inductance introduced by the socket.

The SSO values assume that the V_{CCAUX} is powered at 3.3V. Setting V_{CCAUX} to 2.5V provides better SSO characteristics.

The number of SSOs allowed for quad-flat packages (VQ/TQ) is lower than for ball grid array packages (FG) due to the larger lead inductance of the quad-flat packages. Ball grid array packages are recommended for applications with a large number of simultaneously switching outputs.

Block RAM Timing

Table 35: Block RAM Timing

			Speed	Grade		
		-	5	-	4	
Symbol	Description	Min	Max	Min	Max	Units
Clock-to-Out	tput Times					
Т _{RCKO}	When reading from block RAM, the delay from the active transition at the CLK input to data appearing at the DOUT output	-	2.06	_	2.49	ns
Setup Times						
T _{RCCK_ADDR}	Setup time for the ADDR inputs before the active transition at the CLK input of the block RAM	0.32	-	0.36	-	ns
T _{RDCK_DIB}	Setup time for data at the DIN inputs before the active transition at the CLK input of the block RAM	0.28	-	0.31	-	ns
T _{RCCK_ENB}	Setup time for the EN input before the active transition at the CLK input of the block RAM	0.69	-	0.77	-	ns
T _{RCCK_WEB}	Setup time for the WE input before the active transition at the CLK input of the block RAM	1.12	-	1.26	-	ns
Hold Times						
T _{RCKC_ADDR}	Hold time on the ADDR inputs after the active transition at the CLK input	0	-	0	-	ns
T _{RCKD_DIB}	Hold time on the DIN inputs after the active transition at the CLK input	0	-	0	-	ns
T _{RCKC_ENB}	Hold time on the EN input after the active transition at the CLK input	0	-	0	-	ns
T _{RCKC_WEB}	Hold time on the WE input after the active transition at the CLK input	0	-	0	-	ns
Clock Timing	9					
T _{BPWH}	High pulse width of the CLK signal	1.56	-	1.79	-	ns
T _{BPWL}	Low pulse width of the CLK signal	1.56	-	1.79	-	ns
Clock Frequ	ency					
F _{BRAM}	Block RAM clock frequency	0	320	0	280	MHz

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 8.

IEEE 1149.1/1532 JTAG Test Access Port Timing

Table	56:	Timing	for	the	JTAG	Test	Access	Port

				peed des	
Symbol		Description	Min	Max	Units
Clock-to-	Output Times				
T _{TCKTDO}	The time from the falling transition on t	he TCK pin to data appearing at the TDO pin	1.0	11.0	ns
Setup Tin	nes				
T _{TDITCK}	The time from the setup of data at the	All devices and functions except those shown below	7.0	-	ns
	TCK pin	Boundary scan commands (INTEST, EXTEST, SAMPLE) on XC3S700A and XC3S1400A FPGAs	11.0		
T _{TMSTCK}	The time from the setup of a logic leve	at the TMS pin to the rising transition at the TCK pin	7.0	-	ns
Hold Tim	es				
T _{TCKTDI}	The time from the rising transition at	All functions except those shown below	0	-	ns
	last held at the TDI pin	Configuration commands (CFG_IN, ISC_PROGRAM)	2.0		
T _{TCKTMS}	The time from the rising transition at the TMS pin	e TCK pin to the point when a logic level is last held at the	0	-	ns
Clock Tin	ning				
T _{CCH}	The High pulse width at the TCK pin	All functions except ISC_DNA command	5	-	ns
T _{CCL}	The Low pulse width at the TCK pin		5	_	ns
T _{CCHDNA}	The High pulse width at the TCK pin	During ISC_DNA command	10	10,000	ns
T _{CCLDNA}	The Low pulse width at the TCK pin		10	10,000	ns
F _{TCK}	Frequency of the TCK signal	All operations on XC3S50A, XC3S200A, and XC3S400A FPGAs and for BYPASS or HIGHZ instructions on all FPGAs	0	33	MHz
		All operations on XC3S700A and XC3S1400A FPGAs, except for BYPASS or HIGHZ instructions		20	

Notes:

- 1. The numbers in this table are based on the operating conditions set forth in Table 8.
- 2. For details on JTAG see Chapter 9 "JTAG Configuration Mode and Boundary-Scan" in <u>UG332</u> Spartan-3 Generation Configuration User Guide.

Revision History

The following table shows the revision history for this document.

