E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	25MHz
Connectivity	I ² C, SMBus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	2КВ (2К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 9x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-UFQFN Exposed Pad
Supplier Device Package	20-QFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm8sb10f2g-a-qfn20

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2. Ordering Information

Figure 2.1. EFM8SB1 Part Numbering

All EFM8SB1 family members have the following features:

- CIP-51 Core running up to 25 MHz
- Three Internal Oscillators (24.5 MHz, 20 MHz, and 16 kHz)
- SMBus / I2C
- SPI
- UART
- · 3-Channel Programmable Counter Array (PWM, Clock Generation, Capture/Compare)
- 4 16-bit Timers
- Analog Comparator
- 6-bit current sourc reference
- · 12-bit Analog-to-Digital Converter with integrated multiplexer, voltage reference, and temperature sensor
- 16-bit CRC Unit
- AEC-Q100 qualified (Grade 3)
- · Pre-loaded UART bootloader

In addition to these features, each part number in the EFM8SB1 family has a set of features that vary across the product line. The product selection guide shows the features available on each family member.

Table 2.1. Product Selection Guide

Ordering Part Number	Flash Memory (kB)	RAM (Bytes)	Digital Port I/Os (Total)	ADC0 Channels	Capacitive Touch Inputs	Pb-free (RoHS Compliant)	Temperature Range	Package
EFM8SB10F8G-A-QSOP24	8	512	17	10	14	Yes	-40 to +85 C	QSOP24
EFM8SB10F8G-A-QFN24	8	512	17	10	14	Yes	-40 to +85 C	QFN24
EFM8SB10F8G-A-QFN20	8	512	16	9	13	Yes	-40 to +85 C	QFN20
EFM8SB10F8G-A-CSP16	8	512	13	9	12	Yes	-40 to +85 C	CSP16
EFM8SB10F4G-A-QFN20	4	512	16	9	13	Yes	-40 to +85 C	QFN20

3.2 Power

All internal circuitry draws power from the VDD supply pin. External I/O pins are powered from the VIO supply voltage (or VDD on devices without a separate VIO connection), while most of the internal circuitry is supplied by an on-chip LDO regulator. Control over the device power can be achieved by enabling/disabling individual peripherals as needed. Each analog peripheral can be disabled when not in use and placed in low power mode. Digital peripherals, such as timers and serial buses, have their clocks gated off and draw little power when they are not in use.

Table 3.1. Power Modes

Power Mode	Details	Mode Entry	Wake-Up Sources
Normal	Core and all peripherals clocked and fully operational	—	—
Idle	 Core halted All peripherals clocked and fully operational Code resumes execution on wake event 	Set IDLE bit in PCON0	Any interrupt
Suspend	 Core and digital peripherals halted Internal oscillators disabled Code resumes execution on wake event 	1. Switch SYSCLK to HFOSC0 or LPOSC0 2. Set SUSPEND bit in PMU0CF	 RTC0 Alarm Event RTC0 Fail Event CS0 Interrupt Port Match Event Comparator 0 Rising Edge
Stop	 All internal power nets shut down Pins retain state Exit on any reset source	Set STOP bit in PCON0	Any reset source
Sleep ¹	 Most internal power nets shut down Select circuits remain powered Pins retain state All RAM and SFRs retain state Code resumes execution on wake event 	 Disable unused ana- log peripherals Set SLEEP bit in PMU0CF 	 RTC0 Alarm Event RTC0 Fail Event Port Match Event Comparator 0 Rising Edge
Note:			

1. Entering Sleep may disconnect the active debug session.

3.3 I/O

Digital and analog resources are externally available on the device's multi-purpose I/O pins. Port pins P0.0-P1.7 can be defined as general-purpose I/O (GPIO), assigned to one of the internal digital resources through the crossbar or dedicated channels, or assigned to an analog function. Port pin P2.7 can be used as GPIO. Additionally, the C2 Interface Data signal (C2D) is shared with P2.7.

