

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ST7
Core Size	8-Bit
Speed	8MHz
Connectivity	SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	32-SDIP (0.400", 10.16mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st72f324bk6b6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1	Descr	ription .		4
2	Pin de	escriptio	on1	5
3	Regis	ter and	memory map	0
4	Flash	progra	m memory	3
	4.1	Introduc	tion	3
	4.2	Main fea	atures	3
	4.3	Structur	e	3
		4.3.1	Readout protection	4
	4.4	ICC inte	rface	5
	4.5	ICP (in-	circuit programming) 20	6
	4.6	IAP (in-a	application programming) 20	6
	4.7	Related	documentation	6
		4.7.1	Flash Control/Status Register (FCSR)	6
5	Centr	al proce	essing unit (CPU) 27	7
5	Centr 5.1	-	essing unit (CPU)	
5		Introduc		7
5	5.1	Introduc Main fea	tion	7 7
5	5.1 5.2	Introduc Main fea	atures	7 7 7
5	5.1 5.2	Introduc Main fea CPU reg	etion	7 7 8
5	5.1 5.2	Introduc Main fea CPU reg 5.3.1	atures 21 gisters 21 Accumulator (A) 21	7 7 8 8
5	5.1 5.2	Introduc Main fea CPU reg 5.3.1 5.3.2	atures 21 gisters 21 Accumulator (A) 22 Index registers (X and Y) 24	7 7 8 8
5	5.1 5.2	Introduc Main fea CPU reg 5.3.1 5.3.2 5.3.3	atures 21 gisters 21 Accumulator (A) 22 Index registers (X and Y) 24 Program counter (PC) 24	7 7 8 8 8
5	5.1 5.2 5.3	Introduc Main fea CPU reg 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5	atures 21 gisters 21 Accumulator (A) 22 Index registers (X and Y) 22 Program counter (PC) 24 Condition Code register (CC) 24	7 7 8 8 8 8
	5.1 5.2 5.3	Introduc Main fea CPU reg 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5 y, reset	atures 21 gisters 21 Accumulator (A) 22 Index registers (X and Y) 23 Program counter (PC) 24 Condition Code register (CC) 24 Stack Pointer register (SP) 36	7 7 8 8 8 8 8 0 1
	5.1 5.2 5.3	Introduc Main fea CPU reg 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5 y, reset Introduc	atures 21 atures 21 gisters 21 Accumulator (A) 22 Index registers (X and Y) 23 Program counter (PC) 24 Condition Code register (CC) 24 Stack Pointer register (SP) 30 and clock management 31	7 7 8 8 8 8 8 0 1
	5.1 5.2 5.3 Suppl 6.1	Introduc Main fea CPU reg 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5 by, reset Introduc PLL (ph	atures 21 atures 21 gisters 21 Accumulator (A) 22 Index registers (X and Y) 24 Program counter (PC) 24 Condition Code register (CC) 24 Stack Pointer register (SP) 36 and clock management 37 etion 37	7 7 8 8 8 8 8 0 1 1
	5.1 5.2 5.3 Suppl 6.1 6.2	Introduc Main fea CPU reg 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5 by, reset Introduc PLL (ph	atures 21 atures 21 gisters 21 Accumulator (A) 22 Index registers (X and Y) 24 Program counter (PC) 24 Condition Code register (CC) 24 Stack Pointer register (SP) 36 and clock management 37 etion 37 ase locked loop) 37	7 7 8 8 8 8 8 8 8 8 8 8 8 0 1

	9.1	Introdu	ction	58
	9.2	Functio	nal description	58
		9.2.1	Input modes	58
		9.2.2	Output modes	59
		9.2.3	Alternate functions	59
	9.3	I/O por	t implementation	62
	9.4	Low po	wer modes	62
	9.5	Interrup	ots	62
		9.5.1	I/O port implementation	63
10	On-c	hip peri	pherals	65
	10.1	Watcho	dog timer (WDG)	65
		10.1.1	Introduction	65
		10.1.2	Main features	65
		10.1.3	Functional description	65
		10.1.4	How to program the Watchdog timeout	66
		10.1.5	Low power modes	68
		10.1.6	Hardware Watchdog option	68
		10.1.7	Using Halt mode with the WDG (WDGHALT option)	68
		10.1.8	Interrupts	68
		10.1.9	Control register (WDGCR)	69
	10.2	Main cl	ock controller with real-time clock and beeper (MCC/RTC)	69
		10.2.1	Programmable CPU clock prescaler	69
		10.2.2	Clock-out capability	70
		10.2.3	Real-time clock (RTC) timer	70
		10.2.4	Beeper	70
		10.2.5	Low power modes	71
		10.2.6	Interrupts	71
		10.2.7	MCC registers	71
	10.3	16-bit t	imer	74
		10.3.1	Introduction	74
		10.3.2	Main features	74
		10.3.3	Functional description	75
		10.3.4	Low power modes	88
		10.3.5	Interrupts	88
		10.3.6	Summary of timer modes	89