Date	Version	Revision
12/05/06	1.0	Initial release.
02/02/07	1.1	Promoted to Preliminary status. Moved Table 15 to under "DC Electrical Characteristics" section. Updated all timing specifications for the v1.32 speed files. Added recommended Simultaneous Switching Output (SSO) limits in Table 29. Set a 10 µs maximum pulse width for the DNA_PORT READ signal and the JTAG clock input during the ISC_DNA command, affecting both Table 43 and Table 56. Described "External Termination Requirements for Differential I/O." Added separate DIN hold time for Slave mode in Table 50. Corrected wording in Table 52 and Table 54; no specifications affected.
03/16/07	1.2	Updated all AC timing specifications to the v1.34 speeds file. Promoted the XC3S700A and XC3S1400A FPGAs offered in the -4 speed grade to Production status, as shown in Table 16. Added Note 2 to Table 39 regarding the extra logic (one LUT) automatically added by ISE 9.1i and later software revisions for any DCM application that leverages the Digital Frequency Synthesizer (DFS). Separated some JTAG specifications by array size or function, as shown in Table 56. Updated quiescent current limits in Table 10.
04/23/07	1.3	Updated all AC timing specifications to the v1.35 speeds file. Promoted all devices except the XC3S400A to Production status, as shown in Table 16.
05/08/07	1.4	Updated XC3S400A to Production and v1.36 speeds file. Added banking rules and other explanatory footnotes to Table 12 and Table 13. Corrected DIFF_SSTL3_II V _{OL} Max in Table 14. Improved XC3S400A Pin-to-Pin Clock-to-Output times in Table 18. Updated XC3S400A Pin-to-Pin Setup Times in Table 19. Updated TIOICKPD for -5 in Table 20. Added SSO numbers to Table 28 and Table 29. Removed invalid Embedded Multiplier Hold Times in Table 34. Improved CLKOUT_FREQ_CLK90 in Table 37. Improved T _{TDITCK} and F _{TCK} performance for XC3S400A in Table 56.
07/10/07	1.5	Added DIFF_HSTL_I and DIFF_HSTL_III to Table 13, Table 14, Table 27, and Table 29. Updated TMDS DC characteristics in Table 14. Updated for speed file v1.37 in ISE 9.2.01i as shown in Table 17. Updated pin-to-pin setup and hold times in Table 19. Updated TMDS output adjustment in Table 26. Updated I/O Test Method values in Table 27. Added BLVDS SSO numbers inTable 29. For Multiplier block, updated setup times and added hold times to Table 34. Updated block RAM clock width in Table 35. Updated CLKOUT_PER_JITT_2X and CLKOUT_PER_JITT_DV2 in Table 37. Added CCLK specifications for Commercial in Table 46 through Table 48.
04/15/08	1.6	Added V _{IN} to Recommended Operating Conditions in Table 8 and added reference to XAPP459, "Eliminating I/O Coupling Effects when Interfacing Large-Swing Single-Ended Signals to User I/O Pins." Reduced typical I _{CCINTO} and I _{CCAUXQ} quiescent current values by 12%-58% in Table 10. Increased V _{IL} max to 0.4V for LVCMOS12/15/18 and improved V _{IH} min to 0.7V for LVCMOS12 in Table 11. Changed V _{OL} max to 0.4V and V _{OH} min to V _{CCO} -0.4V for LVCMOS15/18 in Table 12. Noted latest speed file v1.39 in ISE 10.1 software in Table 16. Added new packages to SSO limits in Table 28 and Table 29. Improved SSTL18_II SSO limit for FG packages in Table 29. Improved F _{BUFG} for -4 to 334 MHz in Table 33. Added references to 375 MHz performance via SCD 4103 in Table 33, Table 38, Table 39, and Table 40. Restored Units column to Table 44. Updated CCLK output maximum period in Table 46 to match minimum frequency in Table 47. Corrected BPI active clock edge in Figure 15 and Table 54.
05/28/08	1.7	Improved V _{CCAUXT} and V _{CCO2T} POR minimum in Table 5 and updated V _{CCO} POR levels in Figure 11. Clarified recommended V _{IN} in Table 8. Added reference to V _{CCAUX} in "Simultaneously Switching Output Guidelines". Added reference to Sample Window in Table 21. Removed DNA_RETENTION limit of 10 years in Table 15 since number of Read cycles is the only unique limit. Added references to UG332.
03/06/09	1.8	Changed typical quiescent current temperature from ambient to junction. Updated BPI configuration waveforms in Figure 15 and updated Table 55. Updated selected I/O standard DC characteristics. Added TIOPI and TIOPID in Table 22. Removed references to SCD 4103.
08/19/10	2.0	Added I_{IK} to Table 4. Updated V_{IN} in Table 8 and footnoted I_L in Table 9 to note potential leakage between pins of a differential pair. Clarified LVPECL notes to Table 13. Corrected symbols for TSUSPEND_GTS and TSUSPEND_GWE in Table 44.

Table 68: Spartan-3A FT256 Pinout (XC3S50A, XC3S200A, XC3S400) (Continued)