- Up to 17 multi-functions I/O pins, supporting digital and analog functions.
- Flexible priority crossbar decoder for digital peripheral assignment.
- Two drive strength settings for each pin.
- Two direct-pin interrupt sources with dedicated interrupt vectors (INT0 and INT1).
- · Up to 16 direct-pin interrupt sources with shared interrupt vector (Port Match).

3.4 Clocking

The CPU core and peripheral subsystem may be clocked by both internal and external oscillator resources. By default, the system clock comes up running from the 20 MHz low power oscillator divided by 8.

- Provides clock to core and peripherals.
- 20 MHz low power oscillator (LPOSC0), accurate to ±10% over supply and temperature corners.
- 24.5 MHz internal oscillator (HFOSC0), accurate to ±2% over supply and temperature corners.
- 16.4 kHz low-frequency oscillator (LFOSC0) or external RTC 32 kHz crystal.
- · External RC, C, CMOS, and high-frequency crystal clock options (EXTCLK).
- Clock divider with eight settings for flexible clock scaling: Divide the selected clock source by 1, 2, 4, 8, 16, 32, 64, or 128.

3.5 Counters/Timers and PWM

Real Time Clock (RTC0)

The RTC is an ultra low power, 36 hour 32-bit independent time-keeping Real Time Clock with alarm. The RTC has a dedicated 32 kHz oscillator. No external resistor or loading capacitors are required, and a missing clock detector features alerts the system if the external crystal fails. The on-chip loading capacitors are programmable to 16 discrete levels allowing compatibility with a wide range of crystals.

The RTC module includes the following features:

- Up to 36 hours (32-bit) of independent time keeping.
- Support for internal 16.4 kHz low frequency oscillator (LFOSC0) or external 32 kHz crystal (crystal not available on CSP16 packages).
- · Internal crystal loading capacitors with 16 levels.
- · Operation in the lowest power mode and across the full supported voltage range.
- · Alarm and oscillator failure events to wake from the lowest power mode or reset the device.
- · Buffered clock output available for other system devices even in the lowest power mode.

Programmable Counter Array (PCA0)

The programmable counter array (PCA) provides multiple channels of enhanced timer and PWM functionality while requiring less CPU intervention than standard counter/timers. The PCA consists of a dedicated 16-bit counter/timer and one 16-bit capture/compare module for each channel. The counter/timer is driven by a programmable timebase that has flexible external and internal clocking options. Each capture/compare module may be configured to operate independently in one of five modes: Edge-Triggered Capture, Software Timer, High-Speed Output, Frequency Output, or Pulse-Width Modulated (PWM) Output. Each capture/compare module has its own associated I/O line (CEXn) which is routed through the crossbar to port I/O when enabled.

- · 16-bit time base.
- · Programmable clock divisor and clock source selection.
- · Up to three independently-configurable channels
- 8, 9, 10, 11 and 16-bit PWM modes (edge-aligned operation).
- · Frequency output mode.
- · Capture on rising, falling or any edge.
- · Compare function for arbitrary waveform generation.
- Software timer (internal compare) mode.
- Integrated watchdog timer.

Serial Peripheral Interface (SPI0)

The serial peripheral interface (SPI) module provides access to a flexible, full-duplex synchronous serial bus. The SPI can operate as a master or slave device in both 3-wire or 4-wire modes, and supports multiple masters and slaves on a single SPI bus. The slave-select (NSS) signal can be configured as an input to select the SPI in slave mode, or to disable master mode operation in a multi-master environment, avoiding contention on the SPI bus when more than one master attempts simultaneous data transfers. NSS can also be configured as a firmware-controlled chip-select output in master mode, or disable to reduce the number of pins required. Additional general purpose port I/O pins can be used to select multiple slave devices in master mode.

The SPI module includes the following features:

- · Supports 3- or 4-wire operation in master or slave modes.
- Supports external clock frequencies up to SYSCLK / 2 in master mode and SYSCLK / 10 in slave mode.
- Support for four clock phase and polarity options.
- · 8-bit dedicated clock clock rate generator.
- · Support for multiple masters on the same data lines.

System Management Bus / I2C (SMB0)

The SMBus I/O interface is a two-wire, bi-directional serial bus. The SMBus is compliant with the System Management Bus Specification, version 1.1, and compatible with the l^2C serial bus.