16

	15.1.1	Safe connection of OSC1/OSC2 pins	185
	15.1.2	External interrupt missed	185
	15.1.3	Unexpected reset fetch	187
	15.1.4	Clearing active interrupts outside interrupt routine	187
	15.1.5	16-bit timer PWM mode	188
	15.1.6	TIMD set simultaneously with OC interrupt	188
	15.1.7	SCI wrong break duration	188
15.2	8/16 Kt	byte Flash devices only	189
	15.2.1	39-pulse ICC entry mode	189
	15.2.2	Negative current injection on pin PB0	189
15.3	8/16 Kt	byte ROM devices only	189
	15.3.1	Readout protection with LVD	189
	15.3.2	I/O Port A and F configuration	100

8 Power saving modes

8.1 Introduction

To give a large measure of flexibility to the application in terms of power consumption, four main power saving modes are implemented in the ST7 (see *Figure 23*): Slow, Wait (Slow Wait), Active-halt and Halt.

After a reset the normal operating mode is selected by default (Run mode). This mode drives the device (CPU and embedded peripherals) by means of a master clock which is based on the main oscillator frequency divided or multiplied by 2 (f_{OSC2}).

From Run mode, the different power saving modes may be selected by setting the relevant register bits or by calling the specific ST7 software instruction whose action depends on the oscillator status.

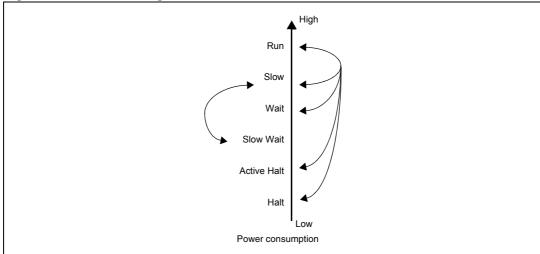


Figure 23. Power saving mode transitions

8.2 Slow mode

This mode has two targets:

- To reduce power consumption by decreasing the internal clock in the device,
- To adapt the internal clock frequency (f_{CPU}) to the available supply voltage.

Slow mode is controlled by three bits in the MCCSR register: the SMS bit which enables or disables Slow mode and two CPx bits which select the internal slow frequency (f_{CPU}).

In this mode, the master clock frequency (f_{OSC2}) can be divided by 2, 4, 8 or 16. The CPU and peripherals are clocked at this lower frequency (f_{CPU}).

Note: Slow-Wait mode is activated when entering the Wait mode while the device is already in Slow mode.

57

Bit	Name	Function
6:5	CP[1:0]	CPU Clock Prescaler These bits select the CPU clock prescaler which is applied in different slow modes. Their action is conditioned by the setting of the SMS bit. These two bits are set and cleared by software: 00: f_{CPU} in Slow mode = $f_{OSC2}/2$ 01: f_{CPU} in Slow mode = $f_{OSC2}/4$ 10: f_{CPU} in Slow mode = $f_{OSC2}/8$ 11: f_{CPU} in Slow mode = $f_{OSC2}/16$
4	SMS	 Slow Mode Select This bit is set and cleared by software. 0: Normal mode. f_{CPU} = f_{OSC2}. 1: Slow mode. f_{CPU} is given by CP1, CP0. See Section 8.2: Slow mode and Section 10.2: Main clock controller with real-time clock and beeper (MCC/RTC) for more details.
3:2	TB[1:0]	Time Base control These bits select the programmable divider time base. They are set and cleared by software (see <i>Table 40</i>). A modification of the time base is taken into account at the end of the current period (previously set) to avoid an unwanted time shift. This allows to use this time base as a real-time clock.
1	OIE	Oscillator interrupt Enable This bit set and cleared by software. 0: Oscillator interrupt disabled 1: Oscillator interrupt enabled This interrupt can be used to exit from Active-halt mode. When this bit is set, calling the ST7 software HALT instruction enters the Active-halt power saving mode.
0	OIF	Oscillator interrupt Flag This bit is set by hardware and cleared by software reading the MCCSR register. It indicates when set that the main oscillator has reached the selected elapsed time (TB1:0). 0: Timeout not reached 1: Timeout reached Caution : The BRES and BSET instructions must not be used on the MCCSR register to avoid unintentionally clearing the OIF bit.