Bank	XC3S50A	XC3S200A XC3S400A	FT256 Ball	Туре
3	IO_L14N_3/ LHCLK5	IO_L14N_3/ LHCLK5	J1	LHCLK
3	IO_L14P_3/ LHCLK4	IO_L14P_3/ LHCLK4	J2	LHCLK
3	IO_L15N_3/ LHCLK7	IO_L15N_3/ LHCLK7	K1	LHCLK
3	IO_L15P_3/ TRDY2/LHCLK6	IO_L15P_3/ TRDY2/LHCLK6	K3	LHCLK
3	N.C. ()	IO_L16N_3	L2	I/O
3	N.C. ()	IO_L16P_3/ VREF_3	L1	VREF
3	N.C. ()	IO_L17N_3	J6	I/O
3	N.C. ()	IO_L17P_3	J4	I/O
3	N.C. ()	IO_L18N_3	L3	I/O
3	N.C. ()	IO_L18P_3	K4	I/O
3	N.C. ()	IO_L19N_3	L4	I/O
3	N.C. ()	IO_L19P_3	M3	I/O
3	IO_L20N_3	IO_L20N_3	N1	I/O
3	IO_L20P_3	IO_L20P_3	M1	I/O
3	IO_L22N_3	IO_L22N_3	P1	I/O
3	IO_L22P_3	IO_L22P_3	N2	I/O
3	IO_L23N_3	IO_L23N_3	P2	I/O
3	IO_L23P_3	IO_L23P_3	R1	I/O
3	IO_L24N_3	IO_L24N_3	M4	I/O
3	IO_L24P_3	IO_L24P_3	N3	I/O
3	IP_L04N_3/ VREF_3	IP_L04N_3/ VREF_3	F4	VREF
3	IP_L04P_3	IP_L04P_3	E4	INPUT
3	N.C. ()	IP_L06N_3/ VREF_3	G5	VREF
3	N.C. ()	IP_L06P_3	G6	INPUT
3	IP_L13N_3	IP_L13N_3	J7	INPUT
3	IP_L13P_3	IP_L13P_3	H7	INPUT
3	IP_L21N_3	IP_L21N_3	K6	INPUT
3	IP_L21P_3	IP_L21P_3	K5	INPUT
3	IP_L25N_3/ VREF_3	IP_L25N_3/ VREF_3	L6	VREF
3	IP_L25P_3	IP_L25P_3	L5	INPUT
3	VCCO_3	VCCO_3	D2	VCCO
3	VCCO_3	VCCO_3	H2	VCCO
3	VCCO_3	VCCO_3	J5	VCCO
3	VCCO_3	VCCO_3	M2	VCCO
GND	GND	GND	A1	GND
GND	GND	GND	A16	GND
GND	GND	GND	B7	GND

Table 68: Spartan-3A FT256 Pinout (XC3S50A, XC3S200A, XC3S400) (Continued)

Bank	XC3S50A	XC3S200A XC3S400A	FT256 Ball	Туре
GND	GND	GND	B11	GND
GND	GND	GND	C3	GND
GND	GND	GND	C14	GND
GND	GND	GND	E5	GND
GND	GND	GND	E12	GND
GND	GND	GND	F2	GND
GND	GND	GND	F6	GND
GND	GND	GND	G8	GND
GND	GND	GND	G10	GND
GND	GND	GND	G15	GND
GND	GND	GND	H9	GND
GND	GND	GND	J8	GND
GND	GND	GND	K2	GND
GND	GND	GND	K7	GND
GND	GND	GND	K9	GND
GND	GND	GND	L11	GND
GND	GND	GND	L15	GND
GND	GND	GND	M5	GND
GND	GND	GND	M12	GND
GND	GND	GND	P3	GND
GND	GND	GND	P14	GND
GND	GND	GND	R6	GND
GND	GND	GND	R10	GND
GND	GND	GND	T1	GND
GND	GND	GND	T16	GND
VCCAUX	SUSPEND	SUSPEND	R16	PWR MGMT
VCCAUX	DONE	DONE	T15	CONFIG
VCCAUX	PROG_B	PROG_B	A2	CONFIG
VCCAUX	ТСК	ТСК	A15	JTAG
VCCAUX	TDI	TDI	B1	JTAG
VCCAUX	TDO	TDO	B16	JTAG
VCCAUX	TMS	TMS	B2	JTAG
VCCAUX	VCCAUX	VCCAUX	E11	VCCAUX
VCCAUX	VCCAUX	VCCAUX	F5	VCCAUX
VCCAUX	VCCAUX	VCCAUX	L12	VCCAUX
VCCAUX	VCCAUX	VCCAUX	M6	VCCAUX
VCCINT	VCCINT	VCCINT	G7	VCCINT
VCCINT	VCCINT	VCCINT	G9	VCCINT
VCCINT	VCCINT	VCCINT	H8	VCCINT
VCCINT	VCCINT	VCCINT	J9	VCCINT

FT256 Footprint (XC3S50A)

