E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	25MHz
Connectivity	I ² C, SMBus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	13
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 9x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-UFQFN Exposed Pad
Supplier Device Package	20-QFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm8sb10f8a-a-qfn20r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3. System Overview

3.1 Introduction

Figure 3.1. Detailed EFM8SB1 Block Diagram

This section describes the EFM8SB1 family at a high level. For more information on each module including register definitions, see the EFM8SB1 Reference Manual.

Timers (Timer 0, Timer 1, Timer 2, and Timer 3)

Several counter/timers are included in the device: two are 16-bit counter/timers compatible with those found in the standard 8051, and the rest are 16-bit auto-reload timers for timing peripherals or for general purpose use. These timers can be used to measure time intervals, count external events and generate periodic interrupt requests. Timer 0 and Timer 1 are nearly identical and have four primary modes of operation. The other timers offer both 16-bit and split 8-bit timer functionality with auto-reload and capture capabilities.

Timer 0 and Timer 1 include the following features:

- Standard 8051 timers, supporting backwards-compatibility with firmware and hardware.
- Clock sources include SYSCLK, SYSCLK divided by 12, 4, or 48, the External Clock divided by 8, or an external pin.
- · 8-bit auto-reload counter/timer mode
- 13-bit counter/timer mode
- 16-bit counter/timer mode
- Dual 8-bit counter/timer mode (Timer 0)

Timer 2 and Timer 3 are 16-bit timers including the following features:

- Clock sources include SYSCLK, SYSCLK divided by 12, or the External Clock divided by 8.
- · 16-bit auto-reload timer mode
- Dual 8-bit auto-reload timer mode
- · Comparator 0 or RTC0 capture (Timer 2)
- RTC0 or EXTCLK/8 capture (Timer 3)

Watchdog Timer (WDT0)

The device includes a programmable watchdog timer (WDT) integrated within the PCA0 peripheral. A WDT overflow forces the MCU into the reset state. To prevent the reset, the WDT must be restarted by application software before overflow. If the system experiences a software or hardware malfunction preventing the software from restarting the WDT, the WDT overflows and causes a reset. Following a reset, the WDT is automatically enabled and running with the default maximum time interval. If needed, the WDT can be disabled by system software. The state of the RSTb pin is unaffected by this reset.

The Watchdog Timer integrated in the PCA0 peripheral has the following features:

- · Programmable timeout interval
- Runs from the selected PCA clock source
- · Automatically enabled after any system reset

3.6 Communications and Other Digital Peripherals

Universal Asynchronous Receiver/Transmitter (UART0)

UART0 is an asynchronous, full duplex serial port offering modes 1 and 3 of the standard 8051 UART. Enhanced baud rate support allows a wide range of clock sources to generate standard baud rates. Received data buffering allows UART0 to start reception of a second incoming data byte before software has finished reading the previous data byte.

The UART module provides the following features:

- · Asynchronous transmissions and receptions.
- Baud rates up to SYSCLK/2 (transmit) or SYSCLK/8 (receive).
- 8- or 9-bit data.
- · Automatic start and stop generation.
- Single-byte FIFO on transmit and receive.

Serial Peripheral Interface (SPI0)

The serial peripheral interface (SPI) module provides access to a flexible, full-duplex synchronous serial bus. The SPI can operate as a master or slave device in both 3-wire or 4-wire modes, and supports multiple masters and slaves on a single SPI bus. The slave-select (NSS) signal can be configured as an input to select the SPI in slave mode, or to disable master mode operation in a multi-master environment, avoiding contention on the SPI bus when more than one master attempts simultaneous data transfers. NSS can also be configured as a firmware-controlled chip-select output in master mode, or disable to reduce the number of pins required. Additional general purpose port I/O pins can be used to select multiple slave devices in master mode.

The SPI module includes the following features:

- · Supports 3- or 4-wire operation in master or slave modes.
- Supports external clock frequencies up to SYSCLK / 2 in master mode and SYSCLK / 10 in slave mode.
- Support for four clock phase and polarity options.
- · 8-bit dedicated clock clock rate generator.
- · Support for multiple masters on the same data lines.