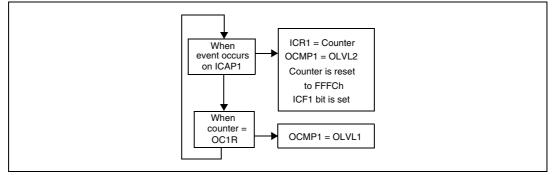
 Table 39.
 MCCSR register description (continued)

	Table 40.	Time base selection	
--	-----------	---------------------	--

Counter prescaler	Time	base	- TB1	тво
	f _{OSC2} = 4 MHz	f _{OSC2} = 8 MHz		1 BU
16000	4 ms	2 ms	0	0
32000	8 ms	4 ms	0	1
80000	20 ms	10 ms	1	0
200000	50 ms	25 ms	1	1

One Pulse mode

One Pulse mode enables the generation of a pulse when an external event occurs. This mode is selected via the OPM bit in the CR2 register.


The one pulse mode uses the Input Capture1 function and the Output Compare1 function.

Procedure

To use One Pulse mode:

- 1. Load the OC1R register with the value corresponding to the length of the pulse (see the formula below).
- 2. Select the following in the CR1 register:
 - Using the OLVL1 bit, select the level to be applied to the OCMP1 pin after the pulse.
 - Using the OLVL2 bit, select the level to be applied to the OCMP1 pin during the pulse.
 - Select the edge of the active transition on the ICAP1 pin with the IEDG1 bit (the ICAP1 pin must be configured as floating input).
- 3. Select the following in the CR2 register:
 - Set the OC1E bit, the OCMP1 pin is then dedicated to the Output Compare 1 function.
 - Set the OPM bit.
 - Select the timer clock CC[1:0] (see *Table 50*).

Figure 46. One pulse mode cycle

Then, on a valid event on the ICAP1 pin, the counter is initialized to FFFCh and OLVL2 bit is loaded on the OCMP1 pin, the ICF1 bit is set and the value FFFDh is loaded in the IC1R register.

Because the ICF1 bit is set when an active edge occurs, an interrupt can be generated if the ICIE bit is set.

Clearing the Input Capture interrupt request (that is, clearing the ICF*i* bit) is done in two steps:

- 1. Reading the SR register while the ICF*i* bit is set.
- 2. An access (read or write) to the IC*i*LR register.

Address (Hex.)	Register label	7	6	5	4	3	2	1	0
Timer A: 36 Timer B: 46	OC1HR Reset value	MSB 1	0	0	0	0	0	0	LSB 0
Timer A: 37 Timer B: 47	OC1LR Reset value	MSB 0	0	0	0	0	0	0	LSB 0
Timer A: 3E Timer B: 4E	OC2HR Reset value	MSB 1	0	0	0	0	0	0	LSB 0
Timer A: 3F Timer B: 4F	OC2LR Reset value	MSB 0	0	0	0	0	0	0	LSB 0
Timer A: 38 Timer B: 48	CHR Reset value	MSB 1	1	1	1	1	1	1	LSB 1
Timer A: 39 Timer B: 49	CLR Reset value	MSB 1	1	1	1	1	1	0	LSB 0
Timer A: 3A Timer B: 4A	ACHR Reset value	MSB 1	1	1	1	1	1	1	LSB 1
Timer A: 3B Timer B: 4B	ACLR Reset value	MSB 1	1	1	1	1	1	0	LSB 0
Timer A: 3C Timer B: 4C	IC2HR Reset value	MSB x	x	x	x	x	x	x	LSB x
Timer A: 3D Timer B: 4D	IC2LR Reset value	MSB x	x	x	х	х	x	x	LSB x

Table 52. 16-bit timer register map and reset values (continued)

10.4 Serial peripheral interface (SPI)

10.4.1 Introduction

The serial peripheral interface (SPI) allows full-duplex, synchronous, serial communication with external devices. An SPI system may consist of a master and one or more slaves. However, the SPI interface can not be a master in a multi-master system.

10.4.2 Main features

- Full duplex synchronous transfers (on 3 lines)
- Simplex synchronous transfers (on 2 lines)
- Master or slave operation
- 6 master mode frequencies (f_{CPU}/4 max.)
- f_{CPU}/2 max. slave mode frequency (see note)
- SS Management by software or hardware
- Programmable clock polarity and phase
- End of transfer interrupt flag
- Write collision, Master mode fault and Overrun flags

Note: In slave mode, continuous transmission is not possible at maximum frequency due to the software overhead for clearing status flags and to initiate the next transmission sequence.

	4		
Serial clock	SPR2	SPR1	SPR0
f _{CPU} /16	0	0	1
f _{CPU} /32	1	1	0
f _{CPU} /64	0	1	0
f _{CPU} /128	0	1	1

 Table 56.
 SPI master mode SCK frequency (continued)

SPI control/status register (SPICSR)

SPICSR					Rese	et value: 0000	0000 (00h) 0000
7	6	5	4	3	2	1	0
SPIF	WCOL	OVR	MODF	Reserved	SOD	SSM	SSI
RO	RO	RO	RO	-	R/W	R/W	R/W

