

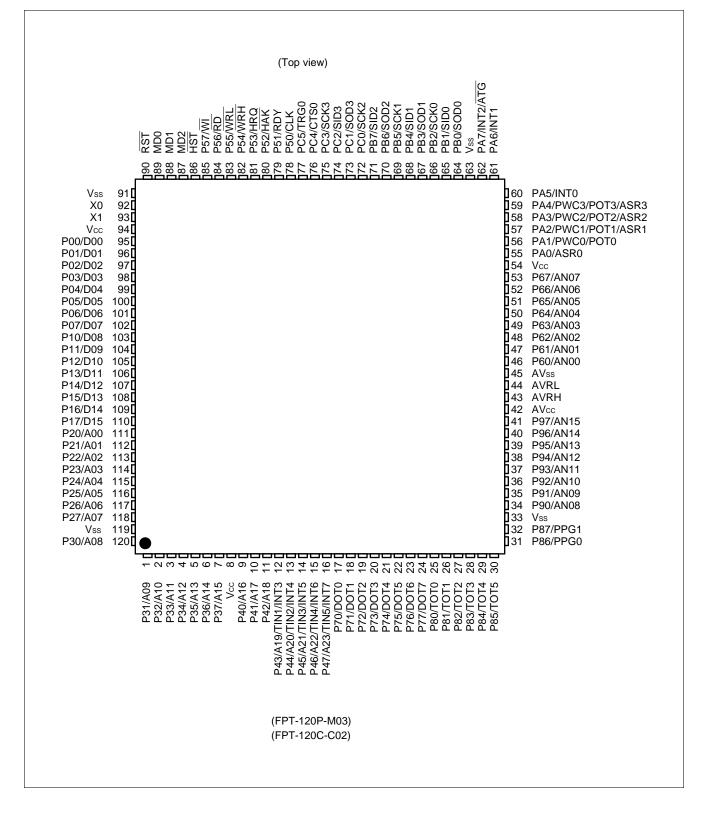
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

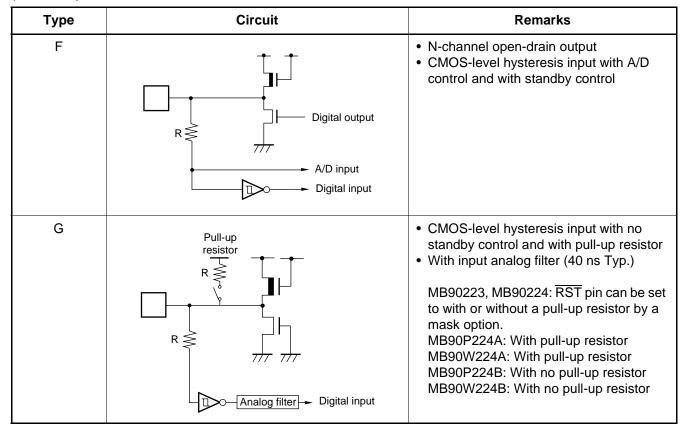

E·XFI

Product Status	Active
Core Processor	F ² MC-16F
Core Size	16-Bit
Speed	16MHz
Connectivity	EBI/EMI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	102
Program Memory Size	64KB (64K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	3K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	120-BQFP
Supplier Device Package	120-QFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90223pf-gt-372

