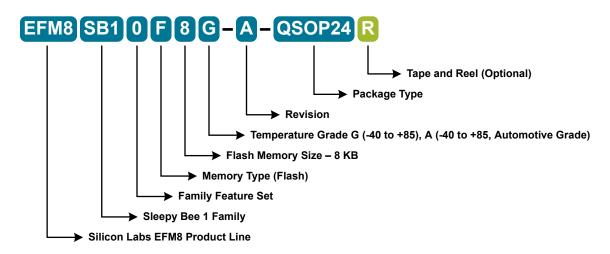


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

2014110	
Product Status	Active
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	25MHz
Connectivity	I ² C, SMBus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	13
Program Memory Size	8KB (8K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	24-WFQFN Exposed Pad
Supplier Device Package	24-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm8sb10f8a-a-qfn24

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2. Ordering Information

Figure 2.1. EFM8SB1 Part Numbering

All EFM8SB1 family members have the following features:

- CIP-51 Core running up to 25 MHz
- Three Internal Oscillators (24.5 MHz, 20 MHz, and 16 kHz)
- SMBus / I2C
- SPI
- UART
- · 3-Channel Programmable Counter Array (PWM, Clock Generation, Capture/Compare)
- 4 16-bit Timers
- Analog Comparator
- 6-bit current sourc reference
- · 12-bit Analog-to-Digital Converter with integrated multiplexer, voltage reference, and temperature sensor
- 16-bit CRC Unit
- AEC-Q100 qualified (Grade 3)
- · Pre-loaded UART bootloader

In addition to these features, each part number in the EFM8SB1 family has a set of features that vary across the product line. The product selection guide shows the features available on each family member.

Table 2.1. Product Selection Guide

Ordering Part Number	Flash Memory (kB)	RAM (Bytes)	Digital Port I/Os (Total)	ADC0 Channels	Capacitive Touch Inputs	Pb-free (RoHS Compliant)	Temperature Range	Package
EFM8SB10F8G-A-QSOP24	8	512	17	10	14	Yes	-40 to +85 C	QSOP24
EFM8SB10F8G-A-QFN24	8	512	17	10	14	Yes	-40 to +85 C	QFN24
EFM8SB10F8G-A-QFN20	8	512	16	9	13	Yes	-40 to +85 C	QFN20
EFM8SB10F8G-A-CSP16	8	512	13	9	12	Yes	-40 to +85 C	CSP16
EFM8SB10F4G-A-QFN20	4	512	16	9	13	Yes	-40 to +85 C	QFN20

Ordering Part Number	Flash Memory (kB)	RAM (Bytes)	Digital Port I/Os (Total)	ADC0 Channels	Capacitive Touch Inputs	Pb-free (RoHS Compliant)	Temperature Range	Package
EFM8SB10F2G-A-QFN20	2	256	16	9	13	Yes	-40 to +85 C	QFN20
EFM8SB10F8A-A-QFN24	8	512	17	10	14	Yes	-40 to +85 C	QFN24
EFM8SB10F8A-A-QFN20	8	512	16	9	13	Yes	-40 to +85 C	QFN20

The A-grade (i.e. EFM8SB10F8A-A-QFN20) devices receive full automotive quality production status, including AEC-Q100 qualification, registration with International Material Data System (IMDS), and Part Production Approval Process (PPAP) documentation. PPAP documentation is available at www.silabs.com with a registered and NDA approved user account.

3.2 Power

All internal circuitry draws power from the VDD supply pin. External I/O pins are powered from the VIO supply voltage (or VDD on devices without a separate VIO connection), while most of the internal circuitry is supplied by an on-chip LDO regulator. Control over the device power can be achieved by enabling/disabling individual peripherals as needed. Each analog peripheral can be disabled when not in use and placed in low power mode. Digital peripherals, such as timers and serial buses, have their clocks gated off and draw little power when they are not in use.