The SMBus module includes the following features:

- Standard (up to 100 kbps) and Fast (400 kbps) transfer speeds.
- · Support for master, slave, and multi-master modes.
- Hardware synchronization and arbitration for multi-master mode.
- · Clock low extending (clock stretching) to interface with faster masters.
- · Hardware support for 7-bit slave and general call address recognition.
- · Firmware support for 10-bit slave address decoding.
- · Ability to inhibit all slave states.
- Programmable data setup/hold times.

16-bit CRC (CRC0)

The cyclic redundancy check (CRC) module performs a CRC using a 16-bit polynomial. CRC0 accepts a stream of 8-bit data and posts the 16-bit result to an internal register. In addition to using the CRC block for data manipulation, hardware can automatically CRC the flash contents of the device.

The CRC module is designed to provide hardware calculations for flash memory verification and communications protocols. The CRC module supports the standard CCITT-16 16-bit polynomial (0x1021), and includes the following features:

- Support for CCITT-16 polynomial
- Byte-level bit reversal
- Automatic CRC of flash contents on one or more 256-byte blocks
- · Initial seed selection of 0x0000 or 0xFFFF

4.1.2 Power Consumption

Table 4.2.	Power	Consum	ption
------------	-------	--------	-------

Parameter	Symbol	Conditions	Min	Тур	Мах	Units
Digital Supply Current						
Normal Mode supply current - Full speed with code executing from	I _{DD}	V _{DD} = 1.8–3.6 V, f _{SYSCLK} = 24.5 MHz	_	3.6	4.5	mA
flash ^{3,4,5}		V _{DD} = 1.8–3.6 V, f _{SYSCLK} = 20 MHz	—	3.1	_	mA
		V _{DD} = 1.8–3.6 V, f _{SYSCLK} = 32.768 kHz	—	84	_	μA
Normal Mode supply current fre- quency sensitivity ^{1, 3, 5}	IDDFREQ	V _{DD} = 1.8–3.6 V, T = 25 °C, f _{SYSCLK} < 14 MHz	—	174	_	µA/MHz
		V _{DD} = 1.8–3.6 V, T = 25 °C, f _{SYSCLK} > 14 MHz	_	88	_	µA/MHz
Idle Mode supply current - Core halted with peripherals running ^{4 , 6}	I _{DD}	V _{DD} = 1.8–3.6 V, f _{SYSCLK} = 24.5 MHz	_	1.8	3.0	mA
		V _{DD} = 1.8–3.6 V, f _{SYSCLK} = 20 MHz		1.4	_	mA
		V _{DD} = 1.8–3.6 V, f _{SYSCLK} = 32.768 kHz	_	82	_	μA
Idle Mode Supply Current Frequen- cy Sensitivity ^{1 ,6}	IDDFREQ	V _{DD} = 1.8–3.6 V, T = 25 °C		67	_	µA/MHz
Suspend Mode Supply Current	I _{DD}	V _{DD} = 1.8–3.6 V	—	77	—	μA
Sleep Mode Supply Current with	I _{DD}	1.8 V, T = 25 °C		0.60	_	μA
crystal		3.6 V, T = 25 °C	—	0.80	_	μA
		1.8 V, T = 85 °C	—	0.80	—	μA
		3.6 V, T = 85 °C	—	1.00	—	μA
Sleep Mode Supply Current with	I _{DD}	1.8 V, T = 25 °C	—	0.30	_	μA
RIC running from Internal LFO		3.6 V, T = 25 °C	—	0.50	_	μA
		1.8 V, T = 85 °C	—	0.50	_	μA
		3.6 V, T = 85 °C	—	0.80	—	μA
Sleep Mode Supply Current (RTC	I _{DD}	1.8 V, T = 25 °C	—	0.05	—	μA
off)		3.6 V, T = 25 °C	—	0.08	_	μA
		1.8 V, T = 85 °C	—	0.20	_	μA
		3.6 V, T = 85 °C		0.28		μA
V _{DD} Monitor Supply Current	I _{VMON}		—	7		μA
Oscillator Supply Current	I _{HFOSC0}	25 °C	—	300	—	μA