		(Differential Outputs) Bank 0 (Differential Outputs)																
		1	2	3	4	5	6	7	8 I/O	9 I/O	10	11	12	13	14	15	16	
	Α	GND	PROS	L19P_0	L18P_0	L17P_0	L15P_0	N.C.	L12P_0 GCLK10	L10N_0 GCLK7	L08N_0	L07N_0	N.C.	L04N_0	L04P_0	тск	GND	
	в	TDI	TMS	I/O L19N_0	I/O L18N_0	VCCO_0	I/O L15N_0	GND	I/O L12N_0 GCLK11	VCCO_0	I/O L08P_0	GND	INPUT	VCCO_0	I/O L02N_0	I/O L02P_0 VREF_0	TDO	
	С	I/O L01N_3	I/O L01P_3	GND	I/O L20P_0 VREF_0	I/O L17N_0	I/O L16N_0	N.C.	I/O L11P_0 GCLK8	I/O L10P_0 GCLK6	I/O L09P_0 GCLK4	I/O L07P_0	I/O L03P_0	I/O L01N_0	GND	I/O L24N_1	I/O L24P_1	
t Drive)	D	I/O L03P_3	VCCO_3	I/O L02N_3	I/O L02P_3	I/O L20N_0 PUDC_B	INPUT	I/O L16P_0	I/O L11N_0 GCLK9	I/O L09N_0 GCLK5	N.C.	I/O L03N_0	INPUT	I/O L01P_0	I/O L23N_1	I/O L22N_1	I/O L22P_1	It Drive)
i Output	E	I/O L03N_3	N.C.	N.C.	INPUT L04P_3	GND	INPUT	N.C.	VCCO_0	INPUT VREF_0	N.C.	VCCAUX	GND	I/O L23P_1	I/O L20P_1	VCCO_1	N.C.	h Outpu
(High	F	I/O L08P_3	GND	N.C.	INPUT L04N_3 VREF_3	VCCAUX	GND	INPUT	N.C.	INPUT	INPUT	INPUT L25N_1	INPUT L25P_1 VREF_1	I/O L20N_1	N.C.	N.C.	N.C.	(Higl
	G	I/O L08N_3 VREF_3	I/O L11P_3 LHCLK0	N.C.	N.C.	N.C.	N.C.	VCCINT	GND	VCCINT	GND	INPUT L21N_1	INPUT L21P_1 VREF_1	N.C.	N.C.	GND	N.C.	
ж 3	н	I/O L11N_3 LHCLK1	VCCO_3	I/O L12P_3 LHCLK2	N.C.	N.C.	N.C.	INPUT L13P_3	VCCINT	GND	INPUT L13P_1	INPUT L13N_1	VCCO_1	N.C.	I/O L14N_1 RHCLK5	I/O L15P_1 IRDY1 RHCLK6	I/O L15N_1 RHCLK7	1 X
Bar	J	I/O L14N_3 LHCLK5	I/O L14P_3 LHCLK4	I/O L12N_3 IRDY2 LHCLK3	N.C.	VCCO_3	N.C.	INPUT L13N_3	GND	VCCINT	N.C.	N.C.	I/O L10P_1	I/O L10N_1	I/O L14P_1 RHCLK4	VCCO_1	I/O L12N_1 TRDY1 RHCLK3	Bar
	к	I/O L15N_3 LHCLK7	GND	I/O L15P_3 TRDY2 LHCLK6	N.C.	INPUT L21P_3	INPUT L21N_3	GND	VCCINT	GND	VCCINT	INPUT L04P_1	INPUT L04N_1 VREF_1	N.C.	I/O L11N_1 RHCLK1	I/O L11P_1 RHCLK0	I/O L12P_1 RHCLK2	
Drive)	L	N.C.	N.C.	N.C.	N.C.	INPUT L25P_3	INPUT L25N_3 VREF_3	INPUT	INPUT	INPUT VREF_2	INPUT VREF_2	GND	VCCAUX	N.C.	N.C.	GND	N.C.	Drive)
Output	М	I/O L20P_3	VCCO_3	N.C.	I/O L24N_3	GND	VCCAUX	INPUT VREF_2	INPUT VREF_2	VCCO_2	N.C.	INPUT VREF_2	GND	N.C.	N.C.	N.C.	N.C.	Output
(High	N	I/O L20N_3	I/O L22P_3	I/O L24P_3	I/O L01P_2 M1	INPUT VREF_2	I/O L03N_2 VS1	N.C.	I/O L08N_2 D4	I/O L11P_2 GCLK0	N.C.	I/O L16N_2	N.C.	I/O L01P_1 HDC	I/O L01N_1 LDC2	VCCO_1	I/O L03N_1	(High
	Ρ	I/O L22N_3	I/O L23N_3	GND	I/O L01N_2 M0	I/O L04N_2 VS0	N.C.	I/O L08P_2 D5	I/O L10P_2 GCLK14	I/O L11N_2 GCLK1	I/O L14P_2 MOSI CSI_B	I/O L16P_2	I/O L17N_2 D3	N.C.	GND	I/O L02N_1 LDC0	I/O L03P_1	
	R	I/O L23P_3	I/O L02P_2 M2	I/O L03P_2 RDWR_B	VCCO_2	I/O L06P_2	GND	N.C.	VCCO_2	I/O L12P_2 GCLK2	GND	I/O L15N_2 DOUT	VCCO_2	I/O L20P_2 D1	I/O L20N_2 CCLK	I/O L02P_1 LDC1	SUSPEND	_
	т	GND	I/O L02N_2 CSO_B	I/O L04P_2 VS2	I/O L05P_2	I/O L05N_2 D7	I/O L06N_2 D6	N.C.	I/O L10N_2 GCLK15	I/O L12N_2 GCLK3	I/O L14N_2	I/O L15P_2 AWAKE	I/O L17P_2 INIT_B	I/O L18P_2 D2	I/O L18N_2 D0 DIN/MISO	DONE	GND	
	(Differential Outputs) Bank 2 (Differential Outputs) DS529-4_09_012009																	
				_	<u> </u>				_					_				
I/O: gene	Unr eral·	estricte -purpos	ed, se user	· I/O	25 ^E	DUAL: (Configu ssible u	iration Iser I/O	pins,	15 V	/REF: l	Jser I/C referen) or inp ce for b	out bank	2 S	USPEN USPEN ual-pur	ND: De ND and pose A	dicated WAKE
INPL gene	JT: eral·	Unrest -purpos	tricted, se inpu	t pin	30 g	CLK: Us	ser I/O, uffer in	input, put	or	16 ^V s	CCO:	Output or bank	voltage	9	P	ower M	anage	ment pins
CON confi	l FIC gur	G: Dedi ration p	icated bins		4 J	TAG: D	Dedicat	ed JTA	G	6 ^V s	/CCINT supply v	: Interr oltage	al core (+1.2V)				
N.C. (XC3	N.C.: Not connected (XC3S50A only) Cround VCCAUX: Auxiliary supply voltage																	