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

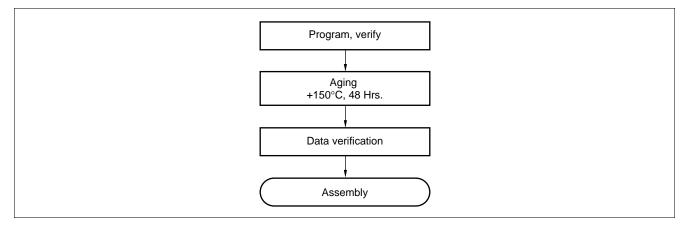
PIN ASSIGNMENT



Pin no.	Pin name	Circuit	Function
QFP*		type	
62	INT2	В	DTP/External interrupt request input pin When DTP/external interrupts are enabled, these inputs may be used suddenly at any time; therefore, it is necessary to stop output by other functions on these pins, except when using them for output deliberately. When these pins are open in input mode, through current may leak in stop mode/reset mode, be sure to fix these pins to Vcc/Vss level to use these pins in input mode.
	ATG		10-bit A/D converter external trigger input pin When these pins are open in input mode, through current may leak in stop mode/reset mode, be sure to fix these pins to V_{CC}/V_{SS} level to use these pins in input mode.
64	PB0	С	General-purpose I/O port This function is valid when the UART0 (ch.0) serial data output specification is "disabled".
	SOD0		UART0 (ch.0) serial data output This function is valid when the UART0 (ch.0) serial data output specification is "enabled".
65	PB1	С	General-purpose I/O port This function is always valid.
	SIDO		UART0 (ch.0) serial data input pin During UART0 (ch.0) input operations, this input may be used suddenly at any time; therefore, it is necessary to stop output by other functions on this pin, except when using it for output deliberately.
66	PB2	С	General-purpose output port This function is valid when the UART0 (ch.0) clock output specification is "disabled".
	SCK0		UART0 (ch.0) clock output pin The clock output function is valid when the UART0 (ch.0) clock output specification is "enabled". UART0 (ch.0) external clock input pin. This function is valid when the port is in input mode and the UART0 (ch.0) specification is external clock mode.
67	PB3	С	General-purpose I/O port This function is valid when the UART0 (ch.1) serial data output specification is "disabled".
	SOD1		UART0 (ch.1) serial data output pin This function is valid when the UART0 (ch.1) serial data output specification is "enabled".
68	PB4	С	General-purpose I/O port This function is always valid.
	SID1		UART0 (ch.1) serial data input pin During UART0 (ch.1) input operations, this input may be used suddenly at any time; therefore, it is necessary to stop output by other functions on this pin, except when using it for output deliberately.

* : FPT-120P-M03, FPT-120C-C02

(Continued)


□ - P-type transistor

- N-type transistor

Note: The pull-up and pull-down resistors are always connected, regardless of the state.

5. Recommended Screening Conditions

High temperature aging is recommended as the pre-assembly screening procedure.

6. Programming Yeild

MB90P224A/P224B cannot be write-tested for all bits due to their nature. Therefore the write yield cannot always be guaranteed to be 100%.

7. Pin Assignments in EPROM Mode

(1) Pins Compatible with MBM27C1000

MBM2	BM27C1000 MB90P224A/P224B/ MB90W224A/W224B			MBM	27C1000	MB90P224A/P224B/ MB90W224A/W224B		
Pin no.	Pin name	Pin no.	Pin name	Pin no.	Pin name	Pin no.	Pin name	
1	Vpp	87	MD2 (VPP)	32	Vcc	8, 54, 94	Vcc	
2	OE	83	P55	31	PGM	84	P56	
3	A15	7	P37	30	N.C.		_	
4	A12	4	P34	29	A14	6	P36	
5	A07	118	P27	28	A13	5	P35	
6	A06	117	P26	27	A08	120	P30	
7	A05	116	P25	26	A09	1	P31	
8	A04	115	P24	25	A11	3	P33	
9	A03	114	P23	24	A16	9	P40	
10	A02	113	P22	23	A10	2	P32	
11	A01	112	P21	22	CE	82	P54	
12	A00	111	P20	21	D07	102	P07	
13	D00	95	P00	20	D06	101	P06	
14	D01	96	P01	19	D05	100	P05	
15	D02	97	P02	18	D04	99	P04	
16	GND	33, 63, 91,119	Vss	17	D03	98	P03	

