E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	25MHz
Connectivity	I ² C, SMBus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	13
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 9x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-UFBGA, WLCSP
Supplier Device Package	16-CSP (1.78x1.66)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm8sb10f8g-a-csp16r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Feature List

The EFM8SB1 highlighted features are listed below.

- Core:
 - Pipelined CIP-51 Core
 - · Fully compatible with standard 8051 instruction set
 - · 70% of instructions execute in 1-2 clock cycles
 - 25 MHz maximum operating frequency
- Memory:
 - Up to 8 kB flash memory, in-system re-programmable from firmware.
 - Up to 512 bytes RAM (including 256 bytes standard 8051 RAM and 256 bytes on-chip XRAM)
- · Power:
 - · Internal LDO regulator for CPU core voltage
 - · Power-on reset circuit and brownout detectors
- I/O: Up to 17 total multifunction I/O pins:
 - Flexible peripheral crossbar for peripheral routing
 - 5 mA source, 12.5 mA sink allows direct drive of LEDs
- · Clock Sources:
 - Internal 20 MHz low power oscillator with ±10% accuracy
 - Internal 24.5 MHz precision oscillator with ±2% accuracy
 - Internal 16.4 kHz low-frequency oscillator or RTC 32 kHz crystal (RTC crystal not available on CSP16 packages)
 - External crystal, RC, C, and CMOS clock options

- Timers/Counters and PWM:
 - 32-bit Real Time Clock (RTC)
 - 3-channel Programmable Counter Array (PCA) supporting PWM, capture/compare, and frequency output modes with watchdog timer function
 - 4 x 16-bit general-purpose timers
- Communications and Digital Peripherals:
 - UART
 - SPI[™] Master / Slave
 - SMBus™ / I2C™ Master / Slave
 - 16-bit CRC unit, supporting automatic CRC of flash at 256byte boundaries
- Analog:
 - Capacitive Sense (CS0)
 - Programmable current reference (IREF0)
 - 12-Bit Analog-to-Digital Converter (ADC0)
 - 1 x Low-current analog comparator
- On-Chip, Non-Intrusive Debugging
 - · Full memory and register inspection
 - Four hardware breakpoints, single-stepping
- · Pre-loaded UART bootloader
- Temperature range -40 to 85 °C
- Single power supply 1.8 to 3.6 V
- · QSOP24, QFN24, QFN20, and CSP16 packages

With on-chip power-on reset, voltage supply monitor, watchdog timer, and clock oscillator, the EFM8SB1 devices are truly standalone system-on-a-chip solutions. The flash memory is reprogrammable in-circuit, providing non-volatile data storage and allowing field upgrades of the firmware. The on-chip debugging interface (C2) allows non-intrusive (uses no on-chip resources), full speed, in-circuit debugging using the production MCU installed in the final application. This debug logic supports inspection and modification of memory and registers, setting breakpoints, single stepping, and run and halt commands. All analog and digital peripherals are fully functional while debugging. Each device is specified for 1.8 to 3.6 V operation. Devices are AEC-Q100 qualified (Grade 3) and are available in 16-pin CSP, 20-pin QFN, 24-pin QFN, or 24-pin QSOP packages. All package options are lead-free and RoHS compliant.

Note: CSP devices can be handled and soldered using industry standard surface mount assembly techniques. However, because CSP devices are essentially a piece of silicon and are not encapsulated in plastic, they are susceptible to mechanical damage and may be sensitive to light. When CSP packages must be used in an environment exposed to light, it may be necessary to cover the top and sides with an opaque material.

Timers (Timer 0, Timer 1, Timer 2, and Timer 3)

Several counter/timers are included in the device: two are 16-bit counter/timers compatible with those found in the standard 8051, and the rest are 16-bit auto-reload timers for timing peripherals or for general purpose use. These timers can be used to measure time intervals, count external events and generate periodic interrupt requests. Timer 0 and Timer 1 are nearly identical and have four primary modes of operation. The other timers offer both 16-bit and split 8-bit timer functionality with auto-reload and capture capabilities.