Table 3.1. Power Modes

Power Mode	Details	Mode Entry	Wake-Up Sources
Normal	Core and all peripherals clocked and fully operational	—	—
Idle	 Core halted All peripherals clocked and fully operational Code resumes execution on wake event 	Set IDLE bit in PCON0	Any interrupt
Suspend	 Core and digital peripherals halted Internal oscillators disabled Code resumes execution on wake event 	 Switch SYSCLK to HFOSC0 or LPOSC0 Set SUSPEND bit in PMU0CF 	 RTC0 Alarm Event RTC0 Fail Event CS0 Interrupt Port Match Event Comparator 0 Rising Edge
Stop	 All internal power nets shut down Pins retain state Exit on any reset source 	Set STOP bit in PCON0	Any reset source
Sleep ¹	 Most internal power nets shut down Select circuits remain powered Pins retain state All RAM and SFRs retain state Code resumes execution on wake event 	 Disable unused ana- log peripherals Set SLEEP bit in PMU0CF 	 RTC0 Alarm Event RTC0 Fail Event Port Match Event Comparator 0 Rising Edge

1. Entering Sleep may disconnect the active debug session.

3.3 I/O

Digital and analog resources are externally available on the device's multi-purpose I/O pins. Port pins P0.0-P1.7 can be defined as general-purpose I/O (GPIO), assigned to one of the internal digital resources through the crossbar or dedicated channels, or assigned to an analog function. Port pin P2.7 can be used as GPIO. Additionally, the C2 Interface Data signal (C2D) is shared with P2.7.

- Up to 17 multi-functions I/O pins, supporting digital and analog functions.
- Flexible priority crossbar decoder for digital peripheral assignment.
- Two drive strength settings for each pin.
- Two direct-pin interrupt sources with dedicated interrupt vectors (INT0 and INT1).
- · Up to 16 direct-pin interrupt sources with shared interrupt vector (Port Match).

Low Current Comparator (CMP0)

An analog comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. External input connections to device I/O pins and internal connections are available through separate multiplexers on the positive and negative inputs. Hysteresis, response time, and current consumption may be programmed to suit the specific needs of the application.

The comparator module includes the following features:

- Input options in addition to the pins:
 - Capacitive Sense Comparator output.
 - VDD.
 - · VDD divided by 2.
 - · Internal connection to LDO output.
 - Direct connection to GND.
- · Synchronous and asynchronous outputs can be routed to pins via crossbar.
- Programmable hysteresis between 0 and ±20 mV.
- · Programmable response time.
- Interrupts generated on rising, falling, or both edges.

3.8 Reset Sources

Reset circuitry allows the controller to be easily placed in a predefined default condition. On entry to this reset state, the following occur:

- The core halts program execution.
- · Module registers are initialized to their defined reset values unless the bits reset only with a power-on reset.
- External port pins are forced to a known state.
- · Interrupts and timers are disabled.

All registers are reset to the predefined values noted in the register descriptions unless the bits only reset with a power-on reset. The contents of RAM are unaffected during a reset; any previously stored data is preserved as long as power is not lost. The Port I/O latches are reset to 1 in open-drain mode. Weak pullups are enabled during and after the reset. For Supply Monitor and power-on resets, the RSTb pin is driven low until the device exits the reset state. On exit from the reset state, the program counter (PC) is reset, and the system clock defaults to an internal oscillator. The Watchdog Timer is enabled, and program execution begins at location 0x0000.

Reset sources on the device include the following:

- Power-on reset
- · External reset pin
- · Comparator reset
- · Software-triggered reset
- Supply monitor reset (monitors VDD supply)
- · Watchdog timer reset
- · Missing clock detector reset
- Flash error reset
- · RTC0 alarm or oscillator failure

3.9 Debugging

The EFM8SB1 devices include an on-chip Silicon Labs 2-Wire (C2) debug interface to allow flash programming and in-system debugging with the production part installed in the end application. The C2 interface uses a clock signal (C2CK) and a bi-directional C2 data signal (C2D) to transfer information between the device and a host system. See the C2 Interface Specification for details on the C2 protocol.

4. Electrical Specifications

4.1 Electrical Characteristics

All electrical parameters in all tables are specified under the conditions listed in Table 4.1 Recommended Operating Conditions on page 13, unless stated otherwise.

Table 4.1. Recommended Operating Conditions

4.1.1 Recommended Operating Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Operating Supply Voltage on VDD	V _{DD}		1.8	2.4	3.6	V
Minimum RAM Data Retention	V _{RAM}	Not in Sleep Mode	_	1.4	_	V
Voltage on VDD ¹		Sleep Mode	_	0.3	0.5	V
System Clock Frequency	f _{SYSCLK}		0	—	25	MHz
Operating Ambient Temperature	T _A		-40	—	85	°C
Note:	1		1	1		

1. All voltages with respect to GND.

4.1.4 Flash Memory

Table 4.4. Flash Memory

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Write Time ¹	t _{WRITE}	One Byte	57	64	71	μs
Erase Time ¹	t _{ERASE}	One Page	28	32	36	ms
Endurance (Write/Erase Cycles)	N _{WE}		20 k	100 k	—	Cycles
CRC Calculation Time	t _{CRC}	One 256-Byte Block		21.5	_	μs
		SYSCLK = 24.5 MHz				

