

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ST7
Core Size	8-Bit
Speed	8MHz
Connectivity	SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	32
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-10°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	42-SDIP (0.600", 15.24mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st72f324bj6b5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 99.	PLL characteristics
Table 100.	RAM and hardware registers
Table 101.	Dual voltage HDFlash memory
Table 102.	EMS test results
Table 103.	EMI emissions
Table 104.	Absolute maximum ratings
Table 105.	Electrical sensitivities
Table 106.	General characteristics
Table 107.	Output driving current
Table 108.	Asynchronous RESET pin
Table 109.	ICCSEL/V _{PP} pin
Table 110.	16-bit timer
Table 111.	SPI characteristics
Table 112.	10-bit ADC characteristics
Table 113.	ADC accuracy
Table 114.	44-pin low profile quad flat package mechanical data
Table 115.	42-pin dual in line package mechanical data
Table 116.	32-pin low profile quad flat package mechanical data
Table 117.	32-pin dual in-line package mechanical data 175
Table 118.	Thermal characteristics
Table 119.	Flash option bytes
Table 120.	Option byte 0 bit description
Table 121.	Option byte 1 bit description
Table 122.	Package selection (OPT7) 181
Table 123.	STMicroelectronics development tools
Table 124.	Suggested list of socket types
Table 125.	Port A and F configuration
Table 126.	Document revision history

1 Description

The ST72324Bxx devices are members of the ST7 microcontroller family designed for midrange applications running from 3.8 to 5.5 V. Different package options offer up to 32 I/O pins.

All devices are based on a common industry-standard 8-bit core, featuring an enhanced instruction set and are available with Flash or ROM program memory. The ST7 family architecture offers both power and flexibility to software developers, enabling the design of highly efficient and compact application code.

The on-chip peripherals include an A/D converter, two general purpose timers, an SPI interface and an SCI interface. For power economy, the microcontroller can switch dynamically into, Slow, Wait, Active-halt or Halt mode when the application is in idle or stand-by state.

Typical applications include consumer, home, office and industrial products.

Figure 1. Device block diagram

4 Flash program memory

4.1 Introduction

The ST7 dual voltage High Density Flash (HDFlash) is a non-volatile memory that can be electrically erased as a single block or by individual sectors and programmed on a byte-by-byte basis using an external V_{PP} supply.

The HDFlash devices can be programmed and erased off-board (plugged in a programming tool) or on-board using ICP (in-circuit programming) or IAP (in-application programming).

The array matrix organization allows each sector to be erased and reprogrammed without affecting other sectors.

4.2 Main features

- 3 Flash programming modes:
 - Insertion in a programming tool. In this mode, all sectors including option bytes can be programmed or erased.
 - ICP (in-circuit programming). In this mode, all sectors including option bytes can be programmed or erased without removing the device from the application board.
 - IAP (in-application programming). In this mode, all sectors, except Sector 0, can be programmed or erased without removing the device from the application board and while the application is running.
- ICT (in-circuit testing) for downloading and executing user application test patterns in RAM
- Readout protection
- Register Access Security System (RASS) to prevent accidental programming or erasing

4.3 Structure

The Flash memory is organized in sectors and can be used for both code and data storage.

Depending on the overall Flash memory size in the microcontroller device, there are up to three user sectors (see *Table 4*). Each of these sectors can be erased independently to avoid unnecessary erasing of the whole Flash memory when only a partial erasing is required.

The first two sectors have a fixed size of 4 Kbytes (see *Figure 7*). They are mapped in the upper part of the ST7 addressing space so the reset and interrupt vectors are located in Sector 0 (F000h-FFFFh).

 Table 4.
 Sectors available in Flash devices

Flash size	Available sectors		
4 Kbytes	Sector 0		
8 Kbytes	Sectors 0, 1		
>8 Kbytes	Sectors 0, 1, 2		

5.3.1 Accumulator (A)

The Accumulator is an 8-bit general purpose register used to hold operands and the results of the arithmetic and logic calculations and to manipulate data.