53

20

2

51

www.xilinx.com

Table 77: Spartan-3A FG320 Pinout(Continued)

		FG320	,]	
Bank	Pin Name	Ball	Туре	Ban	k
0	IP_0	F12	INPUT	1	10_L2
0	IP_0	G7	INPUT	1	IO_L2
0	IP_0	G8	INPUT	1	10_L2
0	IP_0	G9	INPUT	1	10_L2
0	IP_0	G11	INPUT	1	10_L2
0	IP_0/VREF_0	E10	VREF	1	10_L2
0	VCCO_0	B5	VCCO	1	10_L2
0	VCCO_0	B14	VCCO	1	10_L2
0	VCCO_0	D11	VCCO	1	10_L2
0	VCCO_0	E8	VCCO	1	10_L2
1	IO_L01N_1/LDC2	T17	DUAL	1	10_L2
1	IO_L01P_1/HDC	R16	DUAL	1	10_L2
1	IO_L02N_1/LDC0	U18	DUAL	1	IO_L2
1	IO_L02P_1/LDC1	U17	DUAL	1	IO_L2
1	IO_L03N_1/A1	R17	DUAL	1	IO_L3
1	IO_L03P_1/A0	T18	DUAL	1	IO_L3
1	IO_L05N_1	N16	I/O	1	IO_L3
1	IO_L05P_1	P16	I/O	1	IO_L3
1	IO_L06N_1	M14	I/O	1	IP_L0
1	IO_L06P_1	N15	I/O	1	IP_L0
1	IO_L07N_1/VREF_1	P18	VREF	1	IP_L0
1	IO_L07P_1	R18	I/O	1	IP_L0
1	IO_L09N_1/A3	M17	DUAL	1	IP_L1
1	IO_L09P_1/A2	M16	DUAL	1	IP_L1
1	IO_L10N_1/A5	N18	DUAL	1	IP_L1
1	IO_L10P_1/A4	N17	DUAL	1	IP_L1
1	IO_L11N_1/A7	L12	DUAL	1	IP_L2
1	IO_L11P_1/A6	L13	DUAL	1	IP_L2
1	IO_L13N_1/A9	K16	DUAL	1	IP_L2
1	IO_L13P_1/A8	L17	DUAL	1	IP_L2
1	IO_L14N_1/RHCLK1	K17	RHCLK	1	IP_L2
1	IO_L14P_1/RHCLK0	L18	RHCLK	1	IP_L2
1	IO_L15N_1/TRDY1/RHCLK3	J17	RHCLK	1	IP_L3
1	IO_L15P_1/RHCLK2	K18	RHCLK	1	IP_L3
1	IO_L17N_1/RHCLK5	K15	RHCLK	1	VCCC
1	IO_L17P_1/RHCLK4	J16	RHCLK	1	VCCC
1	IO_L18N_1/RHCLK7	H17	RHCLK	1	VCCC
1	IO_L18P_1/IRDY1/RHCLK6	H18	RHCLK	1	VCCC
1	IO_L19N_1/A11	G16	DUAL	2	IO_L0
1	IO_L19P_1/A10	H16	DUAL	2	IO_L0
1		÷		· · · · · · · · · · · · · · · · · · ·	1

I ADIE //. Spariali-SA I GSZU FILIUULICUILLIUCU

Bank	Pin Name	FG320 Ball	Туре
1	IO_L21N_1	F17	I/O
1	IO_L21P_1	G17	I/O
1	IO_L22N_1/A13	E18	DUAL
1	IO_L22P_1/A12	F18	DUAL
1	IO_L23N_1/A15	H15	DUAL
1	IO_L23P_1/A14	J14	DUAL
1	IO_L25N_1	D17	I/O
1	IO_L25P_1	D18	I/O
1	IO_L26N_1/A17	E16	DUAL
1	IO_L26P_1/A16	F16	DUAL
1	IO_L27N_1/A19	F15	DUAL
1	IO_L27P_1/A18	G15	DUAL
1	IO_L29N_1/A21	E15	DUAL
1	IO_L29P_1/A20	D16	DUAL
1	IO_L30N_1/A23	B18	DUAL
1	IO_L30P_1/A22	C18	DUAL
1	IO_L31N_1/A25	B17	DUAL
1	IO_L31P_1/A24	C17	DUAL
1	IP_L04N_1/VREF_1	N14	VREF
1	IP_L04P_1	P15	INPUT
1	IP_L08N_1/VREF_1	L14	VREF
1	IP_L08P_1	M13	INPUT
1	IP_L12N_1	L16	INPUT
1	IP_L12P_1/VREF_1	M15	VREF
1	IP_L16N_1	K14	INPUT
1	IP_L16P_1	K13	INPUT
1	IP_L20N_1	J13	INPUT
1	IP_L20P_1/VREF_1	K12	VREF
1	IP_L24N_1	G14	INPUT
1	IP_L24P_1	H13	INPUT
1	IP_L28N_1	G13	INPUT
1	IP_L28P_1/VREF_1	H12	VREF
1	IP_L32N_1	F13	INPUT
1	IP_L32P_1/VREF_1	F14	VREF
1	VCCO_1	E17	VCCO
1	VCCO_1	H14	VCCO
1	VCCO_1	L15	VCCO
1	VCCO_1	P17	VCCO
2	IO_L01N_2/M0	U3	DUAL
2	IO_L01P_2/M1	Т3	DUAL