Table 57.SPICSR register description

Bit	Name	Function
7	SPIF	 Serial peripheral data transfer flag This bit is set by hardware when a transfer has been completed. An interrupt is generated if SPIE = 1 in the SPICR register. It is cleared by a software sequence (an access to the SPICSR register followed by a write or a read to the SPIDR register). 0: Data transfer is in progress or the flag has been cleared 1: Data transfer between the device and an external device has been completed. <i>Note: While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR register is read.</i>
6	WCOL	 Write collision status This bit is set by hardware when a write to the SPIDR register is done during a transmit sequence. It is cleared by a software sequence (see <i>Figure 55</i>). 0: No write collision occurred 1: A write collision has been detected.
5	OVR	 SPI Overrun error This bit is set by hardware when the byte currently being received in the shift register is ready to be transferred into the SPIDR register while SPIF = 1 (see <i>Overrun condition (OVR) on page 102</i>). An interrupt is generated if SPIE = 1 in SPICR register. The OVR bit is cleared by software reading the SPICSR register. 0: No overrun error 1: Overrun error detected
4	MODF	 Mode fault flag This bit is set by hardware when the SS pin is pulled low in master mode (see <i>Master mode fault (MODF) on page 102</i>). An SPI interrupt can be generated if SPIE = 1 in the SPICSR register. This bit is cleared by a software sequence (An access to the SPICR register while MODF = 1 followed by a write to the SPICR register). 0: No master mode fault detected 1: A fault in master mode has been detected.
3	-	Reserved, must be kept cleared.

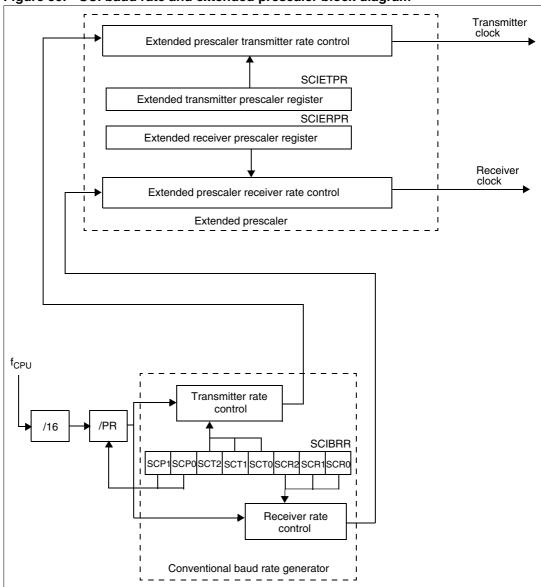


Figure 59. SCI baud rate and extended prescaler block diagram

Framing error

A framing error is detected when:

- The stop bit is not recognized on reception at the expected time, following either a desynchronization or excessive noise.
- A break is received.

When the framing error is detected:

- the FE bit is set by hardware
- Data is transferred from the Shift register to the SCIDR register.
- No interrupt is generated. However this bit rises at the same time as the RDRF bit which itself generates an interrupt.

The FE bit is reset by a SCISR register read operation followed by a SCIDR register read operation.

Clock deviation causes

The causes which contribute to the total deviation are:

- D_{TRA}: Deviation due to transmitter error (local oscillator error of the transmitter or the transmitter is transmitting at a different baud rate).
- D_{QUANT}: Error due to the baud rate quantization of the receiver.
- D_{REC}: Deviation of the local oscillator of the receiver: This deviation can occur during the reception of one complete SCI message assuming that the deviation has been compensated at the beginning of the message.
- D_{TCL}: Deviation due to the transmission line (generally due to the transceivers)

All the deviations of the system should be added and compared to the SCI clock tolerance:

$$D_{TRA} + D_{QUANT} + D_{REC} + D_{TCL} < 3.75\%$$

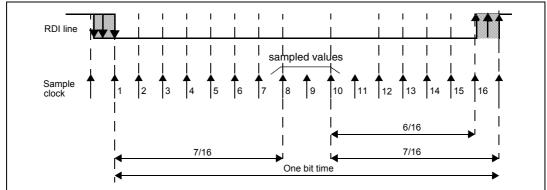
Noise error causes

See also the description of Noise error in Receiver on page 113.

Start bit

The Noise Flag (NF) is set during start bit reception if one of the following conditions occurs:

- 1. A valid falling edge is not detected. A falling edge is considered to be valid if the three consecutive samples before the falling edge occurs are detected as '1' and, after the falling edge occurs, during the sampling of the 16 samples, if one of the samples numbered 3, 5 or 7 is detected as a '1'.
- 2. During sampling of the 16 samples, if one of the samples numbered 8, 9 or 10 is detected as a '1'.


Therefore, a valid Start bit must satisfy both the above conditions to prevent the Noise Flag from being set.

Data bits

The Noise Flag (NF) is set during normal data bit reception if the following condition occurs: During the sampling of 16 samples, if all three samples numbered 8, 9 and 10 are not the same. The majority of the 8th, 9th and 10th samples is considered as the bit value.