Timer 0 and Timer 1 include the following features:

- Standard 8051 timers, supporting backwards-compatibility with firmware and hardware.
- Clock sources include SYSCLK, SYSCLK divided by 12, 4, or 48, the External Clock divided by 8, or an external pin.
- · 8-bit auto-reload counter/timer mode
- 13-bit counter/timer mode
- 16-bit counter/timer mode
- Dual 8-bit counter/timer mode (Timer 0)

Timer 2 and Timer 3 are 16-bit timers including the following features:

- Clock sources include SYSCLK, SYSCLK divided by 12, or the External Clock divided by 8.
- · 16-bit auto-reload timer mode
- Dual 8-bit auto-reload timer mode
- · Comparator 0 or RTC0 capture (Timer 2)
- RTC0 or EXTCLK/8 capture (Timer 3)

Watchdog Timer (WDT0)

The device includes a programmable watchdog timer (WDT) integrated within the PCA0 peripheral. A WDT overflow forces the MCU into the reset state. To prevent the reset, the WDT must be restarted by application software before overflow. If the system experiences a software or hardware malfunction preventing the software from restarting the WDT, the WDT overflows and causes a reset. Following a reset, the WDT is automatically enabled and running with the default maximum time interval. If needed, the WDT can be disabled by system software. The state of the RSTb pin is unaffected by this reset.

The Watchdog Timer integrated in the PCA0 peripheral has the following features:

- · Programmable timeout interval
- Runs from the selected PCA clock source
- · Automatically enabled after any system reset

3.6 Communications and Other Digital Peripherals

Universal Asynchronous Receiver/Transmitter (UART0)

UART0 is an asynchronous, full duplex serial port offering modes 1 and 3 of the standard 8051 UART. Enhanced baud rate support allows a wide range of clock sources to generate standard baud rates. Received data buffering allows UART0 to start reception of a second incoming data byte before software has finished reading the previous data byte.

The UART module provides the following features:

- · Asynchronous transmissions and receptions.
- Baud rates up to SYSCLK/2 (transmit) or SYSCLK/8 (receive).
- 8- or 9-bit data.
- · Automatic start and stop generation.
- Single-byte FIFO on transmit and receive.

3.7 Analog

Capacitive Sense (CS0)

The Capacitive Sense subsystem uses a capacitance-to-digital circuit to determine the capacitance on a port pin. The module can take measurements from different port pins using the module's analog multiplexer. The module can be configured to take measurements on one port pin, a group of port pins one-by-one using auto-scan, or the total capacitance on multiple channels together. A selectable gain circuit allows the designer to adjust the maximum allowable capacitance. An accumulator is also included, which can be configured to average multiple conversions on an input channel. Interrupts can be generated when the CS0 peripheral completes a conversion or when the measured value crosses a configurable threshold.

The Capacitive Sense module includes the following features:

- · Measure multiple pins one-by-one using auto-scan or total capacitance on multiple channels together.
- Configurable input gain.
- · Hardware auto-accumulate and average.
- · Multiple internal start-of-conversion sources.
- · Operational in Suspend when all other clocks are disabled.
- Interrupts available at the end of a conversion or when the measured value crosses a configurable threshold.

Programmable Current Reference (IREF0)

The programmable current reference (IREF0) module enables current source or sink with two output current settings: Low Power Mode and High Current Mode. The maximum current output in Low Power Mode is 63 μ A (1 μ A steps) and the maximum current output in High Current Mode is 504 μ A (8 μ A steps).

The IREF module includes the following features:

- · Capable of sourcing or sinking current in programmable steps.
- Two operational modes: Low Power Mode and High Current Mode.
- Fine-tuning mode for higher output precision available in conjunction with the PCA0 module.

12-Bit Analog-to-Digital Converter (ADC0)

The ADC is a successive-approximation-register (SAR) ADC with 12-, 10-, and 8-bit modes, integrated track-and hold and a programmable window detector. The ADC is fully configurable under software control via several registers. The ADC may be configured to measure different signals using the analog multiplexer. The voltage reference for the ADC is selectable between internal and external reference sources.

