

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ST7
Core Size	8-Bit
Speed	8MHz
Connectivity	SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	32
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	3.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-10°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	42-SDIP (0.600", 15.24mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st72f324bj4b5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	9.1	Introdu	ction	58
	9.2	Functio	nal description	58
		9.2.1	Input modes	58
		9.2.2	Output modes	59
		9.2.3	Alternate functions	59
	9.3	I/O por	t implementation	62
	9.4	Low po	wer modes	62
	9.5	Interrup	ots	62
		9.5.1	I/O port implementation	63
10	On-c	hip peri	pherals	65
	10.1	Watcho	dog timer (WDG)	65
		10.1.1	Introduction	65
		10.1.2	Main features	65
		10.1.3	Functional description	65
		10.1.4	How to program the Watchdog timeout	66
		10.1.5	Low power modes	68
		10.1.6	Hardware Watchdog option	68
		10.1.7	Using Halt mode with the WDG (WDGHALT option)	68
		10.1.8	Interrupts	68
		10.1.9	Control register (WDGCR)	69
	10.2	Main cl	ock controller with real-time clock and beeper (MCC/RTC)	69
		10.2.1	Programmable CPU clock prescaler	69
		10.2.2	Clock-out capability	70
		10.2.3	Real-time clock (RTC) timer	70
		10.2.4	Beeper	70
		10.2.5	Low power modes	71
		10.2.6	Interrupts	71
		10.2.7	MCC registers	71
	10.3	16-bit t	imer	74
		10.3.1	Introduction	74
		10.3.2	Main features	74
		10.3.3	Functional description	75
		10.3.4	Low power modes	88
		10.3.5	Interrupts	88
		10.3.6	Summary of timer modes	89

	12.10	Control	pin characteristics	162
		12.10.1	Asynchronous RESET pin	. 162
		12.10.2	ICCSEL/VPP pin	. 165
	12.11	Timer p	eripheral characteristics	165
		12.11.1	16-bit timer	. 165
	12.12	Commu	nication interface characteristics	166
		12.12.1	Serial peripheral interface (SPI)	. 166
	12.13	10-bit A	DC characteristics	168
		12.13.1	Analog power supply and reference pins	. 170
		12.13.2	General PCB design guidelines	. 170
		12.13.3	ADC accuracy	. 171
13	Packa	ige cha	racteristics	172
	13.1	ECOPA	СК	172
	13.2	Package	e mechanical data	172
		13.2.1	LQFP44 package mechanical data	. 172
		13.2.2	SDIP42 package mechanical data	. 173
		13.2.3	LQFP32 package mechanical data	. 174
		13.2.4	SDIP32 package mechanical data	. 175
	13.3	Therma	I characteristics	177
14	Devic	e config	guration and ordering information	178
	14.1	Flash de	evices	179
		14.1.1	Flash configuration	. 179
	14.2	ROM de	evices	181
		14.2.1	Transfer of customer code	. 181
	14.3	Develop	oment tools	183
		14.3.1	Introduction	. 183
		14.3.2	Evaluation tools and starter kits	. 183
		14.3.3	Development and debugging tools	. 183
		14.3.4	Programming tools	. 183
		14.3.5	Socket and emulator adapter information	. 184
	14.4	ST7 Ap	plication notes	184
15	Know	n limita	tions	185
	15.1	All Flas	n and ROM devices	185

4.3.1 Readout protection

Readout protection, when selected, provides a protection against program memory content extraction and against write access to Flash memory. Even if no protection can be considered as totally unbreakable, the feature provides a very high level of protection for a general purpose microcontroller.

In Flash devices, this protection is removed by reprogramming the option. In this case, the entire program memory is first automatically erased.

Readout protection selection depends on the device type:

- In Flash devices it is enabled and removed through the FMP_R bit in the option byte.
- In ROM devices it is enabled by mask option specified in the option list.

Figure 7. Memory map and sector address

	₿K	16K	32K	 ← Flash memory size
7FFFh				
BFFFh			-	 Sector 2
DEEEb		8 Kbytes	24 Kbytes	
EEEE		4 Kbytes		Sector 1
FFFFb		4 Kbytes		Sector 0
·····				

6 Supply, reset and clock management

6.1 Introduction

The device includes a range of utility features for securing the application in critical situations (for example in case of a power brown-out), and reducing the number of external components. An overview is shown in *Figure 12*.

For more details, refer to dedicated parametric section.

