

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	XCore
Core Size	32-Bit 8-Core
Speed	500MIPS
Connectivity	Configurable
Peripherals	<u>.</u>
Number of I/O	64
Program Memory Size	64KB (16K x 32)
Program Memory Type	SRAM
EEPROM Size	<u>.</u>
RAM Size	-
Voltage - Supply (Vcc/Vdd)	0.95V ~ 3.6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	128-TQFP Exposed Pad
Supplier Device Package	128-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/xmos/xs1-l8a-64-tq128-c5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	I/O pins (64)		
Signal	Function	Туре	Properties
X0D00	1A ⁰	I/O	PD _S , R _S
X0D01	XLA ⁴ _{out} 1B ⁰	I/O	PD _S , R _S
X0D02	XLA ³ _{out} 4A ⁰ 8A ⁰ 16A ⁰ 32A ²⁰	I/O	PD _S , R _U
X0D03	XLA ² _{out} 4A ¹ 8A ¹ 16A ¹ 32A ²¹	I/O	PDs, Ru
X0D04	XLA ¹ _{out} 4B ⁰ 8A ² 16A ² 32A ²²	I/O	PD _S , R _U
X0D05	XLA ⁰ _{out} 4B ¹ 8A ³ 16A ³ 32A ²³	I/O	PD _S , R _U
X0D06	XLA_{in}^{0} $4B^{2}$ $8A^{4}$ $16A^{4}$ $32A^{24}$	I/O	PD _S , R _U
X0D07	XLA_{in}^{1} $4B^{3}$ $8A^{5}$ $16A^{5}$ $32A^{25}$	I/O	PD _S , R _U
X0D08	XLA_{in}^2 $4A^2$ $8A^6$ $16A^6$ $32A^{26}$	I/O	PD _S , R _U
X0D09	XLA ³ _{in} 4A ³ 8A ⁷ 16A ⁷ 32A ²⁷	I/O	PDs, Ru
X0D10	XLA ⁴ _{in} 1C ⁰	I/O	PD _S , R _S
X0D11	1 D ⁰	I/O	PD _S , R _S
X0D12	1 E ⁰	I/0	PD _S , R _U
X0D13	XLB ⁴ _{out} 1F ⁰	I/O	PD _S , R _U
X0D14	XLB_{out}^3 4C ⁰ 8B ⁰ 16A ⁸ 32A ²⁸	I/O	PDs, Ru
X0D15	XLB_{out}^2 4C ¹ 8B ¹ 16A ⁹ 32A ²⁹	I/O	PDs, Ru
X0D16	XLB_{out}^{1} $4D^{0}$ $8B^{2}$ $16A^{10}$	I/O	PD _S , R _U
X0D17	XLB_{out}^{0} 4D ¹ 8B ³ 16A ¹¹	I/O	PD _S , R _U
X0D18	XLB_{in}^{0} $4D^{2}$ $8B^{4}$ $16A^{12}$	I/O	PD _S , R _U
X0D19	XLB ¹ _{in} 4D ³ 8B ⁵ 16A ¹³	I/O	PD _S , R _U
X0D20	XLB_{in}^2 $4C^2$ $8B^6$ $16A^{14}$ $32A^{30}$	I/O	PDs, Ru
X0D21	XLB_{in}^{3} 4C ³ 8B ⁷ 16A ¹⁵ 32A ³¹	I/O	PDs, Ru
X0D22	XLB ⁴ _{in} 1G ⁰	I/O	PD _S , R _U
X0D23	1H ⁰	I/O	PD _S , R _U
X0D24	110	I/O	PDs
X0D25	۱J ⁰	I/O	PDs
X0D26	4E ⁰ 8C ⁰ 16B ⁰	I/O	PDs, Ru
X0D27	4E ¹ 8C ¹ 16B ¹	I/O	PD _S , R _U
X0D28	4F ⁰ 8C ² 16B ²	I/O	PD _S , R _U
X0D29	4F ¹ 8C ³ 16B ³	I/O	PD _S , R _U
X0D30	4F ² 8C ⁴ 16B ⁴	I/O	PD _S , R _U
X0D31	4F ³ 8C ⁵ 16B ⁵	I/0	PD _S , R _U
X0D32	4E ² 8C ⁶ 16B ⁶	I/0	PDs, Ru
X0D33	4E ³ 8C ⁷ 16B ⁷	I/O	PD _S , R _U
X0D34	1K ⁰	I/0	PDs
X0D35	1L ⁰	I/O	PDs
X0D36	1M ⁰ 8D ⁰ 16B ⁸	I/O	PDs
X0D37	1N ⁰ 8D ¹ 16B ⁹	I/0	PD _S , R _U
X0D38	10 ⁰ 8D ² 16B ¹⁰	I/O	PDs, Ru
X0D39	1P ⁰ 8D ³ 16B ¹¹	I/0	PD _S , R _U
X0D40	8D ⁴ 16B ¹²	I/0	PD _S , R _U
			(continued)

