
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	25MHz
Connectivity	I ² C, SMBus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 9x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-UFQFN Exposed Pad
Supplier Device Package	20-QFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm8sb10f8g-a-qfn20

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Feature List

The EFM8SB1 highlighted features are listed below.

- Core:
 - Pipelined CIP-51 Core
 - · Fully compatible with standard 8051 instruction set
 - · 70% of instructions execute in 1-2 clock cycles
 - 25 MHz maximum operating frequency
- Memory:
 - Up to 8 kB flash memory, in-system re-programmable from firmware.
 - Up to 512 bytes RAM (including 256 bytes standard 8051 RAM and 256 bytes on-chip XRAM)
- · Power:
 - · Internal LDO regulator for CPU core voltage
 - · Power-on reset circuit and brownout detectors
- I/O: Up to 17 total multifunction I/O pins:
 - Flexible peripheral crossbar for peripheral routing
 - 5 mA source, 12.5 mA sink allows direct drive of LEDs
- · Clock Sources:
 - Internal 20 MHz low power oscillator with ±10% accuracy
 - Internal 24.5 MHz precision oscillator with ±2% accuracy
 - Internal 16.4 kHz low-frequency oscillator or RTC 32 kHz crystal (RTC crystal not available on CSP16 packages)
 - External crystal, RC, C, and CMOS clock options

- Timers/Counters and PWM:
 - 32-bit Real Time Clock (RTC)
 - 3-channel Programmable Counter Array (PCA) supporting PWM, capture/compare, and frequency output modes with watchdog timer function
 - 4 x 16-bit general-purpose timers
- Communications and Digital Peripherals:
 - UART
 - SPI[™] Master / Slave
 - SMBus™ / I2C™ Master / Slave
 - 16-bit CRC unit, supporting automatic CRC of flash at 256byte boundaries
- Analog:
 - Capacitive Sense (CS0)
 - Programmable current reference (IREF0)
 - 12-Bit Analog-to-Digital Converter (ADC0)
 - 1 x Low-current analog comparator
- On-Chip, Non-Intrusive Debugging
 - · Full memory and register inspection
 - Four hardware breakpoints, single-stepping
- · Pre-loaded UART bootloader
- Temperature range -40 to 85 °C
- Single power supply 1.8 to 3.6 V
- · QSOP24, QFN24, QFN20, and CSP16 packages

With on-chip power-on reset, voltage supply monitor, watchdog timer, and clock oscillator, the EFM8SB1 devices are truly standalone system-on-a-chip solutions. The flash memory is reprogrammable in-circuit, providing non-volatile data storage and allowing field upgrades of the firmware. The on-chip debugging interface (C2) allows non-intrusive (uses no on-chip resources), full speed, in-circuit debugging using the production MCU installed in the final application. This debug logic supports inspection and modification of memory and registers, setting breakpoints, single stepping, and run and halt commands. All analog and digital peripherals are fully functional while debugging. Each device is specified for 1.8 to 3.6 V operation. Devices are AEC-Q100 qualified (Grade 3) and are available in 16-pin CSP, 20-pin QFN, 24-pin QFN, or 24-pin QSOP packages. All package options are lead-free and RoHS compliant.

Note: CSP devices can be handled and soldered using industry standard surface mount assembly techniques. However, because CSP devices are essentially a piece of silicon and are not encapsulated in plastic, they are susceptible to mechanical damage and may be sensitive to light. When CSP packages must be used in an environment exposed to light, it may be necessary to cover the top and sides with an opaque material.

Ordering Part Number	Flash Memory (kB)	RAM (Bytes)	Digital Port I/Os (Total)	ADC0 Channels	Capacitive Touch Inputs	Pb-free (RoHS Compliant)	Temperature Range	Package
EFM8SB10F2G-A-QFN20	2	256	16	9	13	Yes	-40 to +85 C	QFN20
EFM8SB10F8A-A-QFN24	8	512	17	10	14	Yes	-40 to +85 C	QFN24
EFM8SB10F8A-A-QFN20	8	512	16	9	13	Yes	-40 to +85 C	QFN20

The A-grade (i.e. EFM8SB10F8A-A-QFN20) devices receive full automotive quality production status, including AEC-Q100 qualification, registration with International Material Data System (IMDS), and Part Production Approval Process (PPAP) documentation. PPAP documentation is available at www.silabs.com with a registered and NDA approved user account.