Bank

1

Table 83: Spartan-3A FG484 Pinout(Continued)

Pin Name

IO_L26P_1/A10

FG484 Ball

K22

)		Table 83:	Spartan-3A FG484 Pinc
Туре		Bank	Pin Name
DUAL		1	IP_L23P_1
I/O	Ī	1	IP_L27N_1
I/O	Ī	1	IP_L27P_1/VREF_1
DUAL	Ī	1	IP_L31N_1
DUAL	Ī	1	IP_L31P_1
DUAL	Ī	1	IP_L35N_1
DUAL	Ī	1	IP_L35P_1/VREF_1
I/O	1	1	IP_L39N_1
	T		

1	IO_L28N_1	L19	I/O
1	IO_L28P_1	L18	I/O
1	IO_L29N_1/A13	J20	DUAL
1	IO_L29P_1/A12	J21	DUAL
1	IO_L30N_1/A15	G22	DUAL
1	IO_L30P_1/A14	H22	DUAL
1	IO_L32N_1	K18	I/O
1	IO_L32P_1	K17	I/O
1	IO_L33N_1/A17	H20	DUAL
1	IO_L33P_1/A16	H21	DUAL
1	IO_L34N_1/A19	F21	DUAL
1	IO_L34P_1/A18	F22	DUAL
1	IO_L36N_1	G20	I/O
1	IO_L36P_1	G19	I/O
1	IO_L37N_1	H19	I/O
1	IO_L37P_1	J18	I/O
1	IO_L38N_1	F20	I/O
1	IO_L38P_1	E20	I/O
1	IO_L40N_1	F18	I/O
1	IO_L40P_1	F19	I/O
1	IO_L41N_1	D22	I/O
1	IO_L41P_1	E22	I/O
1	IO_L42N_1	D20	I/O
1	IO_L42P_1	D21	I/O
1	IO_L44N_1/A21	C21	DUAL
1	IO_L44P_1/A20	C22	DUAL
1	IO_L45N_1/A23	B21	DUAL
1	IO_L45P_1/A22	B22	DUAL
1	IO_L46N_1/A25	G17	DUAL
1	IO_L46P_1/A24	G18	DUAL
1	IP_L04N_1/VREF_1	R16	VREF
1	IP_L04P_1	R15	INPUT
1	IP_L08N_1	P16	INPUT
1	IP_L08P_1	P15	INPUT
1	IP_L12N_1/VREF_1	R18	VREF
1	IP_L12P_1	R17	INPUT
1	IP_L16N_1/VREF_1	N16	VREF
1	IP_L16P_1	N15	INPUT
1	IP_L23N_1	M16	INPUT