-XMOS[®]

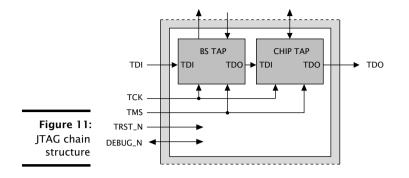
XS1-L8A-64-TQ128

Signal	Function		Туре	Properties
X0D41	8D ⁵ 16B ¹³		I/O	PD _S , R _U
X0D42	8D ⁶ 16B ¹⁴		I/O	PD _S , R _U
X0D43	8D ⁷ 16B ¹⁵		I/O	PU _S , R _U
X0D49	XLC ⁴ _{out}	32A ⁰	I/O	PDs
X0D50	XLC ³ _{out}	32A ¹	I/O	PDs
X0D51	XLC ² _{out}	32A ²	I/O	PDs
X0D52	XLC ¹ _{out}	32A ³	I/O	PDs
X0D53	XLC ⁰ _{out}	32A ⁴	I/O	PDs
X0D54	XLC ⁰ _{in}	32A ⁵	I/O	PDs
X0D55	XLC ¹ _{in}	32A ⁶	I/O	PDs
X0D56	XLC ² _{in}	32A ⁷	I/O	PDs
X0D57	XLC ³ _{in}	32A ⁸	I/O	PDs
X0D58	XLC ⁴ _{in}	32A ⁹	I/O	PDs
X0D61	XLD ⁴ _{out}	32A ¹⁰	I/O	PDs
X0D62	XLD ³ _{out}	32A ¹¹	I/O	PDs
X0D63	XLD ² _{out}	32A ¹²	I/O	PDs
X0D64	XLD ¹ _{out}	32A ¹³	I/O	PDs
X0D65	XLD ⁰ _{out}	32A ¹⁴	I/O	PDs
X0D66	XLD ⁰ _{in}	32A ¹⁵	I/O	PDs
X0D67	XLD ¹ _{in}	32A ¹⁶	I/O	PDs
X0D68	XLD ² _{in}	32A ¹⁷	I/O	PDs
X0D69	XLD ³ _{in}	32A ¹⁸	I/O	PDs
X0D70	XLD ⁴ _{in}	32A ¹⁹	I/O	PDs

-XMOS[®]-

Feature	Bit	Description
Disable JTAG	0	The JTAG interface is disabled, making it impossible for the tile state or memory content to be accessed via the JTAG interface.
Disable Link access	1	Other tiles are forbidden access to the processor state via the system switch. Disabling both JTAG and Link access transforms an xCORE Tile into a "secure island" with other tiles free for non-secure user application code.
Secure Boot	5	The xCORE Tile is forced to boot from address 0 of the OTP, allowing the xCORE Tile boot ROM to be bypassed (<i>see</i> §7).
Redundant rows	7	Enables redundant rows in OTP.
Sector Lock 0	8	Disable programming of OTP sector 0.
Sector Lock 1	9	Disable programming of OTP sector 1.
Sector Lock 2	10	Disable programming of OTP sector 2.
Sector Lock 3	11	Disable programming of OTP sector 3.
OTP Master Lock	12	Disable OTP programming completely: disables up- dates to all sectors and security register.
Disable JTAG-OTP	13	Disable all (read & write) access from the JTAG inter- face to this OTP.
Disable Global Debug	14	Disables access to the DEBUG_N pin.
	2115	General purpose software accessable security register available to end-users.
	3122	General purpose user programmable JTAG UserID code extension.