3.7 Analog

Capacitive Sense (CS0)

The Capacitive Sense subsystem uses a capacitance-to-digital circuit to determine the capacitance on a port pin. The module can take measurements from different port pins using the module's analog multiplexer. The module can be configured to take measurements on one port pin, a group of port pins one-by-one using auto-scan, or the total capacitance on multiple channels together. A selectable gain circuit allows the designer to adjust the maximum allowable capacitance. An accumulator is also included, which can be configured to average multiple conversions on an input channel. Interrupts can be generated when the CS0 peripheral completes a conversion or when the measured value crosses a configurable threshold.

The Capacitive Sense module includes the following features:

- · Measure multiple pins one-by-one using auto-scan or total capacitance on multiple channels together.
- Configurable input gain.
- · Hardware auto-accumulate and average.
- · Multiple internal start-of-conversion sources.
- · Operational in Suspend when all other clocks are disabled.
- Interrupts available at the end of a conversion or when the measured value crosses a configurable threshold.

Programmable Current Reference (IREF0)

The programmable current reference (IREF0) module enables current source or sink with two output current settings: Low Power Mode and High Current Mode. The maximum current output in Low Power Mode is 63 μ A (1 μ A steps) and the maximum current output in High Current Mode is 504 μ A (8 μ A steps).

The IREF module includes the following features:

- · Capable of sourcing or sinking current in programmable steps.
- Two operational modes: Low Power Mode and High Current Mode.
- Fine-tuning mode for higher output precision available in conjunction with the PCA0 module.

12-Bit Analog-to-Digital Converter (ADC0)

The ADC is a successive-approximation-register (SAR) ADC with 12-, 10-, and 8-bit modes, integrated track-and hold and a programmable window detector. The ADC is fully configurable under software control via several registers. The ADC may be configured to measure different signals using the analog multiplexer. The voltage reference for the ADC is selectable between internal and external reference sources.

- · Up to 10 external inputs.
- Single-ended 12-bit and 10-bit modes.
- Supports an output update rate of 75 ksps samples per second in 12-bit mode or 300 ksps samples per second in 10-bit mode.
- Operation in low power modes at lower conversion speeds.
- · Asynchronous hardware conversion trigger, selectable between software, external I/O and internal timer sources.
- · Output data window comparator allows automatic range checking.
- Support for burst mode, which produces one set of accumulated data per conversion-start trigger with programmable power-on settling and tracking time.
- · Conversion complete and window compare interrupts supported.
- Flexible output data formatting.
- · Includes an internal 1.65 V fast-settling reference and support for external reference.
- Integrated temperature sensor.

3.10 Bootloader

All devices come pre-programmed with a UART bootloader. This bootloader resides in the last page of flash and can be erased if it is not needed.

The byte before the Lock Byte is the Bootloader Signature Byte. Setting this byte to a value of 0xA5 indicates the presence of the bootloader in the system. Any other value in this location indicates that the bootloader is not present in flash.

When a bootloader is present, the device will jump to the bootloader vector after any reset, allowing the bootloader to run. The bootloader then determines if the device should stay in bootload mode or jump to the reset vector located at 0x0000. When the bootloader is not present, the device will jump to the reset vector of 0x0000 after any reset.

More information about the bootloader protocol and usage can be found in *AN945: EFM8 Factory Bootloader User Guide*. Application notes can be found on the Silicon Labs website (www.silabs.com/8bit-appnotes) or within Simplicity Studio by using the [Application Notes] tile.