EFM8SB1 Data Sheet
Electrical Specifications

Units

Max

Parameter	
Note:	

Symbol Conditions Min

Тур

1. Based on device characterization data; Not production tested.

- 2. SYSCLK must be at least 32 kHz to enable debugging.
- 3. Digital Supply Current depends upon the particular code being executed. The values in this table are obtained with the CPU executing an "simp \$" loop, which is the compiled form of a while(1) loop in C. One iteration requires 3 CPU clock cycles, and the flash memory is read on each cycle. The supply current will vary slightly based on the physical location of the simp instruction and the number of flash address lines that toggle as a result. In the worst case, current can increase by up to 30% if the simp loop straddles a 64-byte flash address boundary (e.g., 0x007F to 0x0080). Real-world code with larger loops and longer linear sequences will have few transitions across the 64-byte address boundaries.
- 4. Includes supply current from regulator and oscillator source (24.5 MHz high-frequency oscillator, 20 MHz low-power oscillator, 1 MHz external oscillator, or 32.768 kHz RTC oscillator).
- 5. IDD can be estimated for frequencies < 14 MHz by simply multiplying the frequency of interest by the frequency sensitivity number for that range, then adding an offset of 84 µA. When using these numbers to estimate I_{DD} for > 14 MHz, the estimate should be the current at 25 MHz minus the difference in current indicated by the frequency sensitivity number. For example: V_{DD} = 3.0 V; F = 20 MHz, I_{DD} = 3.6 mA - (25 MHz - 20 MHz) x 0.088 mA/MHz = 3.16 mA assuming the same oscillator setting.
- 6. Idle IDD can be estimated by taking the current at 25 MHz minus the difference in current indicated by the frequency sensitivity number. For example: V_{DD} = 3.0 V; F = 5 MHz, Idle I_{DD} = 1.75 mA – (25 MHz – 5 MHz) x 0.067 mA/MHz = 0.41 mA.
- 7. ADC0 always-on power excludes internal reference supply current.
- 8. The internal reference is enabled as-needed when operating the ADC in burst mode to save power.
- 9. Includes only current from regulator, CS module, and MCU in suspend mode.

10. IREF0 supply current only. Does not include current sourced or sunk from IREF0 output pin.

4.1.3 Reset and Supply Monitor

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
VDD Supply Monitor Threshold	V _{VDDM}	Reset Trigger	1.7	1.75	1.8	V
	V _{WARN}	Early Warning	1.8	1.85	1.9	V
VDD Supply Monitor Turn-On Time	t _{MON}		_	300		ns
Power-On Reset (POR) Monitor	V _{POR}	Rising Voltage on V _{DD}	_	1.75	_	V
		Falling Voltage on V _{DD}	0.75	1.0	1.3	V
V _{DD} Ramp Time	t _{RMP}	Time to V _{DD} ≥ 1.8 V	_	_	3	ms
Reset Delay from non-POR source	t _{RST}	Time between release of reset source and code execution	_	10	_	μs
Reset Delay from POR	t _{POR}	Relative to V _{DD} > V _{POR}	3	10	31	ms
RST Low Time to Generate Reset	t _{RSTL}		15	_	_	μs
Missing Clock Detector Response Time (final rising edge to reset)	t _{MCD}	F _{SYSCLK} > 1 MHz	100	650	1000	μs
Missing Clock Detector Trigger Frequency	F _{MCD}		_	7	10	kHz

Table 4.3. Reset and Supply Monitor

4.1.7 Crystal Oscillator

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Crystal Frequency	f _{XTAL}		0.02	_	25	MHz
Crystal Drive Current	I _{XTAL}	XFCN = 0	—	0.5	_	μA
		XFCN = 1	—	1.5	_	μA
		XFCN = 2	—	4.8	_	μA
		XFCN = 3	—	14	—	μA
		XFCN = 4	—	40	—	μA
		XFCN = 5	—	120	_	μA
	XFCN = 6	—	550	_	μA	
		XFCN = 7		2.6		mA