Туре

INPUT

FG484

Ball

M17

out*(Continued)*

1	IP_L27N_1	L16	INPUT
1	IP_L27P_1/VREF_1	M15	VREF
1	IP_L31N_1	K16	INPUT
1	IP_L31P_1	L15	INPUT
1	IP_L35N_1	K15	INPUT
1	IP_L35P_1/VREF_1	K14	VREF
1	IP_L39N_1	H18	INPUT
1	IP_L39P_1	H17	INPUT
1	IP_L43N_1/VREF_1	J15	VREF
1	IP_L43P_1	J16	INPUT
1	IP_L47N_1	H15	INPUT
1	IP_L47P_1/VREF_1	H16	VREF
VCCAUX	SUSPEND	U18	PWR MGMT
1	VCCO_1	E21	VCCO
1	VCCO_1	J17	VCCO
1	VCCO_1	K21	VCCO
1	VCCO_1	P17	VCCO
1	VCCO_1	P21	VCCO
1	VCCO 1	V21	VCCO
2	IO_L01N_2/M0	W5	DUAL
2 2	IO_L01N_2/M0 IO_L01P_2/M1	W5 V6	DUAL
2 2 2	IO_L01N_2/M0 IO_L01P_2/M1 IO_L02N_2/CSO_B	W5 V6 Y4	DUAL DUAL DUAL
2 2 2 2	IO_L01N_2/M0 IO_L01P_2/M1 IO_L02N_2/CSO_B IO_L02P_2/M2	W5 V6 Y4 W4	DUAL DUAL DUAL DUAL
2 2 2 2 2 2	IO_L01N_2/M0 IO_L01P_2/M1 IO_L02N_2/CSO_B IO_L02P_2/M2 IO_L03N_2	W5 V6 Y4 W4 AA3	DUAL DUAL DUAL DUAL I/O
2 2 2 2 2 2 2 2 2	IO_L01N_2/M0 IO_L01P_2/M1 IO_L02N_2/CSO_B IO_L02P_2/M2 IO_L03N_2 IO_L03P_2	W5 V6 Y4 W4 AA3 AB2	DUAL DUAL DUAL DUAL I/O I/O
2 2 2 2 2 2 2 2 2 2 2	IO_L01N_2/M0 IO_L01P_2/M1 IO_L02N_2/CSO_B IO_L02P_2/M2 IO_L03N_2 IO_L03P_2 IO_L04N_2	W5 V6 Y4 W4 AA3 AB2 AA4	DUAL DUAL DUAL DUAL I/O I/O
2 2 2 2 2 2 2 2 2 2 2 2 2	IO_L01N_2/M0 IO_L01P_2/M1 IO_L02N_2/CSO_B IO_L02P_2/M2 IO_L03N_2 IO_L03P_2 IO_L04N_2 IO_L04P_2	W5 V6 Y4 W4 AA3 AB2 AA4 AB3	DUAL DUAL DUAL DUAL I/O I/O I/O
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	IO_L01N_2/M0 IO_L01P_2/M1 IO_L02N_2/CSO_B IO_L02P_2/M2 IO_L03N_2 IO_L03P_2 IO_L04N_2 IO_L04N_2 IO_L04P_2 IO_L05N_2	W5 V6 Y4 W4 AA3 AB2 AA4 AB3 Y5	DUAL DUAL DUAL I/O I/O I/O I/O
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	IO_L01N_2/M0 IO_L01P_2/M1 IO_L02N_2/CSO_B IO_L02P_2/M2 IO_L03N_2 IO_L03P_2 IO_L04N_2 IO_L04P_2 IO_L04P_2 IO_L05N_2 IO_L05P_2	W5 V6 Y4 W4 AA3 AB2 AA4 AB3 Y5 W6	DUAL DUAL DUAL DUAL I/O I/O I/O I/O I/O
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	IO_L01N_2/M0 IO_L01P_2/M1 IO_L02N_2/CSO_B IO_L02P_2/M2 IO_L03N_2 IO_L03P_2 IO_L04N_2 IO_L04P_2 IO_L05N_2 IO_L05P_2 IO_L05P_2 IO_L06N_2	W5 V6 Y4 W4 AA3 AB2 AA4 AB3 Y5 W6 AB5	DUAL DUAL DUAL I/O I/O I/O I/O I/O I/O
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	IO_L01N_2/M0 IO_L01P_2/M1 IO_L02N_2/CSO_B IO_L02P_2/M2 IO_L03P_2 IO_L03P_2 IO_L04N_2 IO_L04P_2 IO_L05P_2 IO_L05P_2 IO_L06P_2 IO_L06P_2	W5 V6 Y4 W4 AA3 AB2 AA4 AB3 Y5 W6 AB5 AB4	DUAL DUAL DUAL I/O I/O I/O I/O I/O I/O I/O
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	IO_L01N_2/M0 IO_L01P_2/M1 IO_L02N_2/CSO_B IO_L02P_2/M2 IO_L03N_2 IO_L03P_2 IO_L03P_2 IO_L04N_2 IO_L04P_2 IO_L05N_2 IO_L05P_2 IO_L06N_2 IO_L06P_2 IO_L06P_2 IO_L07N_2	W5 V6 Y4 W4 AA3 AB2 AA4 AB3 Y5 W6 AB5 AB4 Y6	DUAL DUAL DUAL DUAL I/O I/O I/O I/O I/O I/O I/O I/O I/O
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	IO_L01N_2/M0 IO_L01P_2/M1 IO_L02N_2/CSO_B IO_L02P_2/M2 IO_L03P_2 IO_L03P_2 IO_L04N_2 IO_L04P_2 IO_L05P_2 IO_L05P_2 IO_L06P_2 IO_L06P_2 IO_L07N_2 IO_L07P_2	W5 V6 Y4 W4 AA3 AB2 AA4 AB3 Y5 W6 AB5 AB4 Y6 W7	DUAL DUAL DUAL I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	IO_L01N_2/M0 IO_L01P_2/M1 IO_L02N_2/CSO_B IO_L02P_2/M2 IO_L03P_2 IO_L03P_2 IO_L03P_2 IO_L04N_2 IO_L04P_2 IO_L05N_2 IO_L05P_2 IO_L05P_2 IO_L06N_2 IO_L06P_2 IO_L07N_2 IO_L07P_2 IO_L08N_2	W5 V6 Y4 W4 AA3 AB2 AA4 AB3 Y5 W6 AB5 AB4 Y6 W7 AB6	DUAL DUAL DUAL DUAL I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	IO_L01N_2/M0 IO_L01P_2/M1 IO_L02N_2/CSO_B IO_L02P_2/M2 IO_L03P_2 IO_L03P_2 IO_L03P_2 IO_L04P_2 IO_L04P_2 IO_L05P_2 IO_L05P_2 IO_L06P_2 IO_L06P_2 IO_L07P_2 IO_L07P_2 IO_L08N_2 IO_L08P_2	W5 V6 Y4 W4 AA3 AB2 AA4 AB3 Y5 W6 AB5 AB4 Y6 W7 AB6 AA6	DUAL DUAL DUAL I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	IO_L01N_2/M0 IO_L01P_2/M1 IO_L02N_2/CSO_B IO_L02P_2/M2 IO_L03N_2 IO_L03P_2 IO_L03P_2 IO_L04N_2 IO_L04P_2 IO_L04P_2 IO_L05N_2 IO_L05P_2 IO_L06P_2 IO_L06P_2 IO_L07P_2 IO_L07P_2 IO_L08N_2 IO_L08P_2 IO_L08P_2 IO_L09N_2/VS2	W5 V6 Y4 W4 AA3 AB2 AA4 AB3 Y5 W6 AB5 AB4 Y6 W7 AB6 W9	DUAL DUAL DUAL DUAL I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	IO_L01N_2/M0 IO_L01P_2/M1 IO_L02N_2/CSO_B IO_L02P_2/M2 IO_L03P_2 IO_L03P_2 IO_L03P_2 IO_L04P_2 IO_L04P_2 IO_L05P_2 IO_L05P_2 IO_L06P_2 IO_L06P_2 IO_L06P_2 IO_L07P_2 IO_L07P_2 IO_L08N_2 IO_L08P_2 IO_L08P_2 IO_L09P_2/RDWR_B	W5 V6 Y4 W4 AA3 AB2 AA4 AB3 Y5 W6 AB5 AB4 Y6 W7 AB6 AA6 W9 V9	DUAL DUAL DUAL I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O