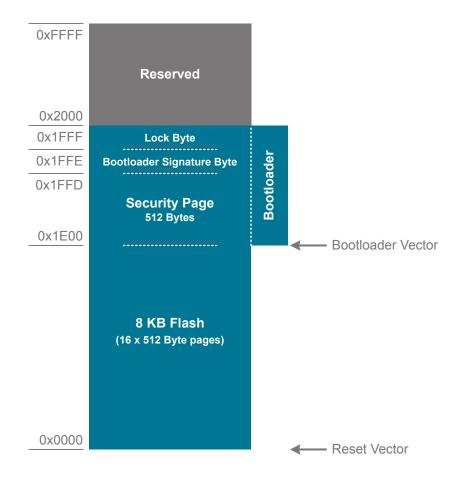


Figure 3.2. Flash Memory Map with Bootloader—8 kB Devices

Bootloader	Pins for Bootload Communication			
UART	TX – P0.4			
	RX – P0.5			

4.1.2 Power Consumption

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Digital Supply Current						
Normal Mode supply current - Full speed with code executing from	I _{DD}	V _{DD} = 1.8–3.6 V, f _{SYSCLK} = 24.5 MHz		3.6	4.5	mA
flash ^{3 , 4 , 5}		V _{DD} = 1.8–3.6 V, f _{SYSCLK} = 20 MHz	_	3.1		mA
		V _{DD} = 1.8–3.6 V, f _{SYSCLK} = 32.768 kHz	_	84		μA
Normal Mode supply current fre- quency sensitivity ^{1, 3, 5}	IDDFREQ	V _{DD} = 1.8–3.6 V, T = 25 °C, f _{SYSCLK} < 14 MHz	_	174	—	µA/MHz
		V _{DD} = 1.8–3.6 V, T = 25 °C, f _{SYSCLK} > 14 MHz	_	88		µA/MHz
Idle Mode supply current - Core halted with peripherals running ^{4 , 6}	I _{DD}	V _{DD} = 1.8–3.6 V, f _{SYSCLK} = 24.5 MHz		1.8	3.0	mA
		V _{DD} = 1.8–3.6 V, f _{SYSCLK} = 20 MHz		1.4		mA
		V _{DD} = 1.8–3.6 V, f _{SYSCLK} = 32.768 kHz		82		μA
Idle Mode Supply Current Frequen- cy Sensitivity ^{1,6}	IDDFREQ	V _{DD} = 1.8–3.6 V, T = 25 °C		67		µA/MHz
Suspend Mode Supply Current	I _{DD}	V _{DD} = 1.8–3.6 V	_	77	_	μA
Sleep Mode Supply Current with	IDD	1.8 V, T = 25 °C		0.60	_	μA
RTC running from 32.768 kHz crystal		3.6 V, T = 25 °C		0.80		μA
		1.8 V, T = 85 °C		0.80		μA
		3.6 V, T = 85 °C		1.00		μA
Sleep Mode Supply Current with	I _{DD}	1.8 V, T = 25 °C		0.30		μA
RTC running from internal LFO		3.6 V, T = 25 °C		0.50		μA
		1.8 V, T = 85 °C		0.50		μA
		3.6 V, T = 85 °C		0.80		μA
Sleep Mode Supply Current (RTC	I _{DD}	1.8 V, T = 25 °C	_	0.05	_	μA
off)		3.6 V, T = 25 °C	_	0.08	_	μA
		1.8 V, T = 85 °C		0.20		μA
		3.6 V, T = 85 °C	_	0.28	_	μA
V _{DD} Monitor Supply Current	I _{VMON}			7		μA
Oscillator Supply Current	I _{HFOSC0}	25 °C	_	300	_	μΑ

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Negative Hysteresis	HYS _{CP-}	CPHYN = 00	_	-1.5	_	mV
Mode 3 (CPMD = 11)		CPHYN = 01	—	-4	_	mV
		CPHYN = 10	—	-8	_	mV
		CPHYN = 11	_	-16	_	mV
Input Range (CP+ or CP-)	V _{IN}		-0.25	—	V _{DD} +0.25	V
Input Pin Capacitance	C _{CP}		—	12	-	pF
Common-Mode Rejection Ratio	CMRR _{CP}		—	70	-	dB
Power Supply Rejection Ratio	PSRR _{CP}		—	72	-	dB
Input Offset Voltage	V _{OFF}	T _A = 25 °C	-10	0	10	mV
Input Offset Tempco	TC _{OFF}		_	3.5	-	μV/°C