Note:

1. Does not include sequencing time before and after the write/erase operation, which may be multiple SYSCLK cycles.

2. Data Retention Information is published in the Quarterly Quality and Reliability Report.

4.1.5 Power Management Timing

Table 4.5. Power Management Timing

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Idle Mode Wake-up Time	t _{IDLEWK}		2	_	3	SYSCLKs
Suspend Mode Wake-up Time	t _{SUS-} PENDWK	CLKDIV = 0x00 Low Power or Precision Osc.	_	400	_	ns
Sleep Mode Wake-up Time	t _{SLEEPWK}			2		μs

4.1.6 Internal Oscillators

Table 4.6. Internal Oscillators

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit			
High Frequency Oscillator 0 (24.5 MHz)									
Oscillator Frequency	fHFOSC0	Full Temperature and Supply Range	24	24.5	25	MHz			
Low Power Oscillator (20 MHz)	I			1	1	1			
Oscillator Frequency	f _{LPOSC}	Full Temperature and Supply Range	18	20	22	MHz			
Low Frequency Oscillator (16.4	kHz internal	RTC oscillator)							
Oscillator Frequency	f _{LFOSC}	Full Temperature and Supply Range	13.1	16.4	19.7	kHz			

4.1.7 Crystal Oscillator

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Crystal Frequency	f _{XTAL}		0.02	—	25	MHz
Crystal Drive Current	I _{XTAL}	XFCN = 0	_	0.5	_	μA
		XFCN = 1	_	1.5	_	μA
		XFCN = 2	_	4.8	_	μA
		XFCN = 3	—	14	_	μA
		XFCN = 4	_	40	_	μA
		XFCN = 5	—	120	_	μA
		XFCN = 6	—	550	_	μA
		XFCN = 7	_	2.6	—	mA

Table 4.7. Crystal Oscillator

4.1.8 External Clock Input

Table 4.8. External Clock Input

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
External Input CMOS Clock	f _{CMOS}		0	_	25	MHz
Frequency (at EXTCLK pin)						
External Input CMOS Clock High Time	t _{CMOSH}		18	_	_	ns
External Input CMOS Clock Low Time	t _{CMOSL}		18		_	ns

Table 4.9. ADC

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Resolution	N _{bits}	12 Bit Mode		12		Bits
		10 Bit Mode	10			Bits
Throughput Rate	f _S	12 Bit Mode	_	_	75	ksps
		10 Bit Mode	_	_	300	ksps
Tracking Time	t _{TRK}	Initial Acquisition	1.5	_	_	us
		Subsequent Acquisitions (DC in- put, burst mode)	1.1	_	-	us
Power-On Time	t _{PWR}		1.5	_	_	μs
SAR Clock Frequency	f _{SAR}	High Speed Mode,	_	_	8.33	MHz
		Low Power Mode	_	_	4.4	MHz
Conversion Time	T _{CNV}	10-Bit Conversion	13	_	_	Clocks
Sample/Hold Capacitor	C _{SAR}	Gain = 1		16	_	pF
		Gain = 0.5	_	13	_	pF
Input Pin Capacitance	C _{IN}		_	20	_	pF
Input Mux Impedance	R _{MUX}		_	5	_	kΩ
Voltage Reference Range	V _{REF}		1	_	V _{DD}	V
Input Voltage Range ¹	V _{IN}	Gain = 1	0	_	V _{REF}	V
		Gain = 0.5	0	_	2 x V _{REF}	V
Power Supply Rejection Ratio	PSRR _{ADC}	Internal High Speed VREF	_	67	_	dB
		External VREF	_	74	_	dB
DC Performance				I		
Integral Nonlinearity	INL	12 Bit Mode	_	±1	±1.5	LSB
		10 Bit Mode	_	±0.5	±1	LSB
Differential Nonlinearity (Guaran-	DNL	12 Bit Mode	_	±0.8	±1	LSB
teed Monotonic)		10 Bit Mode	_	±0.5	±1	LSB
Offset Error	E _{OFF}	12 Bit Mode, VREF = 1.65 V	-3	0	3	LSB
		10 Bit Mode, VREF = 1.65 V	-2	0	2	LSB
Offset Temperature Coefficient	TC _{OFF}		_	0.004	_	LSB/°C
Slope Error	E _M	12 Bit Mode	_	±0.02	±0.1	%
		10 Bit Mode	_	±0.06	±0.24	%
Dynamic Performance 10 kHz Si	ne Wave Inp	ut 1dB below full scale, Max throug	jhput	1	1	
Signal-to-Noise	SNR	12 Bit Mode	62	65	_	dB
		10 Bit Mode	54	58	_	dB