- · Up to 10 external inputs.
- Single-ended 12-bit and 10-bit modes.
- Supports an output update rate of 75 ksps samples per second in 12-bit mode or 300 ksps samples per second in 10-bit mode.
- Operation in low power modes at lower conversion speeds.
- · Asynchronous hardware conversion trigger, selectable between software, external I/O and internal timer sources.
- · Output data window comparator allows automatic range checking.
- Support for burst mode, which produces one set of accumulated data per conversion-start trigger with programmable power-on settling and tracking time.
- · Conversion complete and window compare interrupts supported.
- Flexible output data formatting.
- · Includes an internal 1.65 V fast-settling reference and support for external reference.
- Integrated temperature sensor.

Low Current Comparator (CMP0)

An analog comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. External input connections to device I/O pins and internal connections are available through separate multiplexers on the positive and negative inputs. Hysteresis, response time, and current consumption may be programmed to suit the specific needs of the application.

The comparator module includes the following features:

- Input options in addition to the pins:
 - Capacitive Sense Comparator output.
 - VDD.
 - · VDD divided by 2.
 - · Internal connection to LDO output.
 - Direct connection to GND.
- · Synchronous and asynchronous outputs can be routed to pins via crossbar.
- Programmable hysteresis between 0 and ±20 mV.
- · Programmable response time.
- Interrupts generated on rising, falling, or both edges.

3.8 Reset Sources

Reset circuitry allows the controller to be easily placed in a predefined default condition. On entry to this reset state, the following occur:

- The core halts program execution.
- · Module registers are initialized to their defined reset values unless the bits reset only with a power-on reset.
- External port pins are forced to a known state.
- · Interrupts and timers are disabled.

All registers are reset to the predefined values noted in the register descriptions unless the bits only reset with a power-on reset. The contents of RAM are unaffected during a reset; any previously stored data is preserved as long as power is not lost. The Port I/O latches are reset to 1 in open-drain mode. Weak pullups are enabled during and after the reset. For Supply Monitor and power-on resets, the RSTb pin is driven low until the device exits the reset state. On exit from the reset state, the program counter (PC) is reset, and the system clock defaults to an internal oscillator. The Watchdog Timer is enabled, and program execution begins at location 0x0000.

Reset sources on the device include the following:

- Power-on reset
- · External reset pin
- · Comparator reset
- · Software-triggered reset
- Supply monitor reset (monitors VDD supply)
- · Watchdog timer reset
- · Missing clock detector reset
- Flash error reset
- · RTC0 alarm or oscillator failure

3.9 Debugging

The EFM8SB1 devices include an on-chip Silicon Labs 2-Wire (C2) debug interface to allow flash programming and in-system debugging with the production part installed in the end application. The C2 interface uses a clock signal (C2CK) and a bi-directional C2 data signal (C2D) to transfer information between the device and a host system. See the C2 Interface Specification for details on the C2 protocol.

3.10 Bootloader

All devices come pre-programmed with a UART bootloader. This bootloader resides in the last page of flash and can be erased if it is not needed.

The byte before the Lock Byte is the Bootloader Signature Byte. Setting this byte to a value of 0xA5 indicates the presence of the bootloader in the system. Any other value in this location indicates that the bootloader is not present in flash.

When a bootloader is present, the device will jump to the bootloader vector after any reset, allowing the bootloader to run. The bootloader then determines if the device should stay in bootload mode or jump to the reset vector located at 0x0000. When the bootloader is not present, the device will jump to the reset vector of 0x0000 after any reset.

More information about the bootloader protocol and usage can be found in *AN945: EFM8 Factory Bootloader User Guide*. Application notes can be found on the Silicon Labs website (www.silabs.com/8bit-appnotes) or within Simplicity Studio by using the [Application Notes] tile.