4.1.13 Programmable Current Reference (IREF0)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Static Performance						
Resolution	N _{bits}			6		bits
Output Compliance Range	V _{IOUT}	Low Power Mode, Source	0	_	V _{DD} – 0.4	V
		High Current Mode, Source	0	_	V _{DD} – 0.8	V
		Low Power Mode, Sink	0.3	_	V _{DD}	V
		High Current Mode, Sink	0.8	_	V _{DD}	V
Integral Nonlinearity	INL			<±0.2	±1.0	LSB
Differential Nonlinearity	DNL			<±0.2	±1.0	LSB
Offset Error	E _{OFF}		_	<±0.1	±0.5	LSB
Full Scale Error	E _{FS}	Low Power Mode, Source		_	±5	%
		High Current Mode, Source	_	_	±6	%
		Low Power Mode, Sink	_	_	±8	%
		High Current Mode, Sink	_	_	±8	%
Absolute Current Error	E _{ABS}	Low Power Mode Sourcing 20 µA	_	<±1	±3	%
Dynamic Performance						
Output Settling Time to 1/2 LSB	t _{SETTLE}			300	—	ns
Startup Time	t _{PWR}			1	_	μs

4.1.14 Capacitive Sense (CS0)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Single Conversion Time ¹	t _{CNV}	12-bit Mode	20	25	40	μs
		13-bit Mode (default)	21	27	42.5	μs
		14-bit Mode	23	29	45	μs
		16-bit Mode	26	33	50	μs
Number of Channels	N _{CHAN}	24-pin Packages	14			Channels
		20-pin Packages	13			Channels
		16-pin Packages	12			Channels
Capacitance per Code	C _{LSB}	Default Configuration, 16-bit codes		1	_	fF
Maximum External Capacitive	C _{EXTMAX}	CS0CG = 111b (Default)	-	45	_	pF
Load		CS0CG = 000b	_	500	_	pF
Maximum External Series Impe- dance	R _{EXTMAX}	CS0CG = 111b (Default)	_	50	_	kΩ

Table 4.14. Capacitive Sense (CS0)

Note:

1. Conversion time is specified with the default configuration.

2. RMS Noise is equivalent to one standard deviation. Peak-to-peak noise encompasses ±3.3 standard deviations. The RMS noise value is specified with the default configuration.

4.1.16 SMBus

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Standard Mode (100 kHz Class)						
I2C Operating Frequency	f _{I2C}		0	_	70 ²	kHz
SMBus Operating Frequency	f _{SMB}		40 ¹	_	70 ²	kHz
Bus Free Time Between STOP and START Conditions	t _{BUF}		9.4	_	_	μs
Hold Time After (Repeated) START Condition	t _{HD:STA}		4.7	_	-	μs
Repeated START Condition Setup Time	t _{SU:STA}		9.4		_	μs
STOP Condition Setup Time	t _{SU:STO}		9.4		_	μs
Data Hold Time	t _{HD:DAT}		489 ³	_	_	ns
Data Setup Time	t _{SU:DAT}		448 ³		_	ns
Detect Clock Low Timeout	t _{TIMEOUT}		25		_	ms
Clock Low Period	t _{LOW}		4.7	_	_	μs
Clock High Period	t _{HIGH}		9.4	_	50 ⁴	μs
Fast Mode (400 kHz Class)	I					
I2C Operating Frequency	f _{l2C}		0	—	255 ²	kHz
SMBus Operating Frequency	f _{SMB}		40 ¹		255 ²	kHz
Bus Free Time Between STOP and START Conditions	t _{BUF}		2.6	_	-	μs
Hold Time After (Repeated) START Condition	t _{HD:STA}		1.3	_	-	μs
Repeated START Condition Setup Time	t _{SU:STA}		2.6		_	μs
STOP Condition Setup Time	t _{su:sтo}		2.6		_	μs
Data Hold Time	t _{HD:DAT}		489 ³	_	_	ns
Data Setup Time	t _{SU:DAT}		448 ³		_	ns
Detect Clock Low Timeout	t _{TIMEOUT}		25		_	ms
Clock Low Period	t _{LOW}		1.3		_	μs
Clock High Period	t _{HIGH}		2.6		50 ⁴	μs