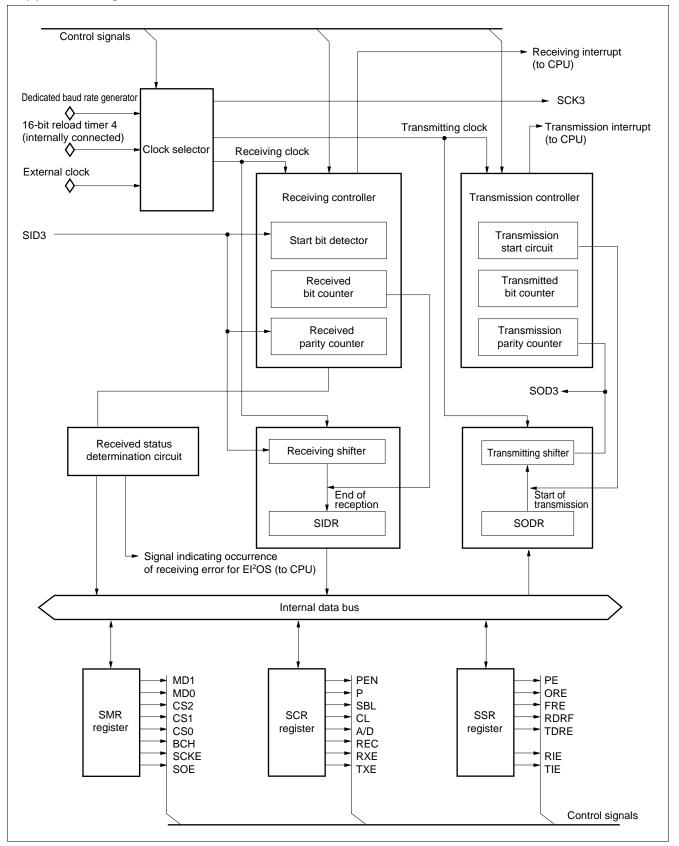
Address	Register	Register name	Access	Resouce name	Initial value
000062н	OCU0 control register 01	CCR01	R/W	OCU (Output	11110000
000063н		CCRUT		Compare Unit)	0000
000064н					
000065н		(Reserved	1 aroa)*1		
000066н			alea)		
000067н					
000068н	OCU0 control register 10	CCR10 R/W		0000	
000069н			L/ AA	OCU (Output	00000000
00006Ан	OCU0 control register 11	CCR11	R/W	Compare Unit)	0000
00006Вн		CONTI	D/ VV		00000000
00006Сн			1		
00006Dн		(Reserved	area)*1		
00006Ен		(Reserved	i alea) '		
00006Fн	-				
000070н	Free run timer centrel register	TCCR R/W			11000000
000071н	- Free-run timer control register		r///		111111
000072н	Free-run timer lower-order data	TCRL		24-bit timer counter	00000000
000073н	register		R		00000000
000074н	Free-run timer upper-order data	тори	ĸ		00000000
000075н	register	TCRH			00000000
000076н		1		1	1
000077н		(Decention	aree)*1		
000078н		(Reserved	i alea) '		
000079н					
00007Ан	PWC divider ratio control register 0	DIVR0	R/W	PWC timer 0	00
00007Вн	Reserved area ^{*1}		+		
00007Сн	PWC divider ratio control register 1	DIVR1	R/W	PWC timer 1	00
00007DH	Reserved area*1	J	1	1	
00007Ен	PWC divider ratio control register 2	DIVR2	R/W	PWC timer 2	00
00007Fн	Reserved area ^{*1}	4	1	1	
000080н	PWC divider ratio control register 3	DIVR3	R/W	PWC timer 3	00
000081н to 8Dн		(Reserved	area)*1	1	1

(Continued)