Main features

- Optional Phase Locked Loop (PLL) for multiplying the frequency by 2 (not to be used with internal RC oscillator in order to respect the max. operating frequency)
- Multi-Oscillator clock management (MO)
 - 5 crystal/ceramic resonator oscillators
 - 1 Internal RC oscillator
- Reset Sequence Manager (RSM)
- System Integrity management (SI)
 - Main supply low voltage detection (LVD)
 - Auxiliary voltage detector (AVD) with interrupt capability for monitoring the main supply

6.2 PLL (phase locked loop)

If the clock frequency input to the PLL is in the range 2 to 4 MHz, the PLL can be used to multiply the frequency by two to obtain an f_{OSC2} of 4 to 8 MHz. The PLL is enabled by option byte. If the PLL is disabled, then $f_{OSC2} = f_{OSC}/2$.

Caution: The PLL is not recommended for applications where timing accuracy is required. Furthermore, it must not be used with the internal RC oscillator.

Figure 11. PLL block diagram

31/193

The interrupt on the rising edge is used to inform the application that the $\rm V_{\rm DD}$ warning state is over.

If the voltage rise time t_{rv} is less than 256 or 4096 CPU cycles (depending on the reset delay selected by option byte), no AVD interrupt will be generated when $V_{IT+(AVD)}$ is reached.

If t_{rv} is greater than 256 or 4096 cycles then:

- If the AVD interrupt is enabled before the V_{IT+(AVD)} threshold is reached, then 2 AVD interrupts will be received: the first when the AVDIE bit is set, and the second when the threshold is reached.
- If the AVD interrupt is enabled after the V_{IT+(AVD)} threshold is reached then only one AVD interrupt will occur.

6.5.3 Low power modes

Table 10. Effect of low power modes on SI

Mode	Description
Wait	No effect on SI. AVD interrupt causes the device to exit from Wait mode.
Halt	The CRSR register is frozen.

6.5.4 Interrupts

The AVD interrupt event generates an interrupt if the AVDIE bit is set and the interrupt mask in the CC register is reset (RIM instruction).

 Table 11.
 AVD interrupt control/wakeup capability

Interrupt event	Event flag	Enable control bit	Exit from Wait	Exit from Halt
AVD event	AVDF	AVDIE	Yes	No

IS11	IS10	External interrupt sensitivity
0	0	Falling edge and low level
0	1	Rising edge only
1	0	Falling edge only
1	1	Rising and falling edge

Table 21. Interrupt sensitivity - ei3

Table 22.Interrupt sensitivity - ei0

1921 1920		External interrupt sensitivity				
1521	1520	IPA bit = 0	IPA bit = 1			
0	0	Falling edge and low level	Rising edge and high level			
0	1	Rising edge only Falling edge only				
1	0	Falling edge only Rising edge only				
1	1	Rising and falling edge				

Table 23. Interrupt sensitivity - ei1

IS21	IS20	External interrupt sensitivity
0	0	Falling edge and low level
0	1	Rising edge only
1	0	Falling edge only
1	1	Rising and falling edge

lable 24.	Nested interrupts register map and reset values
-----------	---

Address (Hex.)	Register label	7	6	5	4	3	2	1	0
		ei	i1	e	i0	MCC	+ SI		
0024h	ISPR0 reset value	l1_3 1	10_3 1	l1_2 1	10_2 1	11_1 1	10_1 1	1	1
		S	PI			e	3	е	12
0025h	ISPR1 reset value	l1_7 1	10_7 1	l1_6 1	10_6 1	l1_5 1	10_5 1	l1_4 1	10_4 1
		A۱	/D	S	CI	Tim	er B	Tim	er A
0026h	ISPR2 reset value	11_11 1	10_11 1	l1_10 1	10_10 1	l1_9 1	10_9 1	l1_8 1	10_8 1
0027h	ISPR3 reset value	1	1	1	1	l1_13 1	10_13 1	11_12 1	10_12 1
0028h	EICR reset value	IS11 0	IS10 0	IPB 0	IS21 0	IS20 0	IPA 0	0	0