Table 4.16. SMBus Peripheral Timing Performance (Master Mode)

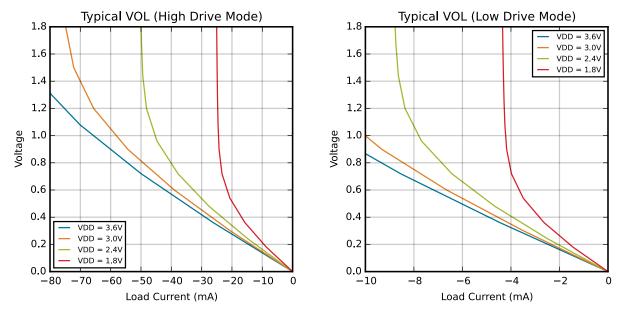


Figure 4.4. Typical V_{OL} Curves

5. Typical Connection Diagrams

5.1 Power

Figure 5.1 Power Connection Diagram on page 31 shows a typical connection diagram for the power pins of the EFM8SB1 devices.

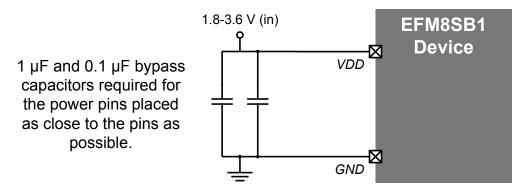


Figure 5.1. Power Connection Diagram

5.2 Debug

The diagram below shows a typical connection diagram for the debug connections pins. The pin sharing resistors are only required if the functionality on the C2D (a GPIO pin) and the C2CK (RSTb) is routed to external circuitry. For example, if the RSTb pin is connected to an external switch with debouncing filter or if the GPIO sharing with the C2D pin is connected to an external circuit, the pin sharing resistors and connections to the debug adapter must be placed on the hardware. Otherwise, these components and connections can be omitted.

For more information on debug connections, see the example schematics and information available in AN127: "Pin Sharing Techniques for the C2 Interface." Application notes can be found on the Silicon Labs website (http://www.silabs.com/8bit-appnotes) or in Simplicity Studio.

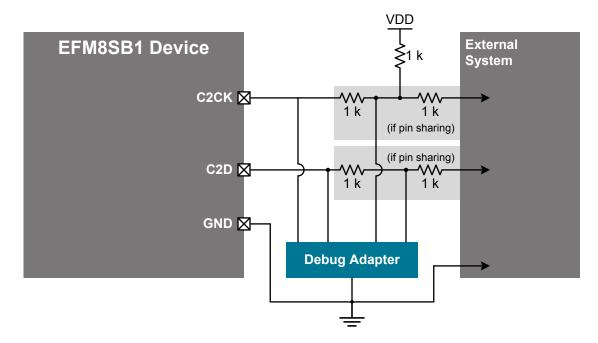


Figure 5.2. Debug Connection Diagram

6. Pin Definitions

6.1 EFM8SB1x-QFN20 Pin Definitions

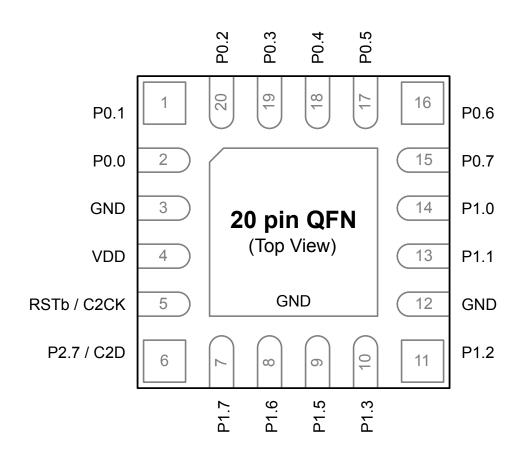


Figure 6.1. EFM8SB1x-QFN20 Pinout

Table 6.1.	Pin Definitions	for EFM8SB1x-QFN20
------------	-----------------	--------------------