System Management Bus / I2C (SMB0)

The SMBus I/O interface is a two-wire, bi-directional serial bus. The SMBus is compliant with the System Management Bus Specification, version 1.1, and compatible with the l^2C serial bus.

The SMBus module includes the following features:

- Standard (up to 100 kbps) and Fast (400 kbps) transfer speeds.
- · Support for master, slave, and multi-master modes.
- Hardware synchronization and arbitration for multi-master mode.
- · Clock low extending (clock stretching) to interface with faster masters.
- · Hardware support for 7-bit slave and general call address recognition.
- · Firmware support for 10-bit slave address decoding.
- · Ability to inhibit all slave states.
- Programmable data setup/hold times.

16-bit CRC (CRC0)

The cyclic redundancy check (CRC) module performs a CRC using a 16-bit polynomial. CRC0 accepts a stream of 8-bit data and posts the 16-bit result to an internal register. In addition to using the CRC block for data manipulation, hardware can automatically CRC the flash contents of the device.

The CRC module is designed to provide hardware calculations for flash memory verification and communications protocols. The CRC module supports the standard CCITT-16 16-bit polynomial (0x1021), and includes the following features:

- Support for CCITT-16 polynomial
- Byte-level bit reversal
- Automatic CRC of flash contents on one or more 256-byte blocks
- · Initial seed selection of 0x0000 or 0xFFFF

4.1.2 Power Consumption

Table 4.2.	Power	Consum	ption
------------	-------	--------	-------

Parameter	Symbol	Conditions	Min	Тур	Мах	Units
Digital Supply Current						
Normal Mode supply current - Full speed with code executing from	I _{DD}	V _{DD} = 1.8–3.6 V, f _{SYSCLK} = 24.5 MHz	_	3.6	4.5	mA
Tiash 0, 4, 0		V _{DD} = 1.8–3.6 V, f _{SYSCLK} = 20 MHz	—	3.1	_	mA
		V _{DD} = 1.8–3.6 V, f _{SYSCLK} = 32.768 kHz	—	84	_	μA
Normal Mode supply current fre- quency sensitivity ^{1, 3, 5}	IDDFREQ	V _{DD} = 1.8–3.6 V, T = 25 °C, f _{SYSCLK} < 14 MHz	_	174	_	µA/MHz
		V _{DD} = 1.8–3.6 V, T = 25 °C, f _{SYSCLK} > 14 MHz	_	88	_	µA/MHz
Idle Mode supply current - Core halted with peripherals running ^{4 , 6}	I _{DD}	V _{DD} = 1.8–3.6 V, f _{SYSCLK} = 24.5 MHz	_	1.8	3.0	mA
		V _{DD} = 1.8–3.6 V, f _{SYSCLK} = 20 MHz		1.4	_	mA
		V _{DD} = 1.8–3.6 V, f _{SYSCLK} = 32.768 kHz	_	82	_	μA
Idle Mode Supply Current Frequen- cy Sensitivity ^{1 ,6}	IDDFREQ	V _{DD} = 1.8–3.6 V, T = 25 °C		67		µA/MHz
Suspend Mode Supply Current	I _{DD}	V _{DD} = 1.8–3.6 V	—	77	—	μA
Sleep Mode Supply Current with	I _{DD}	1.8 V, T = 25 °C		0.60	_	μA
crystal		3.6 V, T = 25 °C	_	0.80	_	μA
		1.8 V, T = 85 °C	—	0.80	—	μA
		3.6 V, T = 85 °C	—	1.00	—	μA
Sleep Mode Supply Current with	I _{DD}	1.8 V, T = 25 °C	—	0.30	_	μA
RIC running from Internal LFO		3.6 V, T = 25 °C	—	0.50	_	μA
		1.8 V, T = 85 °C	—	0.50	_	μA
		3.6 V, T = 85 °C	—	0.80	—	μA
Sleep Mode Supply Current (RTC	I _{DD}	1.8 V, T = 25 °C	—	0.05	—	μA
οπ)		3.6 V, T = 25 °C	—	0.08	_	μA
		1.8 V, T = 85 °C	—	0.20	_	μA
		3.6 V, T = 85 °C		0.28		μA
V _{DD} Monitor Supply Current	I _{VMON}		—	7		μA
Oscillator Supply Current	I _{HFOSC0}	25 °C	—	300	—	μA