Therefore, a valid Data bit must have samples 8, 9 and 10 at the same value to prevent the Noise Flag from being set.

10.5.5 Low power modes

Table 60. Effect of low power modes on SCI

Mode	Description
Wait	No effect on SCI. SCI interrupts cause the device to exit from Wait mode.
Halt	SCI registers are frozen. In Halt mode, the SCI stops transmitting/receiving until Halt mode is exited.

10.5.6 Interrupts

The SCI interrupt events are connected to the same interrupt vector.

These events generate an interrupt if the corresponding Enable Control bit is set and the interrupt mask in the CC register is reset (RIM instruction).

Table 61. SCI interrupt control/wakeup capability

Interrupt event	Event flag	Enable control bit	Exit from Wait	Exit from Halt
Transmit data register empty	TDRE	TIE	Yes	No
Transmission complete	TC	TCIE	Yes	No
Received data ready to be read	RDRF	BIE	Yes	No
Overrun error detected	OR		Yes	No
Idle line detected	IDLE	ILIE	Yes	No
Parity error	PE	PIE	Yes	No

10.5.7 SCI registers

SCI status register (SCISR)

SCISR Reset value: 1100 0000 (C0h							0000 (C0h)	
	7	6	5	4	3	2	1	0
	TDRE	тс	RDRF	IDLE	OR	NF	FE	PE
	RO	RO	RO	RO	RO	RO	RO	RO

Table 62. SCISR register description

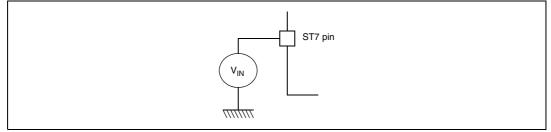
Bit	Name	Function
7	TDRE	 Transmit Data Register Empty This bit is set by hardware when the content of the TDR register has been transferred into the shift register. An interrupt is generated if the TIE bit = 1 in the SCICR2 register. It is cleared by a software sequence (an access to the SCISR register followed by a write to the SCIDR register). 0: Data is not transferred to the shift register. 1: Data is transferred to the shift register. Note: Data will not be transferred to the shift register unless the TDRE bit is cleared.

Bit	Name	Function
0	PE	 Parity error This bit is set by hardware when a parity error occurs in receiver mode. It is cleared by a software sequence (a read to the status register followed by an access to the SCIDR data register). An interrupt is generated if PIE = 1 in the SCICR1 register. 0: No parity error 1: Parity error

SCI Control Register 1 (SCICR1)

SCICR1					Rese	et value: x000	0 0000 (x0h)
7	6	5	4	3	2	1	0
R8	Т8	SCID	М	WAKE	PCE	PS	PIE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Table 63. SCICR1 register description


Bit	Name	Function				
7	R8	Receive data bit 8 This bit is used to store the 9th bit of the received word when $M = 1$.				
6	Т8	Transmit data bit 8 This bit is used to store the 9th bit of the transmitted word when $M = 1$.				
5	SCID	 Disabled for low power consumption When this bit is set the SCI prescalers and outputs are stopped and the end of the current byte transfer in order to reduce power consumption. This bit is set and cleared by software. 0: SCI enabled 1: SCI prescaler and outputs disabled 				
4	М	 Word length This bit determines the word length. It is set or cleared by software. 0: 1 Start bit, 8 data bits, 1 Stop bit 1: 1 Start bit, 9 data bits, 1 Stop bit Note: The M bit must not be modified during a data transfer (both transmission and reception). 				
3	WAKE	Wakeup method This bit determines the SCI wakeup method, it is set or cleared by software. 0: Idle line 1: Address mark				
2	PCE	 Parity control enable This bit selects the hardware parity control (generation and detection). When the parity control is enabled, the computed parity is inserted at the MSB position (9th bit if M = 1; 8th bit if M = 0) and parity is checked on the received data. This bit is set and cleared by software. Once it is set, PCE is active after the current byte (in reception and in transmission). 0: Parity control disabled 1: Parity control enabled 				

12.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 63.

Figure 63. Pin input voltage

12.2 Absolute maximum ratings

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

12.2.1 Voltage characteristics

Table 83.Voltage characteristics

Symbol	Ratings	Maximum value	Unit		
V _{DD} - V _{SS}	V _{DD} - V _{SS} Supply voltage				
V _{PP} - V _{SS}	V _{PP} - V _{SS} Programming voltage		Programming voltage 13		
	Input voltage on true open drain pin	V _{SS} - 0.3 to 6.5	V		
V _{IN} ⁽¹⁾⁽²⁾	Input voltage on any other pin	V _{SS} - 0.3 to V _{DD} + 0.3			
$ \Delta V_{DDx} $ and $ \Delta V_{SSx} $	Variations between different digital power pins	50	mV		
IV _{SSA} - V _{SSx} I	Variations between digital and analog ground pins	50	IIIV		
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Section 12.8.	3 on		
V _{ESD(MM)}	Electrostatic discharge voltage (machine model)	page 157			

 Directly connecting the RESET and I/O pins to V_{DD} or V_{SS} could damage the device if an unintentional internal reset is generated or an unexpected change of the I/O configuration occurs (for example, due to a corrupted program counter). To guarantee safe operation, this connection has to be done through a pull-up or pull-down resistor (typical: 4.7 kΩ for RESET, 10 kΩ for I/Os). For the same reason, unused I/O pins must not be directly tied to V_{DD} or V_{SS}.