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
1	P0.1	Multifunction I/O	Yes	P0MAT.1	ADC0.1
				INT0.1	CS0.1
				INT1.1	AGND
2	P0.0	Multifunction I/O	Yes	P0MAT.0	CS0.0
				INT0.0	VREF
				INT1.0	

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
3	GND	Ground			
4	VDD	Supply Power Input			
5	RSTb /	Active-low Reset /			
	C2CK	C2 Debug Clock			
6	P2.7 /	Multifunction I/O /			
	C2D	C2 Debug Data			
7	P1.7	Multifunction I/O	Yes	P1MAT.7	XTAL4
8	P1.6	Multifunction I/O	Yes	P1MAT.6	XTAL3
9	P1.5	Multifunction I/O	Yes	P1MAT.5	CS0.13
10	P1.3	Multifunction I/O	Yes	P1MAT.3	ADC0.11
					CS0.11
11	P1.2	Multifunction I/O	Yes	P1MAT.2	ADC0.10
					CS0.10
12	GND	Ground			
13	P1.1	Multifunction I/O	Yes	P1MAT.1	CMP0N.4
					CS0.9
14	P1.0	Multifunction I/O	Yes	P1MAT.0	CMP0P.4
					CS0.8
15	P0.7	Multifunction I/O	Yes	P0MAT.7	ADC0.7
				INT0.7	CS0.7
				INT1.7	IREF0
16	P0.6	Multifunction I/O	Yes	P0MAT.6	ADC0.6
				CNVSTR	CS0.6
				INT0.6	
				INT1.6	
17	P0.5	Multifunction I/O	Yes	P0MAT.5	ADC0.5
				INT0.5	CS0.5
				INT1.5	
18	P0.4	Multifunction I/O	Yes	P0MAT.4	ADC0.4
				INT0.4	CS0.4
				INT1.4	
19	P0.3	Multifunction I/O	Yes	P0MAT.3	ADC0.3
				EXTCLK	CS0.3
				WAKEOUT	XTAL2
				INT0.3	
				INT1.3	

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
6	RSTb /	Active-low Reset /			
	C2CK	C2 Debug Clock			
7	P2.7 /	Multifunction I/O /			
	C2D	C2 Debug Data			
8	P1.7	Multifunction I/O	Yes	P1MAT.7	XTAL4
9	P1.6	Multifunction I/O	Yes	P1MAT.6	XTAL3
10	N/C	No Connection			
11	P1.5	Multifunction I/O	Yes	P1MAT.5	CS0.13
12	P1.4	Multifunction I/O	Yes	P1MAT.4	ADC0.12
					CS0.12
13	P1.3	Multifunction I/O	Yes	P1MAT.3	ADC0.11
					CS0.11
14	P1.2	Multifunction I/O	Yes	P1MAT.2	ADC0.10
					CS0.10
15	P1.1	Multifunction I/O	Yes	P1MAT.1	CMP0N.4
					CS0.9
16	P1.0	Multifunction I/O	Yes	P1MAT.0	CMP0P.4
					CS0.8
17	P0.7	Multifunction I/O	Yes	P0MAT.7	ADC0.7
				INT0.7	CS0.7
				INT1.7	IREF0
18	P0.6	Multifunction I/O	Yes	P0MAT.6	ADC0.6
				CNVSTR	CS0.6
				INT0.6	
				INT1.6	
19	P0.5	Multifunction I/O	Yes	P0MAT.5	ADC0.5
				INT0.5	CS0.5
				INT1.5	
20	P0.4	Multifunction I/O	Yes	P0MAT.4	ADC0.4
				INT0.4	CS0.4
				INT1.4	
21	P0.3	Multifunction I/O	Yes	P0MAT.3	ADC0.3
				EXTCLK	CS0.3
				WAKEOUT	XTAL2
				INT0.3	
				INT1.3	