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Signal-to-Noise Plus Distortion	SNDR	12 Bit Mode	62	65	_	dB
		10 Bit Mode	54	58	_	dB
Total Harmonic Distortion (Up to	THD	12 Bit Mode	_	-76	_	dB
5th Harmonic)		10 Bit Mode	_	-73	_	dB
Spurious-Free Dynamic Range	SFDR	12 Bit Mode	_	82	_	dB
		10 Bit Mode	_	75	_	dB

Note:

1. Absolute input pin voltage is limited by the V_{DD} supply.

2. INL and DNL specifications for 12-bit mode do not include the first or last four ADC codes.

3. The maximum code in 12-bit mode is 0xFFFC. The Full Scale Error is referenced from the maximum code.

4.1.10 Voltage Reference

Table 4.10. Voltage Reference

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Internal Fast Settling Referen	ce					
Output Voltage	V _{REFFS}		1.62	1.65	1.68	V
Temperature Coefficient	TC _{REFFS}		_	50	_	ppm/°C
Turn-on Time	t _{REFFS}		—	_	1.5	μs
Power Supply Rejection	PSRR _{REF} FS		_	400	_	ppm/V
External Reference	I		I	1	1	1
Input Voltage	V _{EXTREF}		1	_	V _{DD}	V
Input Current	I _{EXTREF}	Sample Rate = 300 ksps; VREF = 3.0 V	—	5.25	—	μA

4.1.11 Temperature Sensor

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Offset	V _{OFF}	T _A = 0 °C	_	940	—	mV
Offset Error ¹	E _{OFF}	T _A = 0 °C	_	18	_	mV
Slope	М		_	3.40	_	mV/°C
Slope Error ¹	E _M		_	40	_	µV/°C
Linearity			_	±1	—	°C
Turn-on Time	t _{PWR}		_	1.8	—	μs
Note: 1. Represents one star	ndard deviation from th	e mean.		1	1	1

Table 4.11. Temperature Sensor

4.2 Thermal Conditions

Table 4.18. Thermal Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Thermal Resistance*	θ _{JA}	QFN-24 Packages	_	35	_	°C/W
		QFN-20 Packages	_	60	_	°C/W
		QSOP-24 Packages	_	65	_	°C/W
Note: 1. Thermal resistance assume	es a multi-layer l	PCB with any exposed pad soldered to	a PCB pad		1	1

4.3 Absolute Maximum Ratings

Stresses above those listed in Table 4.19 Absolute Maximum Ratings on page 28 may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx.

Parameter	Symbol	Test Condition	Min	Мах	Unit
Ambient Temperature Under Bias	T _{BIAS}		-55	125	°C
Storage Temperature	T _{STG}		-65	150	°C
Voltage on V _{DD}	V _{DD}		GND-0.3	4.0	V
Voltage on I/O pins or RSTb	V _{IN}		GND-0.3	V _{DD} + 0.3	V
Total Current Sunk into Supply Pin	I _{VDD}		_	400	mA
Total Current Sourced out of Ground Pin	I _{GND}		400	—	mA
Current Sourced or Sunk by Any I/O Pin or RSTb	I _{IO}		-100	100	mA
Maximum Total Current through all Port Pins	I _{IOTOT}		_	200	mA
Operating Junction Temperature	TJ		-40	105	°C

Table 4.19. Absolute Maximum Ratings

5.3 Other Connections

Other components or connections may be required to meet the system-level requirements. Application note, "AN203: 8-bit MCU Printed Circuit Board Design Notes", contains detailed information on these connections. Application Notes can be accessed on the Silicon Labs website (www.silabs.com/8bit-appnotes).