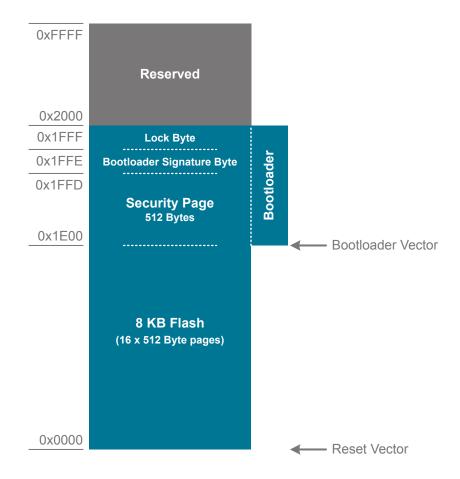


Figure 3.2. Flash Memory Map with Bootloader—8 kB Devices

Bootloader	Pins for Bootload Communication		
UART	TX – P0.4		
	RX – P0.5		

Device Package	Pin for Bootload Mode Entry
QFN20	P2.7 / C2D
QFN24	P2.7 / C2D
QSOP24	P2.7 / C2D
CSP16	P2.7 / C2D

Table 3.3. Summary of Pins for Bootload Mode Entry

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Signal-to-Noise Plus Distortion	SNDR	12 Bit Mode	62	65	_	dB
		10 Bit Mode	54	58	_	dB
Total Harmonic Distortion (Up to	THD	12 Bit Mode	_	-76	_	dB
5th Harmonic)		10 Bit Mode	_	-73	_	dB
Spurious-Free Dynamic Range SFDR		12 Bit Mode	_	82	_	dB
		10 Bit Mode	_	75	_	dB

Note:

1. Absolute input pin voltage is limited by the V_{DD} supply.

2. INL and DNL specifications for 12-bit mode do not include the first or last four ADC codes.

3. The maximum code in 12-bit mode is 0xFFFC. The Full Scale Error is referenced from the maximum code.

4.1.10 Voltage Reference

Table 4.10. Voltage Reference

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit		
Internal Fast Settling Referen	nternal Fast Settling Reference							
Output Voltage	V _{REFFS}		1.62	1.65	1.68	V		
Temperature Coefficient	TC _{REFFS}		_	50	_	ppm/°C		
Turn-on Time	t _{REFFS}		—	—	1.5	μs		
Power Supply Rejection	PSRR _{REF} FS		_	400	_	ppm/V		
External Reference	External Reference							
Input Voltage	V _{EXTREF}		1	_	V _{DD}	V		
Input Current	I _{EXTREF}	Sample Rate = 300 ksps; VREF = 3.0 V	—	5.25	—	μA		

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Negative Hysteresis	HYS _{CP-}	CPHYN = 00	_	-1.5	_	mV
Mode 3 (CPMD = 11)		CPHYN = 01	—	-4	_	mV
		CPHYN = 10	—	-8	_	mV
		CPHYN = 11	_	-16	_	mV
Input Range (CP+ or CP-)	V _{IN}		-0.25	—	V _{DD} +0.25	V
Input Pin Capacitance	C _{CP}		—	12	-	pF
Common-Mode Rejection Ratio	CMRR _{CP}		—	70	-	dB
Power Supply Rejection Ratio	PSRR _{CP}		—	72	-	dB
Input Offset Voltage	V _{OFF}	T _A = 25 °C	-10	0	10	mV
Input Offset Tempco	TC _{OFF}		_	3.5	-	μV/°C

4.1.13 Programmable Current Reference (IREF0)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Static Performance						
Resolution	N _{bits}			6		bits
Output Compliance Range	V _{IOUT}	Low Power Mode, Source	0	_	V _{DD} – 0.4	V
		High Current Mode, Source	0	_	V _{DD} – 0.8	V
		Low Power Mode, Sink	0.3	_	V _{DD}	V
		High Current Mode, Sink	0.8	_	V _{DD}	V
Integral Nonlinearity	INL			<±0.2	±1.0	LSB
Differential Nonlinearity	DNL			<±0.2	±1.0	LSB
Offset Error	E _{OFF}		_	<±0.1	±0.5	LSB
Full Scale Error	E _{FS}	Low Power Mode, Source		_	±5	%
		High Current Mode, Source	_	_	±6	%
		Low Power Mode, Sink	_	_	±8	%
		High Current Mode, Sink	_	_	±8	%
Absolute Current Error	E _{ABS}	Low Power Mode Sourcing 20 µA	_	<±1	±3	%
Dynamic Performance						
Output Settling Time to 1/2 LSB	t _{SETTLE}			300	—	ns
Startup Time	t _{PWR}			1	_	μs