Bank	Pin Name	FG484 Ball	Туре
VCCAUX	DONE	Y19	CONFIG
VCCAUX	PROG_B	C4	CONFIG
VCCAUX	ТСК	A21	JTAG
VCCAUX	TDI	F5	JTAG
VCCAUX	TDO	E19	JTAG
VCCAUX	TMS	D4	JTAG
VCCAUX	VCCAUX	D12	VCCAUX
VCCAUX	VCCAUX	E18	VCCAUX
VCCAUX	VCCAUX	E5	VCCAUX
VCCAUX	VCCAUX	H11	VCCAUX
VCCAUX	VCCAUX	L4	VCCAUX
VCCAUX	VCCAUX	M19	VCCAUX
VCCAUX	VCCAUX	P11	VCCAUX
VCCAUX	VCCAUX	V18	VCCAUX
VCCAUX	VCCAUX	V5	VCCAUX
VCCAUX	VCCAUX	W11	VCCAUX
VCCINT	VCCINT	J10	VCCINT
VCCINT	VCCINT	J12	VCCINT
VCCINT	VCCINT	K11	VCCINT
VCCINT	VCCINT	K13	VCCINT
VCCINT	VCCINT	K9	VCCINT
VCCINT	VCCINT	L10	VCCINT
VCCINT	VCCINT	L12	VCCINT
VCCINT	VCCINT	L14	VCCINT
VCCINT	VCCINT	M11	VCCINT
VCCINT	VCCINT	M13	VCCINT
VCCINT	VCCINT	M9	VCCINT
VCCINT	VCCINT	N10	VCCINT
VCCINT	VCCINT	N12	VCCINT
VCCINT	VCCINT	N14	VCCINT
VCCINT	VCCINT	P13	VCCINT

User I/Os by Bank

Table 84 and Table 85 indicate how the user-I/O pins aredistributed between the four I/O banks on the FG484package. The AWAKE pin is counted as a dual-purpose I/O.

Table 84: User I/Os Per Bank for the XC3S700A in the FG484 Package

Package		ssible I/O Pins b	s by Type				
Edge	I/O Bank	Maximum I/O	I/O	INPUT	DUAL	VREF	CLK
Тор	0	92	58	17	1	8	8
Right	1	94	33	15	30	8	8
Bottom	2	92	43	11	21	9	8
Left	3	94	61	17	0	8	8
TOTAL		372	195	60	52	33	32

Table 85: User I/Os Per Bank for the XC3S1400A in the FG484 Package

Package			All Possible I/O Pins by Type						
Edge	I/O Bank	Maximum I/O	I/O	INPUT	DUAL	VREF	CLK		
Тор	0	92	58	17	1	8	8		
Right	1	94	33	15	30	8	8		
Bottom	2	95	43	13	21	10	8		
Left	3	94	61	17	0	8	8		
TOTAL		375	195	62	52	34	32		

Footprint Migration Differences

Table 86 summarizes any footprint and functionality differences between the XC3S700A and the XC3S1400A FPGAs that might affect easy migration between devices available in the FG484 package. There are three such balls. All other pins not listed in Table 86 unconditionally migrate between Spartan-3A devices available in the FG484 package.

The arrows indicate the direction for easy migration.

Pin	Bank	XC3S700A	Migration	XC3S1400A
Т8	2	N.C.	Æ	INPUT/VREF
U7	2	N.C.	Æ	INPUT
U16	2	N.C.	Æ	INPUT
DIFFERENCES			3	

Table 86: FG484 Footprint Migration Differences

Legend:

Æ

This pin can unconditionally migrate from the device on the left to the device on the right. Migration in the other direction is possible depending on how the pin is configured for the device on the right.