5.3.2 Index registers (X and Y)

These 8-bit registers are used to create effective addresses or as temporary storage areas for data manipulation. (The Cross-Assembler generates a precede instruction (PRE) to indicate that the following instruction refers to the Y register.)

The Y register is not affected by the interrupt automatic procedures.

5.3.3 **Program counter (PC)**

The program counter is a 16-bit register containing the address of the next instruction to be executed by the CPU. It is made of two 8-bit registers PCL (Program Counter Low which is the LSB) and PCH (Program Counter High which is the MSB).

5.3.4 Condition Code register (CC)

The 8-bit Condition Code register contains the interrupt masks and four flags representative of the result of the instruction just executed. This register can also be handled by the PUSH and POP instructions. These bits can be individually tested and/or controlled by specific instructions.

СС						Reset valu	e: 111x1xxx
7	6	5	4	3	2	1	0
1	1	11	Н	10	N	Z	С
R/W	R/W						

Table 6.Arithmetic management bits

Blt	Name	Function
4	н	 Half carry This bit is set by hardware when a carry occurs between bits 3 and 4 of the ALU during an ADD or ADC instructions. It is reset by hardware during the same instructions. 0: No half carry has occurred. 1: A half carry has occurred. This bit is tested using the JRH or JRNH instruction. The H bit is useful in BCD arithmetic subroutines.
2	N	Negative This bit is set and cleared by hardware. It is representative of the result sign of the last arithmetic, logical or data manipulation. It is a copy of the result 7th bit. 0: The result of the last operation is positive or null. 1: The result of the last operation is negative (that is, the most significant bit is a logic 1. This bit is accessed by the JRMI and JRPL instructions.

IS11	IS10	External interrupt sensitivity
0	0	Falling edge and low level
0	1	Rising edge only
1	0	Falling edge only
1	1	Rising and falling edge

Table 21. Interrupt sensitivity - ei3

Table 22.Interrupt sensitivity - ei0

1921	1820	External interrupt sensitivity			
1321 1320		IPA bit = 0	IPA bit = 1		
0	0	Falling edge and low level	Rising edge and high level		
0	1	Rising edge only Falling edge only			
1	0	Falling edge only Rising edge only			
1	1	Rising and falling edge			

Table 23. Interrupt sensitivity - ei1

IS21	IS20	External interrupt sensitivity				
0	0	Falling edge and low level				
0	1	Rising edge only				
1	0	Falling edge only				
1	1	Rising and falling edge				

lable 24.	Nested interrupts register map and reset values
-----------	---

Address (Hex.)	Register label	7	6	5	4	3	2	1	0
		ei	i1	e	i0	MCC	+ SI		
0024h	ISPR0 reset value	l1_3 1	10_3 1	l1_2 1	10_2 1	11_1 1	10_1 1	1	1
		S	PI			e	3	е	12
0025h	ISPR1 reset value	l1_7 1	10_7 1	l1_6 1	10_6 1	l1_5 1	10_5 1	l1_4 1	10_4 1
		A۱	/D	S	CI	Tim	er B	Tim	er A
0026h	ISPR2 reset value	11_11 1	10_11 1	l1_10 1	10_10 1	l1_9 1	10_9 1	l1_8 1	10_8 1
0027h	ISPR3 reset value	1	1	1	1	l1_13 1	10_13 1	11_12 1	10_12 1
0028h	EICR reset value	IS11 0	IS10 0	IPB 0	IS21 0	IS20 0	IPA 0	0	0

8 Power saving modes

8.1 Introduction

To give a large measure of flexibility to the application in terms of power consumption, four main power saving modes are implemented in the ST7 (see *Figure 23*): Slow, Wait (Slow Wait), Active-halt and Halt.