Table 4.7. Crystal Oscillator

4.1.8 External Clock Input

Table 4.8. External Clock Input

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
External Input CMOS Clock	f _{CMOS}		0	—	25	MHz
Frequency (at EXTCLK pin)						
External Input CMOS Clock High Time	tсмоян		18	—	—	ns
External Input CMOS Clock Low Time	t _{CMOSL}		18	—	—	ns

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Note:						

- 1. The minimum SMBus frequency is limited by the maximum Clock High Period requirement of the SMBus specification.
- 2. The maximum I2C and SMBus frequencies are limited by the minimum Clock Low Period requirements of their respective specifications. The maximum frequency cannot be achieved with all combinations of oscillators and dividers available, but the effective frequency must not exceed 256 kHz.
- 3. Data setup and hold timing at 25 MHz or lower with EXTHOLD set to 1.
- 4. SMBus has a maximum requirement of 50 μs for Clock High Period. Operating frequencies lower than 40 kHz will be longer than 50 μs. I2C can support periods longer than 50 μs.

Table 4.17. SMBus Peripheral Timing Formulas (Master Mode)

Parameter	Symbol	Clocks
SMBus Operating Frequency	f _{SMB}	f _{CSO} / 3
Bus Free Time Between STOP and START Conditions	t _{BUF}	2 / f _{CSO}
Hold Time After (Repeated) START Condition	t _{HD:STA}	1 / f _{CSO}
Repeated START Condition Setup Time	t _{SU:STA}	2 / f _{CSO}
STOP Condition Setup Time	t _{SU:STO}	2 / f _{CSO}
Clock Low Period	t _{LOW}	1 / f _{CSO}
Clock High Period	tнigн	2 / f _{CSO}
Note:		

 $1.\,f_{CSO}$ is the SMBus peripheral clock source overflow frequency.

Figure 4.1. SMBus Peripheral Timing Diagram (Master Mode)

Figure 4.4. Typical V_{OL} Curves

5. Typical Connection Diagrams

5.1 Power

Figure 5.1 Power Connection Diagram on page 31 shows a typical connection diagram for the power pins of the EFM8SB1 devices.

Figure 5.1. Power Connection Diagram

5.2 Debug

The diagram below shows a typical connection diagram for the debug connections pins. The pin sharing resistors are only required if the functionality on the C2D (a GPIO pin) and the C2CK (RSTb) is routed to external circuitry. For example, if the RSTb pin is connected to an external switch with debouncing filter or if the GPIO sharing with the C2D pin is connected to an external circuit, the pin sharing resistors and connections to the debug adapter must be placed on the hardware. Otherwise, these components and connections can be omitted.

For more information on debug connections, see the example schematics and information available in AN127: "Pin Sharing Techniques for the C2 Interface." Application notes can be found on the Silicon Labs website (http://www.silabs.com/8bit-appnotes) or in Simplicity Studio.

Figure 5.2. Debug Connection Diagram

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
22	P0.2	Multifunction I/O	Yes	P0MAT.2	ADC0.2
				RTCOUT	CS0.2
				INT0.2	XTAL1
				INT1.2	
23	P0.1	Multifunction I/O	Yes	P0MAT.1	ADC0.1
				INT0.1	CS0.1
				INT1.1	AGND
24	P0.0	Multifunction I/O	Yes	P0MAT.0	CS0.0
				INT0.0	VREF
				INT1.0	
Center	GND	Ground			

Figure 6.3. EFM8SB1x-QSOP24 Pinout

Table 6.3.	Pin Definitions	for EFM8SB1x-	QSOP24
------------	------------------------	---------------	--------

Pin	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
Number					
1	P0.2	Multifunction I/O	Yes	P0MAT.2	ADC0.2
				RTCOUT	CS0.2
				INT0.2	XTAL1
				INT1.2	
2	P0.1	Multifunction I/O	Yes	P0MAT.1	ADC0.1
				INT0.1	CS0.1
				INT1.1	AGND

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
23	P0.4	Multifunction I/O	Yes	P0MAT.4	ADC0.4
				INT0.4	CS0.4
				INT1.4	
24	P0.3	Multifunction I/O	Yes	P0MAT.3	ADC0.3
				EXTCLK	CS0.3
				WAKEOUT	XTAL2
				INT0.3	
				INT1.3	

7.3 CSP16 Package Marking

Figure 7.3. CSP16 Package Marking

The package marking consists of:

- PPPP The part number designation.
- TTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.