No.	Source block	Description	Register label	Priority order	Exit from Halt/Active-halt	Address vector	
	Reset	Reset			yes	FFFEh-FFFFh	
	TRAP	Software interrupt	N/A		no	FFFCh-FFFDh	
0		Not used				FFFAh-FFFBh	
1	MCC/RTC	Main clock controller time base interrupt	MCCSR	Higher priority	yes	FFF8h-FFF9h	
2	ei0	External interrupt port A30			yes	FFF6h-FFF7h	
3	ei1	External interrupt port F20	N/A		yes	FFF4h-FFF5h	
4	ei2	External interrupt port B30		N/A		yes	FFF2h-FFF3h
5	ei3	External interrupt port B74					yes
6		Not used				FFEEh-FFEFh	
7	SPI	SPI peripheral interrupts	SPICSR		yes	FFECh-FFEDh	
8	Timer A	Timer A peripheral interrupts	TASR		no	FFEAh-FFEBh	
9	Timer B	Timer B peripheral interrupts	TBSR	↓	no	FFE8h-FFE9h	
10	SCI	SCI peripheral interrupts	SCISR	Lower	no	FFE6h-FFE7h	
11	AVD	Auxiliary voltage detector interrupt	SICSR	priority	no	FFE4h-FFE5h	

Table 25. Interrupt mapping

Figure 24. Slow mode clock transitions

8.3 Wait mode

Wait mode places the MCU in a low power consumption mode by stopping the CPU.

This power saving mode is selected by calling the 'WFI' instruction.

All peripherals remain active. During Wait mode, the I[1:0] bits of the CC register are forced to '10', to enable all interrupts. All other registers and memory remain unchanged. The MCU remains in Wait mode until an interrupt or reset occurs, whereupon the Program Counter branches to the starting address of the interrupt or reset service routine. The MCU will remain in Wait mode until a reset or an interrupt occurs, causing it to wake up. Refer to *Figure 25*.

 Before servicing an interrupt, the CC register is pushed on the stack. The I[1:0] bits of the CC register are set to the current software priority level of the interrupt routine and recovered when the CC register is popped.

9 I/O ports

9.1 Introduction

The I/O ports offer different functional modes:

• transfer of data through digital inputs and outputs,

and for specific pins:

- external interrupt generation,
- alternate signal input/output for the on-chip peripherals.

An I/O port contains up to 8 pins. Each pin can be programmed independently as digital input (with or without interrupt generation) or digital output.

9.2 Functional description

Each port has two main registers:

- Data Register (DR)
- Data Direction Register (DDR)

and one optional register:

• Option Register (OR)

Each I/O pin may be programmed using the corresponding register bits in the DDR and OR registers: bit X corresponding to pin X of the port. The same correspondence is used for the DR register.

The following description takes into account the OR register, (for specific ports which do not provide this register refer to *Section 9.3: I/O port implementation on page 62*). The generic I/O block diagram is shown in *Figure 30*.

9.2.1 Input modes

The input configuration is selected by clearing the corresponding DDR register bit.

In this case, reading the DR register returns the digital value applied to the external I/O pin.

Different input modes can be selected by software through the OR register.

- Note: 1 Writing the DR register modifies the latch value but does not affect the pin status.
 - 2 When switching from input to output mode, the DR register has to be written first to drive the correct level on the pin as soon as the port is configured as an output.
 - 3 Do not use read/modify/write instructions (BSET or BRES) to modify the DR register as this might corrupt the DR content for I/Os configured as input.

10.2.5 Low power modes

Table 37. Effect of low power modes on MCC/RTC

Mode	Description
Wait	No effect on MCC/RTC peripheral. MCC/RTC interrupt causes the device to exit from Wait mode.
Active-halt	No effect on MCC/RTC counter (OIE bit is set), the registers are frozen. MCC/RTC interrupt causes the device to exit from Active-halt mode.
Halt	MCC/RTC counter and registers are frozen. MCC/RTC operation resumes when the MCU is woken up by an interrupt with Exit from Halt capability.

10.2.6 Interrupts

The MCC/RTC interrupt event generates an interrupt if the OIE bit of the MCCSR register is set and the interrupt mask in the CC register is not active (RIM instruction).