Parameter	Symbol	Conditions	Min	Тур	Мах	Units
ADC0 Always-on Power Supply	I _{ADC}	300 ksps, 10-bit conversions or	—	740	_	μA
Current ⁷		75 ksps, 12-bit conversions				
		Normal bias settings				
		V _{DD} = 3.0 V				
		150 ksps, 10-bit conversions or	_	400		μA
		37.5 ksps 12-bit conversions				
		Low power bias settings				
		V _{DD} = 3.0 V				
Comparator 0 (CMP0) Supply Cur-	I _{CMP}	CPMD = 11	_	0.4	_	μA
rent		CPMD = 10	_	2.6		μA
		CPMD = 01		8.8		μA
		CPMD = 00	_	23		μA
Internal Fast-Settling 1.65V ADC0	I _{VREFFS}	Normal Power Mode	_	260		μA
Reference, Always-on ⁸		Low Power Mode	_	140		μA
Temp sensor Supply Current	I _{TSENSE}		—	35	—	μA
Capacitive Sense Module (CS0)	I _{CS0}	CS module bias current, 25 °C	_	50	60	μA
Supply Current		CS module alone, maximum code output, 25 °C	_	90	125	μA
		Wake-on-CS threshold (suspend mode with regulator and CS mod-ule on) ⁹	_	130	180	μA
Programmable Current Reference (IREF0) Supply Current ¹⁰	I _{IREF0}	Current Source, Either Power Mode, Any Output Code	_	10	_	μA
		Low Power Mode, Current Sink	—	1	—	μA
		IREF0DAT = 000001				
		Low Power Mode, Current Sink	—	11	—	μA
		IREF0DAT = 111111				
		High Current Mode, Current Sink	_	12	_	μA
		IREF0DAT = 000001				
		High Current Mode, Current Sink	_	81	—	μA
		IREF0DAT = 111111				

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Signal-to-Noise Plus Distortion	SNDR	12 Bit Mode	62	65	—	dB
		10 Bit Mode	54	58	—	dB
Total Harmonic Distortion (Up to	THD	12 Bit Mode	—	-76	—	dB
5th Harmonic)		10 Bit Mode	—	-73	—	dB
Spurious-Free Dynamic Range	SFDR	12 Bit Mode	_	82	_	dB
		10 Bit Mode	—	75	—	dB

Note:

1. Absolute input pin voltage is limited by the V_{DD} supply.

2. INL and DNL specifications for 12-bit mode do not include the first or last four ADC codes.

3. The maximum code in 12-bit mode is 0xFFFC. The Full Scale Error is referenced from the maximum code.

4.1.10 Voltage Reference

Table 4.10. Voltage Reference

Parameter	Symbol Test Condition		Min	Тур	Max	Unit			
Internal Fast Settling Reference									
Output Voltage	V _{REFFS}		1.62	1.65	1.68	V			
Temperature Coefficient	TC _{REFFS}			50		ppm/°C			
Turn-on Time	t _{REFFS}		_	_	1.5	μs			
Power Supply Rejection	PSRR _{REF}		—	400	—	ppm/V			
	FS								
External Reference									
Input Voltage	V _{EXTREF}		1	_	V _{DD}	V			
Input Current	I _{EXTREF}	Sample Rate = 300 ksps; VREF = 3.0 V	_	5.25	_	μA			

4.1.11 Temperature Sensor

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit		
Offset	V _{OFF}	T _A = 0 °C	—	940	_	mV		
Offset Error ¹	E _{OFF}	T _A = 0 °C	—	18	—	mV		
Slope	М		_	3.40	—	mV/°C		
Slope Error ¹	E _M		—	40	—	µV/°C		
Linearity			_	±1	_	°C		
Turn-on Time	t _{PWR}		—	1.8	—	μs		
Note: 1. Represents one standard deviation from the mean.								