Figure 10: Security register features


port with resource ID 0x200100, and the OTP control is on a 16-bit port with ID 0x100300. Programming is performed through libotp and xburn.

8.2 SRAM

The xCORE Tile integrates a single 64KBSRAM bank for both instructions and data. All internal memory is 32 bits wide, and instructions are either 16-bit or 32-bit. Byte (8-bit), half-word (16-bit) or word (32-bit) accesses are supported and are executed within one tile clock cycle. There is no dedicated external memory interface, although data memory can be expanded through appropriate use of the ports.

9 JTAG

The JTAG module can be used for loading programs, boundary scan testing, incircuit source-level debugging and programming the OTP memory.

The JTAG chain structure is illustrated in Figure 11. Directly after reset, two TAP controllers are present in the JTAG chain: the boundary scan TAP and the chip TAP. The boundary scan TAP is a standard 1149.1 compliant TAP that can be used for boundary scan of the I/O pins. The chip TAP provides access into the xCORE Tile, switch and OTP for loading code and debugging.

The TRST_N pin must be asserted low during and after power up for 100 ns. If JTAG is not required, the TRST_N pin can be tied to ground to hold the JTAG module in reset.

The DEBUG_N pin is used to synchronize the debugging of multiple xCORE Tiles. This pin can operate in both output and input mode. In output mode and when configured to do so, DEBUG_N is driven low by the device when the processor hits a debug break point. Prior to this point the pin will be tri-stated. In input mode and when configured to do so, driving this pin low will put the xCORE Tile into debug mode. Software can set the behavior of the xCORE Tile based on this pin. This pin should have an external pull up of $4K7-47K\Omega$ or left not connected in single core applications.

The JTAG device identification register can be read by using the IDCODE instruction. Its contents are specified in Figure 12.

Figure 12: IDCODE return value

Bit:	31											D	evice	e Ide	ntifi	catio	on R	egis	ter											E	lit0
	Vers	sion								Pa	rt N	umb	er										Man	ufac	ture	r Ide	ntity	/			1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	0	0	0	1	1	0	0	1	1
	()			()			0)			()			1	2			(5			1	3				3	

The JTAG usercode register can be read by using the USERCODE instruction. Its contents are specified in Figure 13. The OTP User ID field is read from bits [22:31] of the security register , *see* §8.1 (all zero on unprogrammed devices).

Figure 13:	
USERCODE	
return value	

12.	Bit	31												ι	Jser	code	Reg	iste	r												В	Bit0
13:				0	TP U	lser	ID					Unu	ised									Silio	on I	Revis	ion							
DE lue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
lue		()			()			. ()			2	2			8	3			()			()			()	

11 DC and Switching Characteristics

Symbol	Parameter	MIN	TYP	MAX	UNITS	Notes
VDD	Tile DC supply voltage	0.95	1.00	1.05	V	
VDDIO	I/O supply voltage	3.00	3.30	3.60	V	
PLL_AVDD	PLL analog supply	0.95	1.00	1.05	V	
OTP_VCC	OTP supply voltage	3.00	3.30	3.60	V	
OTP_VPP	OTP external programming voltage (optional program only)	6.18	6.50	6.83	V	
CI	xCORE Tile I/O load capacitance			25	pF	
Та	Ambient operating temperature (Commercial)	0		70	°C	
	Ambient operating temperature (Industrial)	-40		85	°C	
Tj	Junction temperature			125	°C	
Tstg	Storage temperature	-65		150	°C	

11.1 Operating Conditions

Figure 16: Operating conditions

11.2 DC Characteristics

Symbol	Parameter	MIN	ТҮР	MAX	UNITS	Notes
V(IH)	Input high voltage	2.00		3.60	V	A
V(IL)	Input low voltage	-0.30		0.70	V	A
V(OH)	Output high voltage	2.00			V	B, C
V(OL)	Output low voltage			0.60	V	B, C
R(PU)	Pull-up resistance		35K		Ω	D
R(PD)	Pull-down resistance		35K		Ω	D

Figure 17: DC characteristics

A All pins except power supply pins.