Dimension	Min	Мах				
Note:						
1. All dimensions shown are in millimeters	(mm) unless otherwise noted.					
2. Dimensioning and Tolerancing is per the	2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.					
3. This Land Pattern Design is based on the IPC-7351 guidelines.						
4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad.						
5. A stainless steel, laser-cut and electro-p	5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.					
6. The stencil thickness should be 0.125 mm (5 mils).						
7. The ratio of stencil aperture to land pad size should be 1:1 for the perimeter pads.						
8. A 2x2 array of 0.75 mm openings on a 0.95 mm pitch should be used for the center pad to assure proper paste volume.						
9. A No-Clean, Type-3 solder paste is recommended.						

10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

8.3 QFN20 Package Marking

Figure 8.3. QFN20 Package Marking

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).

9. QFN24 Package Specifications

9.1 QFN24 Package Dimensions

Figure 9.1. QFN24 Package Drawing

Table 9 1	OFN24	Package	Dimensions
	QI 1124	Fachage	Dimensions

Dimension	Min	Тур	Мах	
A	0.70	0.75	0.80	
A1	0.00	—	0.05	
b	0.18	0.25	0.30	
D	4.00 BSC			
D2	2.35 2.45 2.55			
е	0.50 BSC			
E	4.00 BSC			
E2	2.35 2.45 2.55			
L	0.30	0.40	0.50	
ааа	0.10			
bbb	0.10			
ссс	_	—	0.08	
ddd	_	—	0.10	

Max

Note:

Dimension

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.
- 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 5. The stencil thickness should be 0.125 mm (5 mils).
- 6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.
- 7. A 2 x 2 array of 1.10 mm x 1.10 mm openings on 1.30 mm pitch should be used for the center ground pad.
- 8. A No-Clean, Type-3 solder paste is recommended.
- 9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

9.3 QFN24 Package Marking

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).

Min	Тур	Мах	
	0.20		
0.18			
	0.10		
	0.10		
	Min	Min Typ 0.20 0.18 0.10 0.10	

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC outline MO-137, variation AE.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

11. Revision History

11.1 Revision 1.3
September 23, 2016
Added A-grade parts.
Added 5.2 Debug.
Added bootloader pinout information and a reference to *AN945: EFM8 Factory Bootloader User Guide* in 3.10 Bootloader.
Added specifications for 4.1.16 SMBus.
Added CRC Calculation Time to 4.1.4 Flash Memory.
Added a note linking to the Typical VOH and VOL Performance graphs in 4.1.15 Port I/O.
Added the t_{POR} and adjusted the V_{POR} falling specifications in 4.1.3 Reset and Supply Monitor.
Added a note to 3.1 Introduction referencing the Reference Manual.
Added a note to 3.2 Power to clarify that entering Sleep may disconnect the active debug session.
Specified that the UART has a 1-byte FIFO in 3.6 Communications and Other Digital Peripherals.

11.2 Revision 1.2

Added CSP16 package.

Updated the "C2D / P2.0" pin on the QSOP24 pinout diagram to "C2D / P2.7."

Added crystal oscillator drive current typical values to Table 4.7 Crystal Oscillator on page 18.

Corrected the number of capacitive sense channels for 24- and 20-pin packages in Table 4.14 Capacitive Sense (CS0) on page 24.

Corrected E dimension shown in Figure 8.2 QFN20 PCB Land Pattern Drawing on page 50.

Added more information to 3.10 Bootloader.

11.3 Revision 1.1

Initial release.

Simplicity Studio

One-click access to MCU and wireless tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux!

Supp

Support and Community community.silabs.com

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

http://www.silabs.com