Table 4.11. Temperature Sensor

4.1.15 Port I/O

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Output High Voltage (High Drive) ¹	V _{OH}	I _{OH} = –3 mA	V _{DD} – 0.7	_	—	V
Output Low Voltage (High Drive) ¹	V _{OL}	I _{OL} = 8.5 mA	—	_	0.6	V
Output High Voltage (Low Drive) ¹	V _{OH}	I _{OH} = -1 mA	V _{DD} – 0.7	_	—	V
Output Low Voltage (Low Drive) ¹	V _{OL}	I _{OL} = 1.4 mA	—	_	0.6	V
Input High Voltage	VIH	V _{DD} = 2.0 to 3.6 V	V _{DD} – 0.6	—	—	V
		V _{DD} = 1.8 to 2.0 V	0.7 x V _{DD}	_	—	V
Input Low Voltage	VIL	V _{DD} = 2.0 to 3.6 V	—		0.6	V
		V _{DD} = 1.8 to 2.0 V	—	—	0.3 x V _{DD}	V
Weak Pull-Up Current	I _{PU}	V _{DD} = 1.8 V	—	-4	—	μA
		V _{IN} = 0 V				
		V _{DD} = 3.6 V	-35	-20	—	μA
		V _{IN} = 0 V				
Input Leakage	I _{LK}	Weak pullup disabled or pin in ana- log mode	-1	_	1	μA
Note:						

Table 4.15. Port I/O

1. See Figure 4.3 Typical V_{OH} Curves on page 29 and Figure 4.4 Typical V_{OL} Curves on page 30 for more information.

4.2 Thermal Conditions

Table 4.18. Thermal Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Thermal Resistance*	θ _{JA}	QFN-24 Packages	—	35	—	°C/W
		QFN-20 Packages	—	60	_	°C/W
		QSOP-24 Packages	—	65	_	°C/W
Note: 1. Thermal resistance assumes a	multi-layer F	PCB with any exposed pad soldered to	a PCB pad			

4.3 Absolute Maximum Ratings

Stresses above those listed in Table 4.19 Absolute Maximum Ratings on page 28 may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx.

Parameter	Symbol	Test Condition	Min	Max	Unit			
Ambient Temperature Under Bias	T _{BIAS}		-55	125	°C			
Storage Temperature	T _{STG}		-65	150	°C			
Voltage on V _{DD}	V _{DD}		GND-0.3	4.0	V			
Voltage on I/O pins or RSTb	V _{IN}		GND-0.3	V _{DD} + 0.3	V			
Total Current Sunk into Supply Pin	I _{VDD}		—	400	mA			
Total Current Sourced out of Ground Pin	I _{GND}		400	—	mA			
Current Sourced or Sunk by Any I/O Pin or RSTb	I _{IO}		-100	100	mA			
Maximum Total Current through all Port Pins	Іютот		—	200	mA			
Operating Junction Temperature	TJ		-40	105	°C			
Exposure to maximum rating conditions for extended periods may affect device reliability.								

Table 4.19. Absolute Maximum Ratings

5. Typical Connection Diagrams

5.1 Power

Figure 5.1 Power Connection Diagram on page 31 shows a typical connection diagram for the power pins of the EFM8SB1 devices.

Figure 5.1. Power Connection Diagram

5.2 Debug

The diagram below shows a typical connection diagram for the debug connections pins. The pin sharing resistors are only required if the functionality on the C2D (a GPIO pin) and the C2CK (RSTb) is routed to external circuitry. For example, if the RSTb pin is connected to an external switch with debouncing filter or if the GPIO sharing with the C2D pin is connected to an external circuit, the pin sharing resistors and connections to the debug adapter must be placed on the hardware. Otherwise, these components and connections can be omitted.

For more information on debug connections, see the example schematics and information available in AN127: "Pin Sharing Techniques for the C2 Interface." Application notes can be found on the Silicon Labs website (http://www.silabs.com/8bit-appnotes) or in Simplicity Studio.