4.4 Typical Performance Curves

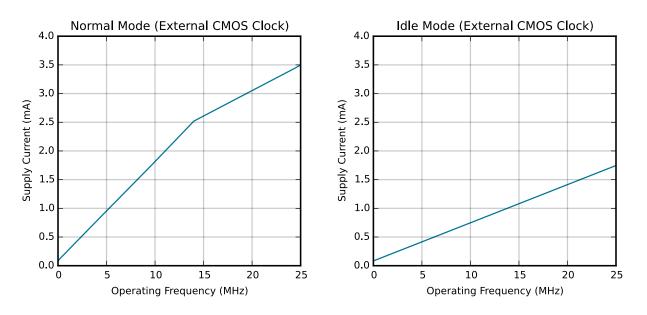
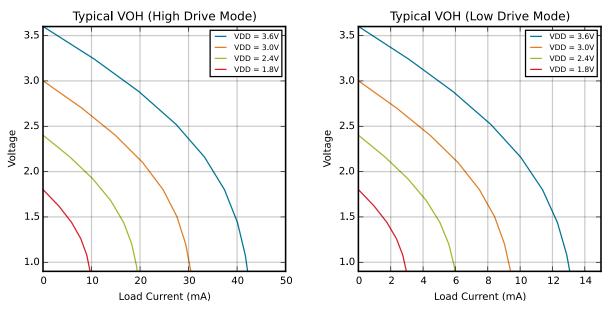



Figure 4.2. Typical Operating Supply Current (full supply voltage range)

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
20	P0.2	Multifunction I/O	Yes	P0MAT.2	ADC0.2
				RTCOUT	CS0.2
				INT0.2	XTAL1
				INT1.2	
Center	GND	Ground			

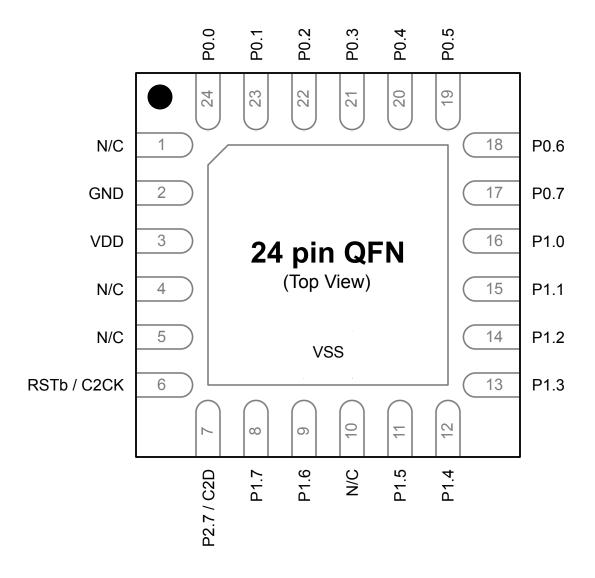


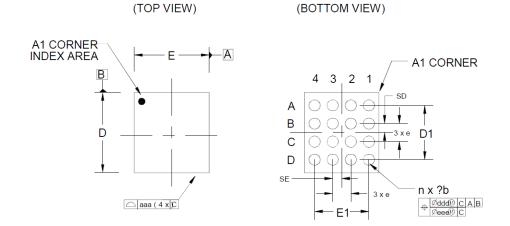
Figure 6.2. EFM8SB1x-QFN24 Pinout

TADIE 0.2. PIN DENNIUONS IOF EFINIOSD 1X-QFIN24	Table 6.2.	Pin Definitions for EFM8SB1x-QFN24
---	------------	------------------------------------

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
1	N/C	No Connection			
2	GND	Ground			
3	VDD	Supply Power Input			
4	N/C	No Connection			
5	N/C	No Connection			