2. $I_{INJ(PIN)}$ must never be exceeded. This is implicitly ensured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the $I_{INJ(PIN)}$ value. A positive injection is induced by $V_{IN} > V_{DD}$ while a negative injection is induced by $V_{IN} < V_{SS}$. For true open-drain pads, there is no positive injection current, and the corresponding V_{IN} maximum must always be respected.

12.5.3 Supply and clock managers

The previous current consumption specified for the ST7 functional operating modes over temperature range does not take into account the clock source current consumption. To obtain the total device consumption, the two current values must be added (except for Halt mode).

		-			
Symbol	Parameter	Conditions	Тур	Мах	Unit
I _{DD(RCINT)}	Supply current of internal RC oscillator		625		
I _{DD(RES)}	Supply current of resonator oscillator ⁽¹⁾⁽²⁾			on 12.6.3 ge 150	μA
I _{DD(PLL)}	PLL supply current	V – 5V	360		
I _{DD(LVD)}	LVD supply current	$V_{DD} = 5V$	150	300	

Table 91. Oscillators, PLL and LVD current consumption

1. Data based on characterization results done with the external components specified in *Section 12.6.3*, not tested in production.

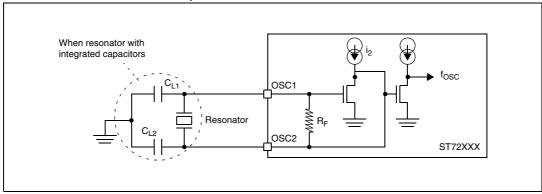
2. As the oscillator is based on a current source, the consumption does not depend on the voltage.

12.5.4 On-chip peripherals

Table 92. On-chip peripherals current consumption

Symbol	Parameter	Conditions	Тур	Unit
I _{DD(TIM)}	16-bit timer supply current ⁽¹⁾		50	
I _{DD(SPI)}	SPI supply current ⁽²⁾	T _A = 25 °C, f _{CPU} = 4 MHz,		μA
I _{DD(SCI)}	SCI supply current ⁽³⁾	V _{DD} = 5.0 V	400	μΑ
I _{DD(ADC)}	ADC supply current when converting ⁽⁴⁾			

1. Data based on a differential I_{DD} measurement between reset configuration (timer counter running at $f_{CPU}/4$) and timer counter stopped (only TIMD bit set). Data valid for one timer.

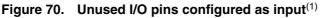

 Data based on a differential I_{DD} measurement between reset configuration (SPI disabled) and a permanent SPI master communication at maximum speed (data sent equal to 55h). This measurement includes the pad toggling consumption.

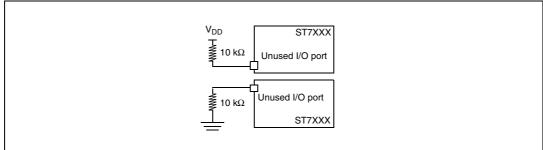
3. Data based on a differential I_{DD} measurement between SCI low power state (SCID = 1) and a permanent SCI data transmit sequence.

4. Data based on a differential ${\rm I}_{\rm DD}$ measurement between reset configuration and continuous A/D conversions.

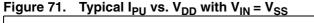
Figure 66. Typical application with a crystal or ceramic resonator (8/16 Kbyte Flash and ROM devices)

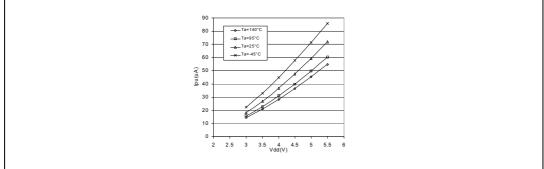
32 Kbyte Flash and ROM devices


Table 96. Crystal and ceramic resonator oscillators (32 Kbyte Flash and ROM devices)


Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OSC}	Oscillator frequency ⁽¹⁾		1		16	MHz
R _F	Feedback resistor ⁽²⁾		20		40	kΩ
C _{L1} C _{L2}	Recommended load capacitance versus equivalent serial resistance of the crystal or ceramic resonator $(R_S)^{(3)}$		20 20 15 15		60 50 35 35	pF
i ₂	OSC2 driving current	V _{DD} = 5V, V _{IN} = V _{SS} LP oscillator MP oscillator MS oscillator HS oscillator		80 160 310 610	150 250 460 910	μΑ

1. The oscillator selection can be optimized in terms of supply current using an high quality resonator with small RS value. Refer to crystal/ceramic resonator manufacturer for more details.