Table 38. MCC/RTC interrupt control/wakeup capability

Interrupt event	Event flag Enable control bi		Exit from Wait	Exit from Halt
Time base overflow event	OIF	OIE	Yes	No ⁽¹⁾

1. The MCC/RTC interrupt wakes up the MCU from Active-halt mode, not from Halt mode.

10.2.7 MCC registers

MCC control/status register (MCCSR)

MCCSR Reset value: 0000 0000 (00h)								
	7	6	5	4	3	2	1	0
	MCO	CP[[1:0]	SMS	TB[[1:0]	OIE	OIF
	R/W	R/	W	R/W	R/W		R/W	R/W

Table 39. MCCSR register description

Bit	Name	Function
7	мсо	 Main Clock Out selection This bit enables the MCO alternate function on the PF0 I/O port. It is set and cleared by software. 0: MCO alternate function disabled (I/O pin free for general-purpose I/O). 1: MCO alternate function enabled (f_{CPU} on I/O port). Note: To reduce power consumption, the MCO function is not active in Active-halt mode.

10.3 16-bit timer

10.3.1 Introduction

The timer consists of a 16-bit free-running counter driven by a programmable prescaler.

It may be used for a variety of purposes, including pulse length measurement of up to two input signals (input capture) or generation of up to two output waveforms (output compare and PWM).

Pulse lengths and waveform periods can be modulated from a few microseconds to several milliseconds using the timer prescaler and the CPU clock prescaler.

Some ST7 devices have two on-chip 16-bit timers. They are completely independent, and do not share any resources. They are synchronized after a MCU reset as long as the timer clock frequencies are not modified.

This description covers one or two 16-bit timers. In ST7 devices with two timers, register names are prefixed with TA (Timer A) or TB (Timer B).

10.3.2 Main features

- Programmable prescaler: f_{CPU} divided by 2, 4 or 8
- Overflow status flag and maskable interrupt
- External clock input (must be at least four times slower than the CPU clock speed) with the choice of active edge
- 1 or 2 output compare functions each with:
 - 2 dedicated 16-bit registers
 - 2 dedicated programmable signals
 - 2 dedicated status flags
 - 1 dedicated maskable interrupt
- 1 or 2 input capture functions each with:
 - 2 dedicated 16-bit registers
 - 2 dedicated active edge selection signals
 - 2 dedicated status flags
 - 1 dedicated maskable interrupt
- Pulse width modulation mode (PWM)
- One pulse mode
- Reduced power mode
- 5 alternate functions on I/O ports (ICAP1, ICAP2, OCMP1, OCMP2, EXTCLK)^(c)

The timer block diagram is shown in *Figure 36*.

c. Some timer pins may not be available (not bonded) in some ST7 devices. Refer to *Section 2: Pin description*. When reading an input signal on a non-bonded pin, the value will always be '1'.

If the timer clock is an external clock, the formula is:

$$\Delta \text{ OC}i\text{R} = \Delta t \star f_{\text{EXT}}$$

Where:

Clearing the output compare interrupt request (that is, clearing the OCF*i* bit) is done by:

- 1. Reading the SR register while the OCF*i* bit is set.
- 2. An access (read or write) to the OCiLR register.

The following procedure is recommended to prevent the OCF*i* bit from being set between the time it is read and the write to the OC*i*R register:

- Write to the OC*i*HR register (further compares are inhibited).
- Read the SR register (first step of the clearance of the OCF*i* bit, which may be already set).
- Write to the OC*i*LR register (enables the output compare function and clears the OCF*i* bit).
- Note: 1 After a processor write cycle to the OCiHR register, the output compare function is inhibited until the OCiLR register is also written.
 - 2 If the OCiE bit is not set, the OCMPi pin is a general I/O port and the OLVLi bit will not appear when a match is found but an interrupt could be generated if the OCIE bit is set.
 - 3 In both internal and external clock modes, OCFi and OCMPi are set while the counter value equals the OCiR register value (see Figure 44 on page 83 for an example with f_{CPU}/2 and Figure 45 on page 83 for an example with f_{CPU}/4). This behavior is the same in OPM or PWM mode.
 - 4 The output compare functions can be used both for generating external events on the OCMPi pins even if the input capture mode is also used.
 - 5 The value in the 16-bit OCiR register and the OLVi bit should be changed after each successful comparison in order to control an output waveform or establish a new elapsed timeout.

Forced output compare capability

When the FOLV*i* bit is set by software, the OLVL*i* bit is copied to the OCMP*i* pin. The OLV*i* bit has to be toggled in order to toggle the OCMP*i* pin when it is enabled (OC*i*E bit = 1). The OCF*i* bit is then not set by hardware, and thus no interrupt request is generated.

The FOLVL*i* bits have no effect in both one pulse mode and PWM mode.

If OLVL1 = 1 and OLVL2 = 0, the length of the positive pulse is the difference between the OC2R and OC1R registers.