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
6	RSTb /	Active-low Reset /			
	C2CK	C2 Debug Clock			
7	P2.7 /	Multifunction I/O /			
	C2D	C2 Debug Data			
8	P1.7	Multifunction I/O	Yes	P1MAT.7	XTAL4
9	P1.6	Multifunction I/O	Yes	P1MAT.6	XTAL3
10	N/C	No Connection			
11	P1.5	Multifunction I/O	Yes	P1MAT.5	CS0.13
12	P1.4	Multifunction I/O	Yes	P1MAT.4	ADC0.12
					CS0.12
13	P1.3	Multifunction I/O	Yes	P1MAT.3	ADC0.11
					CS0.11
14	P1.2	Multifunction I/O	Yes	P1MAT.2	ADC0.10
					CS0.10
15	P1.1	Multifunction I/O	Yes	P1MAT.1	CMP0N.4
					CS0.9
16	P1.0	Multifunction I/O	Yes	P1MAT.0	CMP0P.4
					CS0.8
17	P0.7	Multifunction I/O	Yes	P0MAT.7	ADC0.7
				INT0.7	CS0.7
				INT1.7	IREF0
18	P0.6	Multifunction I/O	Yes	P0MAT.6	ADC0.6
				CNVSTR	CS0.6
				INT0.6	
				INT1.6	
19	P0.5	Multifunction I/O	Yes	P0MAT.5	ADC0.5
				INT0.5	CS0.5
				INT1.5	
20	P0.4	Multifunction I/O	Yes	P0MAT.4	ADC0.4
				INT0.4	CS0.4
				INT1.4	
21	P0.3	Multifunction I/O	Yes	P0MAT.3	ADC0.3
				EXTCLK	CS0.3
				WAKEOUT	XTAL2
				INT0.3	
				INT1.3	

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
22	P0.2	Multifunction I/O	Yes	P0MAT.2	ADC0.2
				RTCOUT	CS0.2
				INT0.2	XTAL1
				INT1.2	
23	P0.1	Multifunction I/O	Yes	P0MAT.1	ADC0.1
				INT0.1	CS0.1
				INT1.1	AGND
24	P0.0	Multifunction I/O	Yes	P0MAT.0	CS0.0
				INT0.0	VREF
				INT1.0	
Center	GND	Ground			


Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
23	P0.4	Multifunction I/O	Yes	P0MAT.4	ADC0.4
				INT0.4	CS0.4
				INT1.4	
24	P0.3	Multifunction I/O	Yes	P0MAT.3	ADC0.3
				EXTCLK	CS0.3
				WAKEOUT	XTAL2
				INT0.3	
				INT1.3	

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
A4	P0.0	Multifunction I/O	Yes	P0MAT.0	CS0.0
				INT0.0	VREF
				INT1.0	
B1	P1.0	Multifunction I/O	Yes	P1MAT.0	CMP0P.4
					CS0.8
B2	P0.3	Multifunction I/O	Yes	P0MAT.3	ADC0.3
				EXTCLK	CS0.3
				WAKEOUT	XTAL2
				INT0.3	
				INT1.3	
B3	P0.2	Multifunction I/O	Yes	P0MAT.2	ADC0.2
				RTCOUT	CS0.2
				INT0.2	XTAL1
				INT1.2	
B4	GND	Ground			
C1	P1.3	Multifunction I/O	Yes	P1MAT.3	ADC0.11
					CS0.11
C2	P0.6	Multifunction I/O	Yes	P0MAT.6	ADC0.6
				CNVSTR	CS0.6
				INT0.6	
				INT1.6	
C3	P0.1	Multifunction I/O	Yes	P0MAT.1	ADC0.1
				INT0.1	CS0.1
				INT1.1	AGND
C4	VDD	Supply Power Input			
D1	P1.1	Multifunction I/O	Yes	P1MAT.1	CMP0N.4
					CS0.9
D2	P1.4	Multifunction I/O	Yes	P1MAT.4	ADC0.12
					CS0.12
D3	RSTb /	Active-low Reset /			
	C2CK	C2 Debug Clock			
D4	P2.7 /	Multifunction I/O /			
	C2D	C2 Debug Data			

7. CSP16 Package Specifications

7.1 CSP16 Package Dimensions

Note: CSP devices can be handled and soldered using industry standard surface mount assembly techniques. However, because CSP devices are essentially a piece of silicon and are not encapsulated in plastic, they are susceptible to mechanical damage and may be sensitive to light. When CSP packages must be used in an environment exposed to light, it may be necessary to cover the top and sides with an opaque material.