- Data based on characterization results, not tested in production. The relatively low value of the RF resistor, offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the microcontroller is used in tough humidity conditions.
- 3. For C_{L1} and C_{L2} it is recommended to use high-quality ceramic capacitors in the 5-pF to 25-pF range (typ.) designed for high-frequency applications and selected to match the requirements of the crystal or resonator. C_{L1} and C_{L2} , are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included when sizing C_{L1} and C_{L2} (10 pF can be used as a rough estimate of the combined pin and board capacitance).



1. I/O can be left unconnected if it is configured as output (0 or 1) by the software. This has the advantage of greater EMC robustness and lower cost.

12.9.2 Output driving current

Subject to general operating conditions for $V_{\text{DD}},\,f_{\text{CPU}},$ and T_{A} unless otherwise specified.

Table 107.	Output	driving	current
------------	--------	---------	---------

Symbol	Parameter	Cor	nditions	Min	Max	Unit
	Output low level voltage for a standard I/O pin when 8 pins are sunk at same time		I _{IO} = +5 mA		1.2	
	(see <i>Figure 72</i>)		$I_{IO} = +2 \text{ mA}$		0.5	
V _{OL} ⁽¹⁾	Output low level voltage for a high sink I/O pin when 4 pins are sunk at same time	V _{DD} = 5V	$I_{IO} = +20 \text{ mA}$ $T_A \le 85 \ ^\circ\text{C}$ $T_A > 85 \ ^\circ\text{C}$		1.3 1.5	v
	(see Figure 73 and Figure 75)	•00=0•	I _{IO} = +8 mA		0.6	
	Output high level voltage for an I/O pin when 4 pins are sourced at same time (see <i>Figure 74</i> and <i>Figure 77</i>)		I _{IO} = -5 mA, T _A ≤ 85 °C T _A > 85 °C	V _{DD} - 1.4 V _{DD} - 1.6		
	(See rigule /4 and rigule //)		I _{IO} = -2 mA	V _{DD} - 0.7		

The I_{IO} current sunk must always respect the absolute maximum rating specified in Section 12.2.2 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

2. The I_{IO} current sourced must always respect the absolute maximum rating specified in Section 12.2.2 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}. True open drain I/O pins do not have V_{OH}.

12.12 Communication interface characteristics

12.12.1 Serial peripheral interface (SPI)

The following characteristics are ubject to general operating conditions for V_{DD} , f_{CPU} , and T_A unless otherwise specified. The data is based on design simulation and/or characterization results, not tested in production.

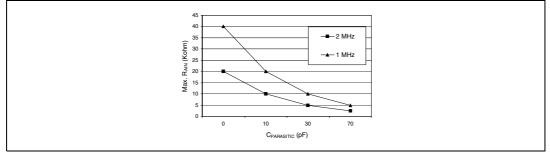
When no communication is on-going the data output line of the SPI (MOSI in master mode, MISO in slave mode) has its alternate function capability released. In this case, the pin status depends on the I/O port configuration. Refer to the I/O port characteristics for more details on the input/output alternate function characteristics (SS, SCK, MOSI, MISO).

Symbol	Parameter	Conditions	Min	Мах	Unit	
f _{SCK}	SPI clock frequency	Master f _{CPU} = 8 MHz	f _{CPU} /128 = 0.0625	$f_{CPU}/4 = 2$	MHz	
1/t _{c(SCK)}	SPI Clock frequency	Slave f _{CPU} = 8 MHz	0	$f_{CPU}/2 = 4$		
t _{r(SCK)} t _{f(SCK)}	SPI clock rise and fall time		see I/O po	ort pin description		
$t_{su(\overline{SS})}^{(1)}$	SS setup time ⁽²⁾	Slave	t _{CPU} + 50			
$t_{h(\overline{SS})}^{(1)}$	SS hold time	Slave	120			
t _{w(SCKH)} (1) t _{w(SCKL)} (1)	SCK high and low time	Master	100			
	5	Slave	90		-	
t _{su(MI)} ⁽¹⁾ t _{su(SI)} ⁽¹⁾	Data input setup time	Master Slave	100 100			
$\frac{t_{h(MI)}^{(1)}}{t_{h(SI)}^{(1)}}$	Data input hold time	Master Slave	100 100		ns	
$t_{a(SO)}^{(1)}$	Data output access time	Slave	0	120		
t _{dis(SO)} ⁽¹⁾	Data output disable time	Slave		240		
t _{v(SO)} ⁽¹⁾	Data output valid time	Slove (after enable edge)		120		
t _{h(SO)} ⁽¹⁾	Data output hold time	Slave (after enable edge)	0			
t _{v(MO)} ⁽¹⁾	Data output valid time	Master (after enable edge)		120		
t _{h(MO)} ⁽¹⁾	Data output hold time	Master (after enable edge)	0			

 Table 111.
 SPI characteristics

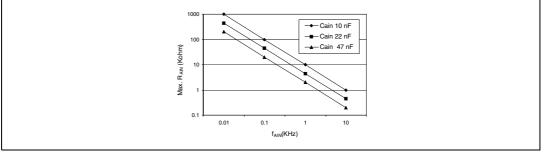
1. Data based on design simulation and/or characterization results, not tested in production.