After a reset the normal operating mode is selected by default (Run mode). This mode drives the device (CPU and embedded peripherals) by means of a master clock which is based on the main oscillator frequency divided or multiplied by 2 (f_{OSC2}).

From Run mode, the different power saving modes may be selected by setting the relevant register bits or by calling the specific ST7 software instruction whose action depends on the oscillator status.

Figure 23. Power saving mode transitions

8.2 Slow mode

This mode has two targets:

- To reduce power consumption by decreasing the internal clock in the device,
- To adapt the internal clock frequency (f_{CPU}) to the available supply voltage.

Slow mode is controlled by three bits in the MCCSR register: the SMS bit which enables or disables Slow mode and two CPx bits which select the internal slow frequency (f_{CPU}).

In this mode, the master clock frequency (f_{OSC2}) can be divided by 2, 4, 8 or 16. The CPU and peripherals are clocked at this lower frequency (f_{CPU}).

Note: Slow-Wait mode is activated when entering the Wait mode while the device is already in Slow mode.

- 1. WDGHALT is an option bit. See *Section 14.1 on page 179* for more details.
- 2. Peripheral clocked with an external clock source can still be active.
- 3. Only some specific interrupts can exit the MCU from Halt mode (such as external interrupt). Refer to *Table 25: Interrupt mapping* for more details.
- Before servicing an interrupt, the CC register is pushed on the stack. The I[1:0] bits of the CC register are set to the current software priority level of the interrupt routine and recovered when the CC register is popped.

Figure 30. I/O port general block diagram

Table 28. I/O port mode options

Configuration mode		Pull-up	D -buffor	Diodes		
		Full-up		to V _{DD} ⁽¹⁾	to $V_{SS}^{(2)}$	
Input	Floating with/without Interrupt	Off ⁽³⁾	Off		On	
input	Pull-up with/without Interrupt	On ⁽⁴⁾	Oli	On		
	Push-pull	Off	On			
Output	Open drain (logic level)	Oli	Off			
	True open drain	NI	NI	NI ⁽⁵⁾		

1. The diode to V_{DD} is not implemented in the true open drain pads.

2. A local protection between the pad and V_{SS} is implemented to protect the device against positive stress.

3. Off = implemented not activated.

4. On = implemented and activated.

5. NI = not implemented

WHERE:

t_{min0} = (LSB + 128) x 64 x t_{OSC2}

 t_{max0} = 16384 x t_{OSC2}

 t_{OSC2} = 125 ns if f_{OSC2} = 8 MHz

CNT = value of T[5:0] bits in the WDGCR register (6 bits)

MSB and LSB are values from the table below depending on the timebase selected by the TB[1:0] bits in the MCCSR register

TB1 bit (MCCSR reg.)	TB0 bit (MCCSR reg.)	Selected MCCSR timebase	MSB	LSB
0	0	2 ms	4	59
0	1	4 ms	8	53
1	0	10 ms	20	35
1	1	25 ms	49	54

To calculate the minimum Watchdog timeout (t_{min}) :

IF CNT <
$$\left[\frac{MSB}{4}\right]$$
 THEN $t_{min} = t_{min0} + 16384 \times CNT \times t_{osc2}$

$$\textbf{ELSE} \quad \textbf{t}_{min} = \textbf{t}_{min0} + \left[16384 \times \left(\text{CNT} - \left[\frac{4\text{CNT}}{\text{MSB}}\right]\right) + (192 + \text{LSB}) \times 64 \times \left[\frac{4\text{CNT}}{\text{MSB}}\right]\right] \times \textbf{t}_{osc2}$$

To calculate the maximum Watchdog timeout (t_{max}):

IF $CNT \leq \left[\frac{MSB}{4}\right]$ **THEN** $t_{max} = t_{max0} + 16384 \times CNT \times t_{osc2}$

$$\textbf{ELSE } \textbf{t}_{max} = \textbf{t}_{max0} + \left[16384 \times \left(\text{CNT} - \left[\frac{4\text{CNT}}{\text{MSB}}\right]\right) + (192 + \text{LSB}) \times 64 \times \left[\frac{4\text{CNT}}{\text{MSB}}\right]\right] \times \textbf{t}_{osc2}$$