B Ports 1A, 1D, 1E, 1H, 1I, 1J, 1K and 1L are nominal 8 mA drivers, the remainder of the general-purpose I/Os are 4 mA.

C Measured with 4 mA drivers sourcing 4 mA, 8 mA drivers sourcing 8 mA.

D Used to guarantee logic state for an I/O when high impedance. The internal pull-ups/pull-downs should not be used to pull external circuitry.

11.3 ESD Stress Voltage

Figure 18 ESD stress voltage

18:	Symbol	Parameter	MIN	TYP	MAX	UNITS	Notes
ess	HBM	Human body model	-2.00		2.00	KV	
age	MM	Machine model	-200		200	V	

11.4 Reset Timing

Figure 19: Reset timing

Symbol	Parameters	MIN	ТҮР	MAX	UNITS	Notes
T(RST)	Reset pulse width	5			us	
T(INIT)	Initialization time			150	μs	А

A Shows the time taken to start booting after RST_N has gone high.

11.5 Power Consumption

S	ymbol	Parameter	MIN	ТҮР	MAX	UNITS	Notes
I(DDCQ)	Quiescent VDD current		14		mA	A, B, C
P	D	Tile power dissipation		450		µW/MIPS	A, D, E, F
IC	DD	Active VDD current (Speed Grade 4)		160	300	mA	A, G
		Active VDD current (Speed Grade 5)		200	375	mA	А, Н
I(ADDPLL)	PLL_AVDD current			7	mA	I

Figure 20: xCORE Tile currents

A Use for budgetary purposes only.

B Assumes typical tile and I/O voltages with no switching activity.

C Includes PLL current.

D Assumes typical tile and I/O voltages with nominal switching activity.

E Assumes 1 MHz = 1 MIPS.

F PD(TYP) value is the usage power consumption under typical operating conditions.

-XM()S

G Measurement conditions: VDD = 1.0 V, VDDIO = 3.3 V, 25 °C, 400 MHz, average device resource usage.

H Measurement conditions: VDD = 1.0 V, VDDIO = 3.3 V, 25 °C, 500 MHz, average device resource usage.

I PLL_AVDD = 1.0 V

The tile power consumption of the device is highly application dependent and should be used for budgetary purposes only.

More detailed power analysis can be found in the XS1-L Power Consumption document, X2999.

	Symbol	Parameter	MIN	ТҮР	MAX	UNITS	Notes
_	B(2blinkP)	2b link bandwidth (packetized)			87	MBit/s	А, В
23:	B(5blinkP)	5b link bandwidth (packetized)			217	MBit/s	А, В
nk	B(2blinkS)	2b link bandwidth (streaming)			100	MBit/s	В
ce	B(5blinkS)	5b link bandwidth (streaming)			250	MBit/s	В

11.8 xConnect Link Performance

Figure 23: Link performance

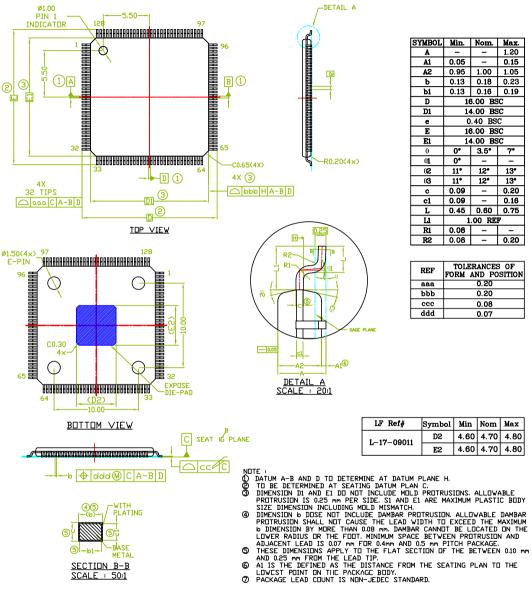
A Assumes 32-byte packet in 3-byte header mode. Actual performance depends on size of the header and payload.

B 7.5 ns symbol time.

The asynchronous nature of links means that the relative phasing of CLK clocks is not important in a multi-clock system, providing each meets the required stability criteria.