2. Depends on f_{CPU} . For example, if $f_{CPU} = 8$ MHz, then $t_{CPU} = 1 / f_{CPU} = 125$ ns and $t_{su(SS)} = 175$ ns.



Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{ADC}	Conversion time (Sample + Hold) $f_{CPU} = 8 MHz$, Speed = 0, $f_{ADC} = 2 MHz$			7.5		μs
	No. of sample capacitor loading cycles No. of Hold conversion cycles			4 11		1/f _{ADC}

 Any added external serial resistor will downgrade the ADC accuracy (especially for resistance greater than 10kΩ). Data based on characterization results, not tested in production.


2. Injecting negative current on adjacent pins may result in increased leakage currents. Software filtering of the converted analog value is recommended.

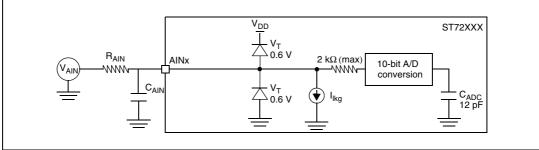

 C_{PARASITIC} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (3 pF). A high C_{PARASITIC} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.

Figure 85. Recommended C_{AIN} and R_{AIN} values⁽¹⁾

1. This graph shows that, depending on the input signal variation (f_{AIN}), C_{AIN} can be increased for stabilization time and decreased to allow the use of a larger serial resistor (R_{AIN}).

Figure 86. Typical A/D converter application

Dim		mm		inches ⁽¹⁾					
Dim.	Min	Тур	Max	Min	Тур	Max			
Е	9.91	10.41	11.05	0.3902	0.4098	0.4350			
E1	7.62	8.89	9.40	0.3000	0.3500	0.3701			
е		1.78			0.0701				
eA		10.16			0.4000				
eB			12.70			0.5000			
eC			1.40			0.0551			
L	2.54	3.05	3.81	0.1000	0.1201	0.1500			
Number of pins									
Ν	42								

Table 117. 32-pin dual in-line package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

14.1 Flash devices

14.1.1 Flash configuration

Table 119. Flash option bytes

	Static option byte 0										Stati	c optio	on byt	e 1		
	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
	WI	DG	Res	V	D	Reserved		⊈ ∟ PKG1	TC	OSCTYPE		OSCRANGE			OFF	
	HALT	SW	1103	1	0	11636	i veu	FMP	i Kui	RS	1	0	2	1	0	PLL
Default	1	1	1	0	0	1	1	1	See note 1	1	1	0	0	1	1	1

1. Depends on device type as defined in Table 122: Package selection (OPT7) on page 181.

The option bytes allow the hardware configuration of the microcontroller to be selected. They have no address in the memory map and can be accessed only in programming mode (for example using a standard ST7 programming tool). The default content of the Flash is fixed to FFh. To program directly the Flash devices using ICP, Flash devices are shipped to customers with the internal RC clock source. In masked ROM devices, the option bytes are fixed in hardware by the ROM code (see option list).

Table 120. Option byte 0 bit description

Bit	Name	Function
OPT7	WDG HALT	 Watchdog reset on Halt This option bit determines if a reset is generated when entering Halt mode while the Watchdog is active. 0: No reset generation when entering Halt mode 1: Reset generation when entering Halt mode
OPT6	WDG SW	Hardware or software Watchdog This option bit selects the Watchdog type. 0: Hardware (Watchdog always enabled) 1: Software (Watchdog to be enabled by software)
OPT5	-	Reserved, must be kept at default value.
OPT4:3	VD[1:0]	Voltage detection These option bits enable the voltage detection block (LVD and AVD) with a selected threshold for the LVD and AVD. 00: Selected LVD = Highest threshold (V_{DD} ~4V). 01: Selected LVD = Medium threshold (V_{DD} ~3.5V). 10: Selected LVD = Lowest threshold (V_{DD} ~3.5V). 11: LVD and AVD off Caution: If the medium or low thresholds are selected, the detection may occur outside the specified operating voltage range. Below 3.8V, device operation is not guaranteed. For details on the AVD and LVD threshold levels refer to Section 12.4.1 on page 145.
OPT2:1	-	Reserved, must be kept at default value