If OLVL1 = OLVL2, a continuous signal will be seen on the OCMP1 pin.

The OC1R register value required for a specific timing application can be calculated using the following formula:

$$OCiR value = \frac{t \cdot f_{CPU}}{PRESC} - 5$$

Where:

t = Signal or pulse period (in seconds) f_{CPU} = CPU clock frequency (in Hertz) PRESC = Timer prescaler factor (2, 4 or 8 depending on the CC[1:0] bits; see *Table 50*)

If the timer clock is an external clock the formula is:

Where:

t = Signal or pulse period (in seconds)

f_{EXT} = External timer clock frequency (in Hertz)

The Output Compare 2 event causes the counter to be initialized to FFFCh (see Figure 48).

- Note: 1 After a write instruction to the OCiHR register, the output compare function is inhibited until the OCiLR register is also written.
 - 2 The OCF1 and OCF2 bits cannot be set by hardware in PWM mode therefore the Output Compare interrupt is inhibited.
 - 3 The ICF1 bit is set by hardware when the counter reaches the OC2R value and can produce a timer interrupt if the ICIE bit is set and the I bit is cleared.
 - 4 In PWM mode the ICAP1 pin can not be used to perform input capture because it is disconnected to the timer. The ICAP2 pin can be used to perform input capture (ICF2 can be set and IC2R can be loaded) but the user must take care that the counter is reset each period and ICF1 can also generates interrupt if ICIE is set.
 - 5 When the Pulse Width Modulation (PWM) and One Pulse Mode (OPM) bits are both set, the PWM mode is the only active one.

Figure 55. Clearing the WCOL bit (Write collision flag) software sequence

Single master systems

A typical single master system may be configured, using an MCU as the master and four MCUs as slaves (see *Figure 56*).

The master device selects the individual slave devices by using four pins of a parallel port to control the four \overline{SS} pins of the slave devices.

The \overline{SS} pins are pulled high during reset since the master device ports will be forced to be inputs at that time, thus disabling the slave devices.

Note: To prevent a bus conflict on the MISO line the master allows only one active slave device during a transmission.

For more security, the slave device may respond to the master with the received data byte. Then the master will receive the previous byte back from the slave device if all MISO and MOSI pins are connected and the slave has not written to its SPIDR register.

Other transmission security methods can use ports for handshake lines or data bytes with command fields.

Figure 56. Single master/multiple slave configuration

Bit	Name	Function
2	SOD	 SPI output disable This bit is set and cleared by software. When set, it disables the alternate function of the SPI output (MOSI in master mode / MISO in slave mode). 0: SPI output enabled (if SPE = 1). 1: SPI output disabled.
1	SSM	 SS management This bit is set and cleared by software. When set, it disables the alternate function of the SPI SS pin and uses the SSI bit value instead. See <i>Slave select management on page 98</i>. 0: Hardware management (SS managed by external pin). 1: Software management (internal SS signal controlled by SSI bit. External SS pin free for general-purpose I/O).
0	SSI	 SS Internal mode This bit is set and cleared by software. It acts as a 'chip select' by controlling the level of the SS slave select signal when the SSM bit is set. 0: Slave selected. 1: Slave deselected.

Table 57.	SPICSR register	description	(continued)

SPI data I/O register (SPIDR)

SPIDR						Reset value	e: undefined
7	6	5	4	3	2	1	0
D7	D6	D5	D4	D3	D2	D1	D0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

The SPIDR register is used to transmit and receive data on the serial bus. In a master device, a write to this register will initiate transmission/reception of another byte.

Note: During the last clock cycle the SPIF bit is set, a copy of the received data byte in the shift register is moved to a buffer. When the user reads the serial peripheral data I/O register, the buffer is actually being read.

While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR register is read.

Warning: A write to the SPIDR register places data directly into the shift register for transmission.

A read to the SPIDR register returns the value located in the buffer and not the content of the shift register (see *Figure 50*).

Break characters

Setting the SBK bit loads the shift register with a break character. The break frame length depends on the M bit (see *Figure 58*).

As long as the SBK bit is set, the SCI send break frames to the TDO pin. After clearing this bit by software the SCI insert a logic 1 bit at the end of the last break frame to guarantee the recognition of the start bit of the next frame.

Idle characters

Setting the TE bit drives the SCI to send an idle frame before the first data frame.

Clearing and then setting the TE bit during a transmission sends an idle frame after the current word.