11.9 JTAG Timing

Symbol	Parameter	MIN	ТҮР	MAX	UNITS	Notes
f(TCK_D)	TCK frequency (debug)			18	MHz	
f(TCK_B)	TCK frequency (boundary scan)			10	MHz	
T(SETUP)	TDO to TCK setup time	5			ns	A
T(HOLD)	TDO to TCK hold time	5			ns	А
T(DELAY)	TCK to output delay			15	ns	В

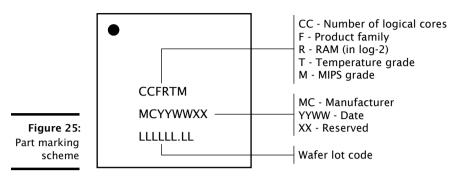

Figure 24: JTAG timing

A Timing applies to TMS and TDI inputs.

B Timing applies to TDO output from negative edge of TCK.

All JTAG operations are synchronous to TCK apart from the global asynchronous reset TRST_N.

Package Information 12



SYMBOL	Min.	Nom.	Max.			
A	-	-	1.20			
A1	0.05	-	0.15			
A2	0.95	1.00	1.05			
b	0.13	0.18	0.23			
b1	0.13	0.16	0.19			
D	10	3.00 BS	SC			
D1	14.00 BSC					
e	0.40 BSC					
E	16.00 BSC					
E1	14.00 BSC					
θ	0"	3.5*	7°			
61	0*	-	-			
62	11•	12*	13*			
63	11*	12*	13*			
С	0.09	-	0.20			
c1	0.09	-	0.16			
L	0.45	0.60	0.75			
11	1.00 REF					
R1	0.08	-	-			
R2	0.08	-	0.20			

REF	TOLERANCES OF FORM AND POSITION
aaa	0.20
bbb	0.20
ccc	0.08
ddd	0.07

LF Ref#	Symbol	Min	Nom	Max
L-17-09011	D2	4.60	4.70	4.80
1-11-09011	E2	4.60	4.70	4.80

12.1 Part Marking

13 Ordering Information

	Product Code	Marking	Qualification	Speed Grade
	XS1-L8A-64-TQ128-C4	8L6C4	Commercial	400 MIPS
Figure 26:	XS1-L8A-64-TQ128-C5	8L6C5	Commercial	500 MIPS
Orderable	XS1-L8A-64-TQ128-I4	8L6I4	Industrial	400 MIPS
part numbers	XS1-L8A-64-TQ128-I5	8L6I5	Industrial	500 MIPS

B Processor Status Configuration

The processor status control registers can be accessed directly by the processor using processor status reads and writes (use getps(reg) and setps(reg,value) for reads and writes).

Number	Perm	Description	
0x00	RW	RAM base address	
0x01	RW	Vector base address	
0x02	RW	xCORE Tile control	
0x03	RO	xCORE Tile boot status	
0x05	RO	Security configuration	
0x06	RW	Ring Oscillator Control	
0x07	RO	Ring Oscillator Value	
0x08	RO	Ring Oscillator Value	
0x09	RO	Ring Oscillator Value	
0x0A	RO	Ring Oscillator Value	
0x10	DRW	Debug SSR	
0x11	DRW	Debug SPC	
0x12	DRW	Debug SSP	
0x13	DRW	DGETREG operand 1	
0x14	DRW	DGETREG operand 2	
0x15	DRW	Debug interrupt type	
0x16	DRW	Debug interrupt data	
0x18	DRW	Debug core control	
0x20 0x27	DRW	Debug scratch	
0x30 0x33	DRW	Instruction breakpoint address	
0x40 0x43	DRW	Instruction breakpoint control	
0x50 0x53	DRW	Data watchpoint address 1	
0x60 0x63	DRW	Data watchpoint address 2	
0x70 0x73	DRW	Data breakpoint control register	
0x80 0x83	DRW	Resources breakpoint mask	
0x90 0x93	DRW	Resources breakpoint value	
0x9C 0x9F	DRW	Resources breakpoint control register	

-XMOS[®]

Figure 28: Summary

Bits	Perm	Init	Description
31:24	RO	-	Reserved
23:16	RO		xCORE tile number on the switch.
15:9	RO	-	Reserved
8	RO		Set to 1 if boot from OTP is enabled.
7:0	RO		The boot mode pins MODE0, MODE1,, specifying the boot frequency, boot source, etc.