NOTE: In the above formulae, division results must be rounded down to the next integer value. **EXAMPLE:** With 2ms timeout selected in MCCSR register

Value of T[5:0] bits in WDGCR register (Hex.)	Min. Watchdog timeout (ms) t _{min}	Max. Watchdog timeout (ms) t _{max}
00	1.496	2.048
3F	128	128.552

10.2.2 Clock-out capability

The clock-out capability is an alternate function of an I/O port pin that outputs the f_{CPU} clock to drive external devices. It is controlled by the MCO bit in the MCCSR register.

Caution: When selected, the clock out pin suspends the clock during Active-halt mode.

10.2.3 Real-time clock (RTC) timer

The counter of the real-time clock timer allows an interrupt to be generated based on an accurate real-time clock. Four different time bases depending directly on f_{OSC2} are available. The whole functionality is controlled by four bits of the MCCSR register: TB[1:0], OIE and OIF.

When the RTC interrupt is enabled (OIE bit set), the ST7 enters Active-halt mode when the HALT instruction is executed. See *Section 8.4: Active-halt and Halt modes on page 54* for more details.

10.2.4 Beeper

The beep function is controlled by the MCCBCR register. It can output three selectable frequencies on the Beep pin (I/O port alternate function).

Figure 35. Main clock controller (MCC/RTC) block diagram

External clock

The external clock (where available) is selected if CC0 = 1 and CC1 = 1 in the CR2 register.

The status of the EXEDG bit in the CR2 register determines the type of level transition on the external clock pin EXTCLK that will trigger the free running counter.

The counter is synchronized with the falling edge of the internal CPU clock.

A minimum of four falling edges of the CPU clock must occur between two consecutive active edges of the external clock; thus the external clock frequency must be less than a quarter of the CPU clock frequency.

CPU clock	mmmmmm
Internal reset	
Timer clock	
- Counter register	X FFFDX FFFEX FFFFX 0000 X 0001 X 0002 X 0003 X
Timer Overflow Flag (TOF)	

Figure 39. Counter timing diagram, internal clock divided by 4

Figure 40. Counter timing diagram, internal clock divided by 8

CPU clock	
Internal reset	1
Timer clock	
Counter register	FFFC FFFD 0000
Timer Overflow Flag (TOF)	

Note:

The MCU is in reset state when the internal reset signal is high, when it is low the MCU is running.

Alternate counter low register (ACLR)

This is an 8-bit register that contains the low part of the counter value. A write to this register resets the counter. An access to this register after an access to CSR register does not clear the TOF bit in the CSR register.

Input capture 2 high register (IC2HR)

This is an 8-bit register that contains the high part of the counter value (transferred by the Input Capture 2 event).

Input capture 2 low register (IC2LR)

This is an 8-bit register that contains the low part of the counter value (transferred by the Input Capture 2 event).

 Table 52.
 16-bit timer register map and reset values

Address (Hex.)	Register label	7	6	5	4	3	2	1	0
Timer A: 32	CR1	ICIE	OCIE	TOIE	FOLV2	FOLV1	OLVL2	IEDG1	OLVL1
Timer B: 42	Reset value	0	0	0	0	0	0	0	0
Timer A: 31	CR2	OC1E	OC2E	OPM	PWM	CC1	CC0	IEDG2	EXEDG
Timer B: 41	Reset value	0	0	0	0	0	0	0	0
Timer A: 33	CSR	ICF1	OCF1	TOF	ICF2	OCF2	TIMD	-	-
Timer B: 43	Reset value	x	x	x	x	x	0	x	X
Timer A: 34 Timer B: 44	IC1HR Reset value	MSB x	x	x	x	x	x	x	LSB x
Timer A: 35 Timer B: 45	IC1LR Reset value	MSB x	x	x	x	x	x	x	LSB x

Overrun error

An overrun error occurs when a character is received when RDRF has not been reset. Data can not be transferred from the shift register to the RDR register as long as the RDRF bit is not cleared.