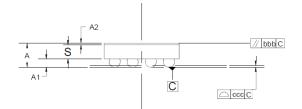


Figure 7.1. CSP16 Package Drawing

Table 7.1. CSP16 Package Dimensions

Dimension	Min	Тур	Мах
A	0.491	0.55	0.609
A1	0.17	—	0.23
A2	0.036	0.040	0.044
b	0.23	—	0.29
S	0.3075	0.31	0.3125
D	1.781 BSC		
E	1.659 BSC		
е	0.40 BSC		
D1	1.20 BSC		

7.2 CSP16 PCB Land Pattern

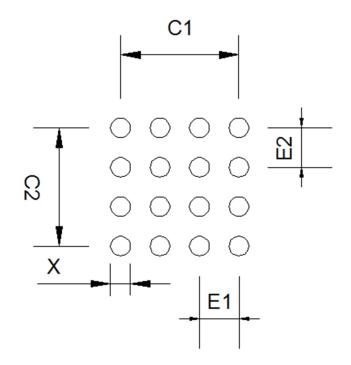


Figure 7.2. CSP16 PCB Land Pattern Drawing

Table 7.2.	CSP16 PCB Land	Pattern Dimensions
------------	----------------	---------------------------

Dimension	Min	Мах	
x	0.2	20	
C1	1.20		
C2	1.:	20	
E1	0.4	40	
E2	0.4	40	

Note:

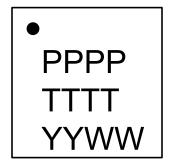
1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.

3. This Land Pattern Design is based on the IPC-7351 guidelines.

4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad.

5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.


6. The stencil thickness should be 0.075 mm (3 mils).

7. A stencil of square aperture (0.22 x 0.22 mm) is recommended.

8. A No-Clean, Type-3 solder paste is recommended.

9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

7.3 CSP16 Package Marking

Figure 7.3. CSP16 Package Marking

The package marking consists of:

- PPPP The part number designation.
- TTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.

Dimension	Min	Тур	Мах
L1	0.00	—	0.10
ааа	_	0.10	—
bbb	_	0.10	—
ddd	_	0.05	—
eee	_	—	0.08

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing is based upon JEDEC Solid State Product Outline MO-248 but includes custom features which are toleranced per supplier designation.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

8.2 QFN20 PCB Land Pattern

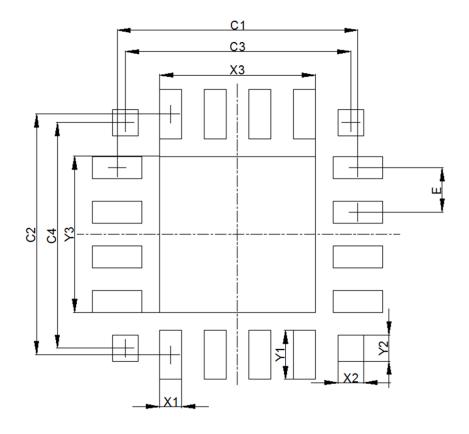


Figure 8.2. QFN20 PCB Land Pattern Drawing

Table 8.2.	QFN20 PCB La	and Pattern	Dimensions
------------	--------------	-------------	------------

Dimension	Min	Мах
C1	2.7	70
C2	2.7	70
C3	2.5	53
C4	2.53	
E	0.50 REF	
X1	0.20	0.30
X2	0.24	.034
X3	1.70	1.80
Y1	0.50	0.60
Y2	0.24	0.34
Y3	1.70	1.80