0x03: xCORE Tile boot status

B.5 Security configuration: 0x05

Copy of the security register as read from OTP.

0x05: Security configuration

Bits	Perm	Init	Description	
31:0	RO		Value.	

B.6 Ring Oscillator Control: 0x06

There are four free-running oscillators that clock four counters. The oscillators can be started and stopped using this register. The counters should only be read when the ring oscillator is stopped. The counter values can be read using four subsequent registers. The ring oscillators are asynchronous to the xCORE tile clock and can be used as a source of random bits.

0x06 Ring Oscillator Control

-	Bits	Perm	Init	Description
6:	31:2	RO	-	Reserved
g or	1	RW	0	Set to 1 to enable the xCORE tile ring oscillators
ol	0	RW	0	Set to 1 to enable the peripheral ring oscillators

B.7 Ring Oscillator Value: 0x07

This register contains the current count of the xCORE Tile Cell ring oscillator. This value is not reset on a system reset.

0x07: Ring Oscillator Value

	Bits	Perm	Init	Description	
	31:16	RO	-	Reserved	
l	15:0	RO	-	Ring oscillator counter data.	

0x11:	Bits	Perm	Init	Description
Debug SPC	31:0	DRW		Value.

B.13 Debug SSP: 0x12

This register contains the value of the SSP register when the debugger was called.

0x12:	Bits	Perm	Init	Description
Debug SSP	31:0	DRW		Value.

B.14 DGETREG operand 1: 0x13

The resource ID of the logical core whose state is to be read.

0x13:	Bits	Perm	Init	Description
DGETREG	31:8	RO	-	Reserved
operand 1	7:0	DRW		Thread number to be read

B.15 DGETREG operand 2: 0x14

Register number to be read by DGETREG

0x14: DGETREG operand 2

Bits	Perm	Init	Description
31:5	RO	-	Reserved
4:0	DRW		Register number to be read

B.16 Debug interrupt type: 0x15

Register that specifies what activated the debug interrupt.

·XMC

Bits	Perm	Init	Description
31:18	RO	-	Reserved
17:16	DRW		If the debug interrupt was caused by a hardware breakpoint or hardware watchpoint, this field contains the number of the breakpoint or watchpoint. If multiple breakpoints or watch- points trigger at once, the lowest number is taken.
15:8	DRW		If the debug interrupt was caused by a logical core, this field contains the number of that core. Otherwise this field is 0.
7:3	RO	-	Reserved
2:0	DRW	0	Indicates the cause of the debug interrupt 1: Host initiated a debug interrupt through JTAG 2: Program executed a DCALL instruction 3: Instruction breakpoint 4: Data watch point 5: Resource watch point

0x15: Debug interrupt type

B.17 Debug interrupt data: 0x16

On a data watchpoint, this register contains the effective address of the memory operation that triggered the debugger. On a resource watchpoint, it countains the resource identifier.

0x16 Debug interrupt data

0x16: Debug	Bits	Perm	Init	Description
ot data	31:0	DRW		Value.

B.18 Debug core control: 0x18

This register enables the debugger to temporarily disable logical cores. When returning from the debug interrupts, the cores set in this register will not execute. This enables single stepping to be implemented.

0x18: Debug core control

Bits	Perm	Init	Description
31:8	RO	-	Reserved
7:0	DRW		1-hot vector defining which logical cores are stopped when not in debug mode. Every bit which is set prevents the respective logical core from running.

0x50 .. 0x53: Data watchpoint address 1

Data Ipoint	Bits	Perm	Init	Description
ress 1	31:0	DRW		Value.

B.23 Data watchpoint address 2: 0x60 .. 0x63

This set of registers contains the second address for the four data watchpoints.

0x60 .. 0x63: Data watchpoint address 2

ita int	Bits	Perm	Init	Description
5 2	31:0	DRW		Value.

B.24 Data breakpoint control register: 0x70 .. 0x73

This set of registers controls each of the four data watchpoints.