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
22	P0.2	Multifunction I/O	Yes	P0MAT.2	ADC0.2
				RTCOUT	CS0.2
				INT0.2	XTAL1
				INT1.2	
23	P0.1	Multifunction I/O	Yes	P0MAT.1	ADC0.1
				INT0.1	CS0.1
				INT1.1	AGND
24	P0.0	Multifunction I/O	Yes	P0MAT.0	CS0.0
				INT0.0	VREF
				INT1.0	
Center	GND	Ground			

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
A4	P0.0	Multifunction I/O	Yes	P0MAT.0	CS0.0
				INT0.0	VREF
				INT1.0	
B1	P1.0	Multifunction I/O	Yes	P1MAT.0	CMP0P.4
					CS0.8
B2	P0.3	Multifunction I/O	Yes	P0MAT.3	ADC0.3
				EXTCLK	CS0.3
				WAKEOUT	XTAL2
				INT0.3	
				INT1.3	
B3	P0.2	Multifunction I/O	Yes	P0MAT.2	ADC0.2
				RTCOUT	CS0.2
				INT0.2	XTAL1
				INT1.2	
B4	GND	Ground			
C1	P1.3	Multifunction I/O	Yes	P1MAT.3	ADC0.11
					CS0.11
C2	P0.6	Multifunction I/O	Yes	P0MAT.6	ADC0.6
				CNVSTR	CS0.6
				INT0.6	
				INT1.6	
C3	P0.1	Multifunction I/O	Yes	P0MAT.1	ADC0.1
				INT0.1	CS0.1
				INT1.1	AGND
C4	VDD	Supply Power Input			
D1	P1.1	Multifunction I/O	Yes	P1MAT.1	CMP0N.4
					CS0.9
D2	P1.4	Multifunction I/O	Yes	P1MAT.4	ADC0.12
					CS0.12
D3	RSTb /	Active-low Reset /			
	C2CK	C2 Debug Clock			
D4	P2.7 /	Multifunction I/O /			
	C2D	C2 Debug Data			

Dimension	Min	Тур	Мах
E1		1.20 BSC	
SD		0.2	
SE		0.2	
n		16	
ааа	0.03		
bbb		0.06	
ссс	0.05		
ddd		0.015	

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. Primary datum "C" and seating plane are defined by the spherical crowns of the solder balls.

4. Dimension "b" is measured at the maximum solder bump diameter, parallel to primary datum "C".

5. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

7.2 CSP16 PCB Land Pattern

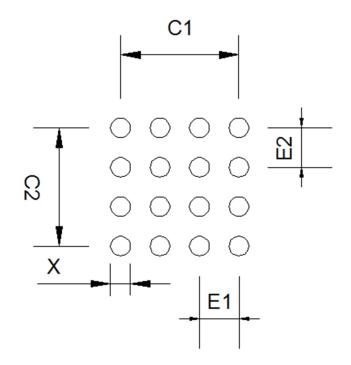


Figure 7.2. CSP16 PCB Land Pattern Drawing

Table 7.2.	CSP16 PCB Land	Pattern Dimensions
------------	----------------	---------------------------

Dimension	Min	Max
x	0.20	
C1	1.:	20
C2	1.20	
E1	0.4	40
E2	0.40	

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.

3. This Land Pattern Design is based on the IPC-7351 guidelines.

4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad.

5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

6. The stencil thickness should be 0.075 mm (3 mils).

7. A stencil of square aperture (0.22 x 0.22 mm) is recommended.

8. A No-Clean, Type-3 solder paste is recommended.

9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Dimension	Min	Тур	Мах
L1	0.00	—	0.10
ааа	_	0.10	—
bbb	_	0.10	—
ddd	_	0.05	—
eee	_	—	0.08

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing is based upon JEDEC Solid State Product Outline MO-248 but includes custom features which are toleranced per supplier designation.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Dimension	Min	Тур	Мах	
Note:	·			
1. All dimensions shown a	1. All dimensions shown are in millimeters (mm) unless otherwise noted.			
2. Dimensioning and Toler	2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.			
3. This drawing conforms to JEDEC Solid State Outline MO-220.				
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.				

9.2 QFN24 PCB Land Pattern

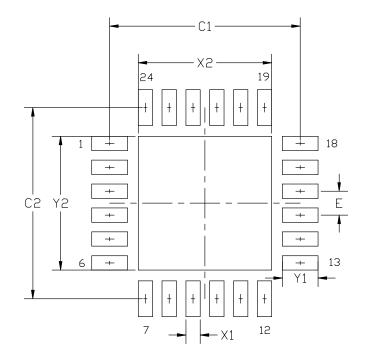


Figure 9.2. QFN24 PCB Land Pattern Drawing

Table 9.2. QFN24 PCB Land Pattern Dimension

Dimension	Min	Мах
C1	3.90	4.00
C2	3.90	4.00
E	0.50 BSC	
X1	0.20	0.30
X2	2.70	2.80
Y1	0.65	0.75
Y2	2.70	2.80

Figure 10.3. QSOP24 Package Marking

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).