Note: Resetting and setting the TE bit causes the data in the TDR register to be lost. Therefore, the best time to toggle the TE bit is when the TDRE bit is set, that is, before writing the next byte in the SCIDR.

Receiver

The SCI can receive data words of either 8 or 9 bits. When the M bit is set, word length is 9 bits and the MSB is stored in the R8 bit in the SCICR1 register.

Character reception

During a SCI reception, data shifts in least significant bit first through the RDI pin. In this mode, the SCIDR register consists or a buffer (RDR) between the internal bus and the received shift register (see *Figure 57*).

Procedure

- 1. Select the M bit to define the word length.
- 2. Select the desired baud rate using the SCIBRR and the SCIERPR registers.
- 3. Set the RE bit, this enables the receiver which begins searching for a start bit.

When a character is received:

- The RDRF bit is set. It indicates that the content of the shift register is transferred to the RDR.
- An interrupt is generated if the RIE bit is set and the I bit is cleared in the CCR register.
- The error flags can be set if a frame error, noise or an overrun error has been detected during reception.

Clearing the RDRF bit is performed by the following software sequence done by:

1. An access to the SCISR register

2. A read to the SCIDR register.

The RDRF bit must be cleared before the end of the reception of the next character to avoid an overrun error.

Break character

When a break character is received, the SCI handles it as a framing error.

Idle character

When a idle frame is detected, there is the same procedure as a data received character plus an interrupt if the ILIE bit is set and the I bit is cleared in the CCR register.

Bit	Name	Function
0	PE	 Parity error This bit is set by hardware when a parity error occurs in receiver mode. It is cleared by a software sequence (a read to the status register followed by an access to the SCIDR data register). An interrupt is generated if PIE = 1 in the SCICR1 register. 0: No parity error 1: Parity error

Table 62	SCISB register description	(continued)
	Solon register description	Continueu

SCI Control Register 1 (SCICR1)

SCICR1					Rese	et value: x000	0000 (x0h)
7	6	5	4	3	2	1	0
R8	Т8	SCID	М	WAKE	PCE	PS	PIE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Table 63. SCICR1 register description

Bit	Name	Function
7	R8	Receive data bit 8 This bit is used to store the 9th bit of the received word when $M = 1$.
6	Т8	Transmit data bit 8 This bit is used to store the 9th bit of the transmitted word when $M = 1$.
5	SCID	 Disabled for low power consumption When this bit is set the SCI prescalers and outputs are stopped and the end of the current byte transfer in order to reduce power consumption. This bit is set and cleared by software. 0: SCI enabled 1: SCI prescaler and outputs disabled
4	М	 Word length This bit determines the word length. It is set or cleared by software. 0: 1 Start bit, 8 data bits, 1 Stop bit 1: 1 Start bit, 9 data bits, 1 Stop bit Note: The M bit must not be modified during a data transfer (both transmission and reception).
3	WAKE	Wakeup method This bit determines the SCI wakeup method, it is set or cleared by software. 0: Idle line 1: Address mark
2	PCE	 Parity control enable This bit selects the hardware parity control (generation and detection). When the parity control is enabled, the computed parity is inserted at the MSB position (9th bit if M = 1; 8th bit if M = 0) and parity is checked on the received data. This bit is set and cleared by software. Once it is set, PCE is active after the current byte (in reception and in transmission). 0: Parity control disabled 1: Parity control enabled

SCI baud rate register (SCIBRR)

SCIBRR Reset value: 0000 0000 (0000 (00h)
7	6	5	4	3	2	1	0
SCP	SCP[1:0] SCT[2:0]		SCR[2:0]				
R/W		R/W		R/W			

Table 65. SCIBRR register description

Bit	Name	Function					
7:6	SCP[1:0]	First SCI prescaler These 2 prescaling bits allow several standard clock division ranges. 00: PR prescaling factor = 1 01: PR prescaling factor = 3 10: PR prescaling factor = 4 11: PR prescaling factor = 13					
5:3	SCT[2:0]	SCI Transmitter rate divisor These 3 bits, in conjunction with the SCP1 and SCP0 bits, define the total division applied to the bus clock to yield the transmit rate clock in conventional baud rate generator mode. 000: TR dividing factor = 1 001: TR dividing factor = 2 010: TR dividing factor = 4 011: TR dividing factor = 8 100: TR dividing factor = 16 101: TR dividing factor = 32 110: TR dividing factor = 64 111: TR dividing factor = 128					
2:0	SCR[2:0]	 SCI Receiver rate divisor These 3 bits, in conjunction with the SCP[1:0] bits, define the total division applied to the bus clock to yield the receive rate clock in conventional baud rate generator mode. 000: RR dividing factor = 1 001: RR dividing factor = 2 010: RR dividing factor = 4 011: RR dividing factor = 8 100: RR dividing factor = 16 101: RR dividing factor = 32 110: RR dividing factor = 64 111: RR dividing factor = 128 					