	Bits	Perm	Init	Description
	31:24	RO	-	Reserved
	23:16	DRW	0	A bit for each logical core in the tile allowing the breakpoint to be enabled individually for each logical core.
	15:3	RO	-	Reserved
	2	DRW	0	Set to 1 to enable breakpoints to be triggered on loads. Breakpoints always trigger on stores.
• •	1	DRW	0	By default, data watchpoints trigger if memory in the range [Address1Address2] is accessed (the range is inclusive of Address1 and Address2). If set to 1, data watchpoints trigger if memory outside the range (Address2Address1) is accessed (the range is exclusive of Address2 and Address1).
	0	DRW	0	When 1 the instruction breakpoint is enabled.

0x70 .. 0x73: Data breakpoint control register

B.25 Resources breakpoint mask: 0x80 .. 0x83

This set of registers contains the mask for the four resource watchpoints.

-XMOS

37

C Tile Configuration

The xCORE Tile control registers can be accessed using configuration reads and writes (use write_tile_config_reg(tileref, ...) and read_tile_config_reg(tileref, \rightarrow ...) for reads and writes).

Number	Perm	Description
0x00	RO	Device identification
0x01	RO	xCORE Tile description 1
0x02	RO	xCORE Tile description 2
0x04	CRW	Control PSwitch permissions to debug registers
0x05	CRW	Cause debug interrupts
0x06	RW	xCORE Tile clock divider
0x07	RO	Security configuration
0x10 0x13	RO	PLink status
0x20 0x27	CRW	Debug scratch
0x40	RO	PC of logical core 0
0x41	RO	PC of logical core 1
0x42	RO	PC of logical core 2
0x43	RO	PC of logical core 3
0x44	RO	PC of logical core 4
0x45	RO	PC of logical core 5
0x46	RO	PC of logical core 6
0x47	RO	PC of logical core 7
0x60	RO	SR of logical core 0
0x61	RO	SR of logical core 1
0x62	RO	SR of logical core 2
0x63	RO	SR of logical core 3
0x64	RO	SR of logical core 4
0x65	RO	SR of logical core 5
0x66	RO	SR of logical core 6
0x67	RO	SR of logical core 7
0x80 0x9F	RO	Chanend status

-XMOS

Figure 29: Summary 0x04: Control PSwitch permissions to debug registers

Bits	Perm	Init	Description
31:1	RO	-	Reserved
0	CRW		Set to 1 to restrict PSwitch access to all CRW marked registers to become read-only rather than read-write.

C.5 Cause debug interrupts: 0x05

This register can be used to raise a debug interrupt in this xCORE tile.

0x05: Cause debug interrupts

Bits	Perm	Init	Description
31:2	RO	-	Reserved
1	RO	0	Set to 1 when the processor is in debug mode.
0	CRW	0	Set to 1 to request a debug interrupt on the processor.

C.6 xCORE Tile clock divider: 0x06

This register contains the value used to divide the PLL clock to create the xCORE tile clock. The divider is enabled under control of the tile control register

0x06: xCORE Tile clock divider

6:	Bits	Perm	Init	Description
le	31:8	RO	-	Reserved
er	7:0	RW		Value of the clock divider minus one.

C.7 Security configuration: 0x07

Copy of the security register as read from OTP.

0x07: Security configuration

	Bits	Perm	Init	Description
n	31:0	RO		Value.

C.8 PLink status: 0x10 .. 0x13

Status of each of the four processor links; connecting the xCORE tile to the switch.

Bits	Perm	Init	Description	
31:26	RO	-	Reserved	
25:24	RO		00 - ChannelEnd, 01 - ERROR, 10 - PSCTL, 11 - Idle.	
23:16	RO		Based on SRC_TARGET_TYPE value, it represents channelEnd ID or Idle status.	
15:6	RO	-	Reserved	
5:4	RO		Two-bit network identifier	
3	RO	-	Reserved	
2	RO		1 when the current packet is considered junk and will be thrown away.	
1	RO	0	Set to 1 if the switch is routing data into the link, and if a route exists from another link.	
0	RO	0	Set to 1 if the link is routing data into the switch, and if a route is created to another link on the switch.	