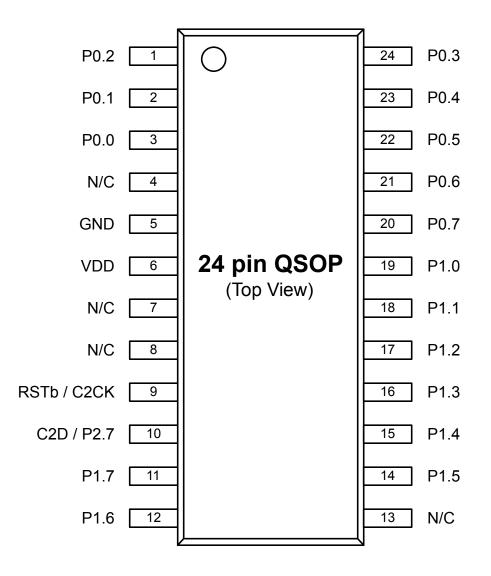


Figure 6.3. EFM8SB1x-QSOP24 Pinout

Table 6.3.	Pin Definitions	for EFM8SB1x-Q	SOP24
------------	-----------------	----------------	-------

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
1	P0.2	Multifunction I/O	Yes	P0MAT.2	ADC0.2
				RTCOUT	CS0.2
				INT0.2	XTAL1
				INT1.2	
2	P0.1	Multifunction I/O	Yes	P0MAT.1	ADC0.1
				INT0.1	CS0.1
				INT1.1	AGND

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
3	P0.0	Multifunction I/O	Yes	P0MAT.0	CS0.0
				INT0.0	VREF
				INT1.0	
4	N/C	No Connection			
5	GND	Ground			
6	VDD	Supply Power Input			
7	N/C	No Connection			
8	N/C	No Connection			
9	RSTb /	Active-low Reset /			
	C2CK	C2 Debug Clock			
10	P2.7 /	Multifunction I/O /			
	C2D	C2 Debug Data			
11	P1.7	Multifunction I/O	Yes	P1MAT.7	XTAL4
12	P1.6	Multifunction I/O	Yes	P1MAT.6	XTAL3
13	N/C	No Connection			
14	P1.5	Multifunction I/O	Yes	P1MAT.5	CS0.13
15	P1.4	Multifunction I/O	Yes	P1MAT.4	ADC0.12
					CS0.12
16	P1.3	Multifunction I/O	Yes	P1MAT.3	ADC0.11
					CS0.11
17	P1.2	Multifunction I/O	Yes	P1MAT.2	ADC0.10
					CS0.10
18	P1.1	Multifunction I/O	Yes	P1MAT.1	CMP0N.4
					CS0.9
19	P1.0	Multifunction I/O	Yes	P1MAT.0	CMP0P.4
					CS0.8
20	P0.7	Multifunction I/O	Yes	P0MAT.7	ADC0.7
				INT0.7	CS0.7
				INT1.7	IREF0
21	P0.6	Multifunction I/O	Yes	P0MAT.6	ADC0.6
				CNVSTR	CS0.6
				INT0.6	
				INT1.6	
22	P0.5	Multifunction I/O	Yes	P0MAT.5	ADC0.5
				INT0.5	CS0.5
				INT1.5	

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
A4	P0.0	Multifunction I/O	Yes	P0MAT.0	CS0.0
				INT0.0	VREF
				INT1.0	
B1	P1.0	Multifunction I/O	Yes	P1MAT.0	CMP0P.4
					CS0.8
B2	P0.3	Multifunction I/O	Yes	P0MAT.3	ADC0.3
				EXTCLK	CS0.3
				WAKEOUT	XTAL2
				INT0.3	
				INT1.3	
B3	P0.2	Multifunction I/O	Yes	P0MAT.2	ADC0.2
				RTCOUT	CS0.2
				INT0.2	XTAL1
				INT1.2	
B4	GND	Ground			
C1	P1.3	Multifunction I/O	Yes	P1MAT.3	ADC0.11
					CS0.11
C2	P0.6	Multifunction I/O	Yes	P0MAT.6	ADC0.6
				CNVSTR	CS0.6
				INT0.6	
				INT1.6	
C3	P0.1	Multifunction I/O	Yes	P0MAT.1	ADC0.1
				INT0.1	CS0.1
				INT1.1	AGND
C4	VDD	Supply Power Input			
D1	P1.1	Multifunction I/O	Yes	P1MAT.1	CMP0N.4
					CS0.9
D2	P1.4	Multifunction I/O	Yes	P1MAT.4	ADC0.12
					CS0.12
D3	RSTb /	Active-low Reset /			
	C2CK	C2 Debug Clock			
D4	P2.7 /	Multifunction I/O /			
	C2D	C2 Debug Data			