SCI extended receive prescaler division register (SCIERPR)

This register is used to set the Extended Prescaler rate division factor for the receive circuit.

Address (Hex.)	Register label	7	6	5	4	3	2	1	0
0050h	SCISR	TDRE	TC	RDRF	IDLE	OR	NF	FE	PE
	Reset value	1	1	0	0	0	0	0	0
0051h	SCIDR Reset value	MSB x	x	x	x	x	x	x	LSB x
0052h	SCIBRR	SCP1	SCP0	SCT2	SCT1	SCT0	SCR2	SCR1	SCR0
	Reset value	0	0	0	0	0	0	0	0
0053h	SCICR1	R8	Т8	SCID	M	WAKE	PCE	PS	PIE
	Reset value	x	0	0	0	0	0	0	0
0054h	SCICR2	TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK
	Reset value	0	0	0	0	0	0	0	0
0055h	SCIERPR Reset value	MSB 0	0	0	0	0	0	0	LSB 0
0057h	SCIPETPR Reset value	MSB 0	0	0	0	0	0	0	LSB 0

Table 69. SCI register map and reset values

Date	Revision	Changes					
10-Oct-2007	6	Removed references to automotive versions (these are covered by separate ST72324B-Auto datasheet). Changed Flash endurance to 1 Kcycles at 55°C Replaced TQFP with LQFP in package outline and device summary on page 1 <i>Figure 1 on page 14</i> : Replaced 60 Kbytes with 32 Kbytes in program memory block Replaced TQFP with LQFP in <i>Figure 2 on page 15</i> , in <i>Figure 4 on page 16</i> and in <i>Table 2 on page 17</i> Changed note 3 in <i>Section 9.2.1 on page 58</i> Changed <i>Section 10.1.3 on page 65</i> Changed <i>Master mode operation on page 99</i> Added unit of measure to LVD supply current in <i>Section 12.5.3 on page 148</i> Replaced TQFP with LQFP in <i>Section 12.8.2 on page 156</i> Changed note 4 in <i>Section 12.9.1 on page 158</i> Changed Figure 78 on page 163 Removed EMC protective circuitry in <i>Figure 79 on page 164</i> (device works correctly without these components) Changed titles of <i>Figure 89 on page 172</i> and <i>Figure 91 on page 174</i> Replaced TQFP with LQFP in <i>Section 13.3 on page 177</i> Changed TQFP with LQFP in <i>Section 13.3 on page 177</i> Changed TQFP with LQFP in <i>Section 13.3 on page 177</i> Changed TQFP with LQFP in <i>Section 13.3 on page 178</i> Replaced TQFP with LQFP in <i>Section 13.3 on page 174</i> Replaced TQFP with LQFP in <i>Section 13.3 on page 174</i> Replaced TQFP with LQFP in <i>Section 13.3 on page 174</i> Replaced TQFP with LQFP in <i>Section 13.3 on page 174</i> Replaced TQFP with LQFP in <i>Section 14.1 on page 179</i> , in <i>Table 122 on page 181</i> , in <i>Section Table 122. on page 182</i> and in <i>Section 14.3.5 on page 184</i>					
17-Mar-2009	7	Removed soldering information section. In <i>Section 10.6.3: Functional description on page 129</i> , modified "Starting the conversion" paragraph: added " or a write to any bit of the ADCCSR register". Modified t _{RET} values in <i>Table 101: Dual voltage HDFlash memory on page 154</i> . <i>Section 13.2: Package mechanical data on page 172</i> modified (values in inches rounded to 4 decimal digits). Modified Section 12.8.3: Absolute maximum ratings (electrical sensitivity) on page 157 (removed DLU and V _{ESD (MM)}). Added Section 13.1: ECOPACK on page 172. Modified "Device configuration and ordering information" on page 178.					

Table 126.	Document revision	history	(continued)