When a overrun error occurs:

- The OR bit is set.
- The RDR content will not be lost.
- The shift register will be overwritten.
- An interrupt is generated if the RIE bit is set and the I bit is cleared in the CCR register.

The OR bit is reset by an access to the SCISR register followed by a SCIDR register read operation.

Noise error

Oversampling techniques are used for data recovery by discriminating between valid incoming data and noise. Normal data bits are considered valid if three consecutive samples (8th, 9th, 10th) have the same bit value, otherwise the NF flag is set. In the case of start bit detection, the NF flag is set on the basis of an algorithm combining both valid edge detection and three samples (8th, 9th, 10th). Therefore, to prevent the NF flag from being set during start bit reception, there should be a valid edge detection as well as three valid samples.

When noise is detected in a frame:

- The NF flag is set at the rising edge of the RDRF bit.
- Data is transferred from the Shift register to the SCIDR register.
- No interrupt is generated. However this bit rises at the same time as the RDRF bit which itself generates an interrupt.

The NF flag is reset by a SCISR register read operation followed by a SCIDR register read operation.

During reception, if a false start bit is detected (for example, 8th, 9th, 10th samples are 011,101,110), the frame is discarded and the receiving sequence is not started for this frame. There is no RDRF bit set for this frame and the NF flag is set internally (not accessible to the user). This NF flag is accessible along with the RDRF bit when a next valid frame is received.

Note: If the application Start bit is not long enough to match the above requirements, then the NF Flag may get set due to the short Start bit. In this case, the NF flag may be ignored by the application software when the first valid byte is received.

See also Noise error causes on page 119.

Using a prebyte

The instructions are described with one to four opcodes.

In order to extend the number of available opcodes for an 8-bit CPU (256 opcodes), three different prebyte opcodes are defined. These prebytes modify the meaning of the instruction they precede.

The whole instruction becomes:

- PC-2 End of previous instruction
- PC-1 Prebyte
- PC Opcode
- PC+1 Additional word (0 to 2) according to the number of bytes required to compute the effective address

These prebytes enable the instruction in Y as well as indirect addressing modes to be implemented. They precede the opcode of the instruction in X or the instruction using direct addressing mode. The prebytes are:

- PDY 90 Replace an X based instruction using immediate, direct, indexed, or inherent addressing mode by a Y one.
- PIX 92 Replace an instruction using direct, direct bit, or direct relative addressing mode to an instruction using the corresponding indirect addressing mode. It also changes an instruction using X indexed addressing mode to an instruction using indirect X indexed addressing mode.
- PIY 91 Replace an instruction using X indirect indexed addressing mode by a Y one.

12 Electrical characteristics

12.1 Parameter conditions

Unless otherwise specified, all voltages are referred to V_{SS}.

12.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25^{\circ}C$ and $T_A = T_Amax$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\Sigma$).

12.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = 5$ V. They are given only as design guidelines and are not tested.

12.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

12.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 62.

Figure 62. Pin loading conditions

12.8.3 Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). Two models can be simulated: human body model and machine model. This test conforms to the JESD22-A114A/A115A standard.

Table 104. Absolute maximum ratings

Symbol	Ratings	Conditions	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	T 125 °C	2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (charged device model)	IA - 723 0	750	v

1. Data based on characterization results, not tested in production.

Static latch-up

• LU: two complementary static tests are required on 6 parts to assess the latch-up performance. A supply overvoltage (applied to each power supply pin) and a current injection (applied to each input, output and configurable I/O pin) are performed on each sample. This test conforms to the EIA/JESD 78 IC latch-up standard.