Dimension	Min	Мах			
Note:					
1. All dimensions shown are in millimeters	(mm) unless otherwise noted.				
2. Dimensioning and Tolerancing is per the	ANSI Y14.5M-1994 specification.				
3. This Land Pattern Design is based on th	e IPC-7351 guidelines.				
4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad.					
5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.					
6. The stencil thickness should be 0.125 mm (5 mils).					
7. The ratio of stencil aperture to land pad size should be 1:1 for the perimeter pads.					
8. A 2x2 array of 0.75 mm openings on a 0.95 mm pitch should be used for the center pad to assure proper paste volume.					
9. A No-Clean, Type-3 solder paste is reco	mmended.				

10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

8.3 QFN20 Package Marking

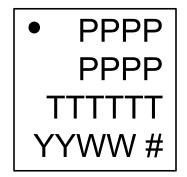


Figure 8.3. QFN20 Package Marking

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).

9. QFN24 Package Specifications

9.1 QFN24 Package Dimensions

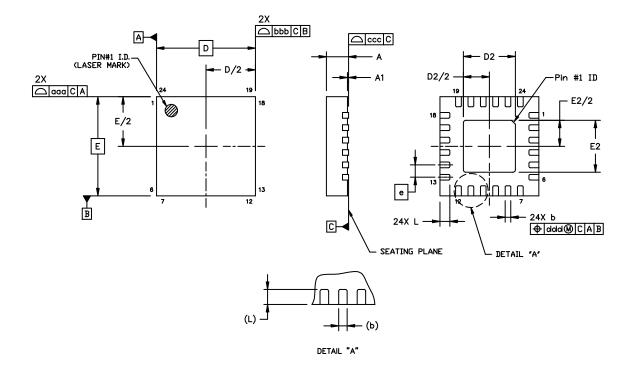


Figure 9.1. QFN24 Package Drawing

Table 9.1.	QFN24	Package	Dimensions
		. aonago	

Dimension	Min	Тур	Мах		
A	0.70	0.75	0.80		
A1	0.00	_	0.05		
b	0.18	0.25	0.30		
D		4.00 BSC			
D2	2.35	2.45	2.55		
е	0.50 BSC				
E		4.00 BSC			
E2	2.35	2.45	2.55		
L	0.30	0.40	0.50		
ааа	—	_	0.10		
bbb	0.10				
ссс	—	—	0.08		
ddd	_	_	0.10		

10. QSOP24 Package Specifications

10.1 QSOP24 Package Dimensions

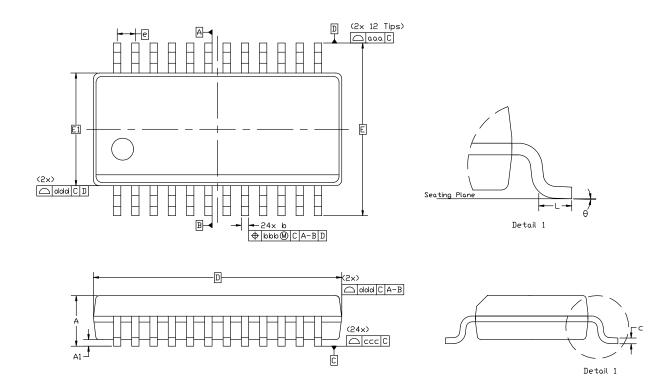


Figure 10.1. QSOP24 Package Drawing

Table 10.1. QSOP24 Package Dimensions

Dimension	Min	Тур	Мах			
A	_	—	1.75			
A1	0.10	—	0.25			
b	0.20	—	0.30			
С	0.10	_	0.25			
D	8.65 BSC					
E		6.00 BSC				
E1	3.90 BSC					
e	0.635 BSC					
L	0.40	0.40 — 1.27				
theta	0°	—	8°			

Figure 10.3. QSOP24 Package Marking

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).