Figure 5.2. Debug Connection Diagram

6. Pin Definitions

6.1 EFM8SB1x-QFN20 Pin Definitions

Figure 6.1. EFM8SB1x-QFN20 Pinout

Table 6.1.	Pin	Definitions	for E	FM8SB1x	-QFN20
------------	-----	-------------	-------	---------	--------

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
1	P0.1	Multifunction I/O	Yes	P0MAT.1	ADC0.1
				INT0.1	CS0.1
				INT1.1	AGND
2	P0.0	Multifunction I/O	Yes	P0MAT.0	CS0.0
				INT0.0	VREF
				INT1.0	

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
20	P0.2	Multifunction I/O	Yes	P0MAT.2	ADC0.2
				RTCOUT	CS0.2
				INT0.2	XTAL1
				INT1.2	
Center	GND	Ground			

Figure 6.2. EFM8SB1x-QFN24 Pinout

Table 6.2.	Pin Definitions for EFM8SB1x-QFN24
10010 0.2.	

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
1	N/C	No Connection			
2	GND	Ground			
3	VDD	Supply Power Input			
4	N/C	No Connection			
5	N/C	No Connection			

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
22	P0.2	Multifunction I/O	Yes	P0MAT.2	ADC0.2
				RTCOUT	CS0.2
				INT0.2	XTAL1
				INT1.2	
23	P0.1	Multifunction I/O	Yes	P0MAT.1	ADC0.1
				INT0.1	CS0.1
				INT1.1	AGND
24	P0.0	Multifunction I/O	Yes	P0MAT.0	CS0.0
				INT0.0	VREF
				INT1.0	
Center	GND	Ground			

Figure 6.3. EFM8SB1x-QSOP24 Pinout

Table 6.3.	Pin Definitions	for EFM8SB1x-	QSOP24
------------	------------------------	---------------	--------

Pin	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
Number					
1	P0.2	Multifunction I/O	Yes	P0MAT.2	ADC0.2
				RTCOUT	CS0.2
				INT0.2	XTAL1
				INT1.2	
2	P0.1	Multifunction I/O	Yes	P0MAT.1	ADC0.1
				INT0.1	CS0.1
				INT1.1	AGND

8. QFN20 Package Specifications

8.1 QFN20 Package Dimensions

Table 8.1. QFN20 Package Dimensions

Dimension	Min	Тур	Мах	
A	0.50	0.55	0.60	
A1	0.00	—	0.05	
b	0.20	0.25	0.30	
b1	0.275	0.325	0.375	
D	3.00 BSC			
D2	1.6	1.70	1.80	
е	0.50 BSC			
e1	0.513 BSC			
E	3.00 BSC			
E2	1.60	1.70	1.80	
L	0.35	0.40	0.45	

Dimension	Min	Тур	Мах
L1	0.00	—	0.10
ааа	_	0.10	_
bbb	—	0.10	—
ddd	_	0.05	—
eee	_	_	0.08

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing is based upon JEDEC Solid State Product Outline MO-248 but includes custom features which are toleranced per supplier designation.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Dimension	Min	Тур	Мах				
Note:							
1. All dimensions shown are in millimeters (mm) unless otherwise noted.							
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.							
3. This drawing conforms to JEDEC Solid State Outline MO-220.							
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.							

10. QSOP24 Package Specifications

10.1 QSOP24 Package Dimensions

Figure 10.1. QSOP24 Package Drawing

Table 10.1. QSOP24 Package Dimensions

Dimension	Min	Тур	Мах	
A	—	—	1.75	
A1	0.10	—	0.25	
b	0.20	_	0.30	
c	0.10	—	0.25	
D	8.65 BSC			
E	6.00 BSC			
E1	3.90 BSC			
e	0.635 BSC			
L	0.40 — 1.27			
theta	0°	8°		

Min	Тур	Мах	
0.20			
0.18			
	0.10		
	0.10		
	Min	Min Typ 0.20 0.18 0.10 0.10	

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC outline MO-137, variation AE.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.