Table 105.	Electrical	sensitivities
------------	------------	---------------

Symbol	Parameter	Conditions	Test specification	Class
LU	Static latch-up class	$T_A = +25 \text{ °C}$ $T_A = +85 \text{ °C}$ $T_A = +125 \text{ °C}$	JESD 78	II level A

1. I/O can be left unconnected if it is configured as output (0 or 1) by the software. This has the advantage of greater EMC robustness and lower cost.

12.9.2 Output driving current

Subject to general operating conditions for $V_{\text{DD}},\,f_{\text{CPU}},$ and T_{A} unless otherwise specified.

Table 107. Output anying current

Symbol	Parameter	Cor	nditions	Min	Max	Unit
	Output low level voltage for a standard I/O pin when 8 pins are sunk at same time (see <i>Figure 72</i>)		$I_{IO} = +5 \text{ mA}$ $I_{IO} = +2 \text{ mA}$		1.2 0.5	
V _{OL} ⁽¹⁾	Output low level voltage for a high sink I/O pin when 4 pins are sunk at same time (see Figure 73 and Figure 75)	V _{DD} = 5V	$I_{IO} = +20 \text{ mA}$ $T_A \le 85 \ ^{\circ}\text{C}$ $T_A > 85 \ ^{\circ}\text{C}$		1.3 1.5	V
			I _{IO} = +8 mA		0.6	
V _{OH} ⁽²⁾	Output high level voltage for an I/O pin when 4 pins are sourced at same time (see <i>Figure 74</i> and <i>Figure 77</i>)		I _{IO} = -5 mA, T _A ≤ 85 °C T _A > 85 °C	V _{DD} - 1.4 V _{DD} - 1.6		
			I _{IO} = -2 mA	V _{DD} - 0.7		

The I_{IO} current sunk must always respect the absolute maximum rating specified in Section 12.2.2 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

2. The I_{IO} current sourced must always respect the absolute maximum rating specified in Section 12.2.2 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}. True open drain I/O pins do not have V_{OH}.

Figure 74. Typical V_{OH} at V_{DD} = 5 V

Figure 81. SPI slave timing diagram with CPHA = $0^{(1)}$

- 1. Measurement points are done at CMOS levels: 0.3xV_{DD} and 0.7xV_{DD}.
- When no communication is on-going the data output line of the SPI (MOSI in master mode, MISO in slave mode) has its alternate function capability released. In this case, the pin status depends on the I/O port configuration.

Figure 82. SPI slave timing diagram with CPHA = $1^{(1)}$

1. Measurement points are done at CMOS levels: $0.3xV_{DD}$ and $0.7xV_{DD}$.

 When no communication is on-going the data output line of the SPI (MOSI in master mode, MISO in slave mode) has its alternate function capability released. In this case, the pin status depends on the I/O port configuration.

57

12.13.3 ADC accuracy

Table 113.ADC accuracy

			Conditions		Max ⁽¹⁾		
Symbol	Parameter				ROM and 8/16 Kbyte Flash	32 Kbyte Flash	Unit
IE _T I	Total unadjusted error ⁽²⁾			3	4	6	
IE _O I	Offset error ⁽²⁾	$V^{(2)}$		2	3	5	
IE _G I	Gain error ⁽²⁾	5 =	CPU in run mode @ f _{ADC} 2 MHz	0.5	3	4.5	LSB
IE _D I	Differential linearity error ⁽²⁾	VDD		4	2	2	
IELI	Integral linearity error ⁽²⁾	1		1	2	3	1

1. Data based on characterization results, monitored in production to guarantee 99.73% within \pm max value from -40°C to 125 °C (\pm 3 σ distribution limits).

 ADC accuracy vs. negative injection current: Injecting negative current may reduce the accuracy of the conversion being performed on another analog input. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 12.9 does not affect the ADC accuracy.

Figure 88. ADC accuracy characteristics