0x10 .. 0x13: PLink status

C.9 Debug scratch: 0x20 .. 0x27

A set of registers used by the debug ROM to communicate with an external debugger, for example over the switch. This is the same set of registers as the Debug Scratch registers in the processor status.

0x20 .. 0x27 Debug scratch

0 0x27: Debug	Bits	Perm	Init	Description
scratch	31:0	CRW		Value.

C.10 PC of logical core 0: 0x40

Value of the PC of logical core 0.

0x40 PC of logical core 0

al	Bits	Perm	Init	Description
0	31:0	RO		Value.

C.11 PC of logical core 1: 0x41

0x41: Bits PC of logical core 1

Perm Init Description 31:0 RO Value.

C.12 PC of logical core 2: 0x42

0x42: PC of logical	Bits	Perm	Init	Description
core 2	31:0	RO		Value.

C.13 PC of logical core 3: 0x43

0x43:				
PC of logical	Bits	Perm	Init	Description
core 3	31:0	RO		Value.

C.14 PC of logical core 4: 0x44

0x44: PC of logical core 4

Bits

31:0

Perm	Init	Description
RO		Value.

C.15 PC of logical core 5: 0x45

0x45:				
PC of logical	Bits	Perm	Init	Description
core 5	31:0	RO		Value.

	Bits	Perm	Init	Description
	31:24	RO	-	Reserved
0x01: System	23:16	RO		Number of links on the switch.
switch	15:8	RO		Number of cores that are connected to this switch.
description	7:0	RO		Number of links per processor.

D.3 Switch configuration: 0x04

This register enables the setting of two security modes (that disable updates to the PLL or any other registers) and the header-mode.

Bits	Perm	Init	Description	
31	RO	0	Set to 1 to disable any write access to the configuration registers in this switch.	
30:9	RO	-	Reserved	
8	RO	0	Set to 1 to disable updates to the PLL configuration register.	
7:1	RO	-	Reserved	
0	RO	0	Header mode. Set to 1 to enable 1-byte headers. This must be performed on all nodes in the system.	

0x04: Switch configuration

D.4 Switch node identifier: 0x05

This register contains the node identifier.

0x05 Switch node identifier

	Bits	Perm	Init	Description
-	31:16	RO	-	Reserved
5: e er	15:0	RW	0	The unique 16-bit ID of this node. This ID is matched most- significant-bit first with incoming messages for routing pur- poses.

D.5 PLL settings: 0x06

An on-chip PLL multiplies the input clock up to a higher frequency clock, used to clock the I/O, processor, and switch, see Oscillator. Note: a write to this register will cause the tile to be reset.

Pins MODE0 and MODE1 are set to the correct value for the chosen oscillator frequency. The MODE settings are shown in the Oscillator section, Section 6. If you have a choice between two values, choose the value with the highest multiplier ratio since that will boot faster.

H.5 USB ULPI Mode

This section can be skipped if you do not have an external USB PHY.

- □ If using ULPI, the ULPI signals are connected to specific ports as shown in Section E.
- □ If using ULPI, the ports that are used internally are not connected, see Section E. (Note that this limitation only applies when the ULPI is enabled, they can still be used before or after the ULPI is being used.)

H.6 Boot

- □ The device is connected to a SPI flash for booting, connected to X0D0, X0D01, X0D10, and X0D11 (Section 7). If not, you must boot the device through OTP or JTAG.
- □ The device that is connected to flash has both MODE2 and MODE3 connected to pin 3 on the xSYS Header (MSEL). If no debug adapter connection is supported (not recommended) MODE2 and MODE3 are to be left NC (Section 7).
- ☐ The SPI flash that you have chosen is supported by **xflash**, or you have created a specification file for it.

H.7 JTAG, XScope, and debugging

- \Box You have decided as to whether you need an XSYS header or not (Section G)
- □ If you included an XSYS header, you connected pin 3 to any MODE2/MODE3 pin that would otherwise be NC (Section G).
- ☐ If you have not included an XSYS header, you have devised a method to program the SPI-flash or OTP (Section G).

H.8 GPIO

You have not mapped both inputs and outputs to the same multi-bit port.

-XM()S