Address	Register	Register name	Access	Resouce name	Initial value
00008Eн	WI control register	WICR	R/W	Write-inhibit RAM	X
00008Fн					
000090н to 9Eн		(Reserved	l area)*1		
00009Fн	Delay interrupt source generation /release register	DIRR	R/W	Delay interrupt generation module	0
0000А0н	Standby control register	STBYC	R/W	Low power consumption	0001***
0000АЗн	Address mid-order control register	MACR	W	External pin	#######
0000А4н	Address higher-order control register	HACR	W	External pin	########
0000А5н	External pin control register	EPCR	W	External pin	##0-0#00
0000А8н	Watchdog timer control register	WDTC	R/W	Watchdog timer	xxxxxxxx
0000А9н	Timebase timer control register	TBTC	R/W	Timebase timer	00000
0000В0н	Interrupt control register 00	ICR00	R/W		00000111
0000B1н	Interrupt control register 01	ICR01	R/W	_	00000111
0000B2н	Interrupt control register 02	ICR02	R/W		00000111
0000ВЗн	Interrupt control register 03	ICR03	R/W	_	00000111
0000B4н	Interrupt control register 04	ICR04	R/W	_	00000111
0000В5н	Interrupt control register 05	ICR05	R/W		00000111
0000В6н	Interrupt control register 06	ICR06	R/W		00000111
0000 B7 н	Interrupt control register 07	ICR07	R/W	Interrupt	00000111
0000 В 8н	Interrupt control register 08	ICR08	R/W	controller	00000111
0000В9н	Interrupt control register 09	ICR09	R/W	_	00000111
0000ВАн	Interrupt control register 10	ICR10	R/W		00000111
0000BBн	Interrupt control register 11	ICR11	R/W		00000111
0000BCH	Interrupt control register 12	ICR12	R/W	_	00000111
0000BDH	Interrupt control register 13	ICR13	R/W		00000111
0000BEн	Interrupt control register 14	ICR14	R/W		00000111
0000BFн	Interrupt control register 15	ICR15	R/W		00000111
0000C0н to FFн		(External	area)*2		
001F00н	DWC data buffer register 0			DWC time = 0	00000000
001F01н	PWC data buffer register 0	PWCR0	R/W	PWC timer 0	00000000

(Continued)

(Continued)


Address	Register	Register name	Access	Resouce name	Initial value
001F48н	DDC such actting register 0	DCCDA	W		XXXXXXXX
001F49н	PPG cycle setting register 0	PCSR0	vv	16-bit PPG	XXXXXXXX
001F4Aн		PDUT0	W	timer 0	XXXXXXXX
001F4Bн	PPG duty setting register 0	1 DOTO			XXXXXXXX
001F4Cн	DDC such softing register 1	D00D4	W		XXXXXXXX
001F4Dн	PPG cycle setting register 1	PCSR1		16-bit PPG	XXXXXXXX
001F4Eн	PPG duty setting register 1	PDUT1	10/	timer 1	XXXXXXXX
001F4Fн	- FFG duty setting register 1	PDUTT	W		XXXXXXXX
001F50н				XXXXXXXX	
001F51н	- ICU lower-order data register 0	ICRL0	R	Input capture 0	XXXXXXXX
001F52н	ICI L higher order data register 0	ICRH0	R		XXXXXXXX
001F53н	- ICU higher-order data register 0	ICKHU	ĸ		00000000
001F54н	ICU lower-order data register 1	ICRL1	R		XXXXXXXX
001F55н				Input capture 1	XXXXXXXX
001F56н	ICU higher-order data register 1	ICRH1	R		XXXXXXXX
001F57 н		ICKIII	N		00000000
001F58н	ICU lower-order data register 2	ICRL2	R		XXXXXXXX
001F59н		IGREZ	К	Input capture 2	XXXXXXXX
001F5Ан	ICU higher-order data register 2	ICRH2	R	- Input capture 2	XXXXXXXX
001F5Bн		ICKHZ	N		00000000
001F5Cн	ICI I lower order data register 2	ICRL3	R		XXXXXXXX
001F5Dн	- ICU lower-order data register 3	IUKLJ	ĸ	- Input capture 3	XXXXXXXX
001F5Eн	ICI L higher order data register 2	ICRH3	R		XXXXXXXX
001F5Fн	- ICU higher-order data register 3		00000000		
001F60н to 1FFFн		(Reserved	area)*1	•	•

Initial value

0: The initial value of this bit is "0".

- 1: The initial value of this bit is "1".
- X: The initial value of this bit is undefined.
- -: This bit is not used. The initial value is undefined.
- *: The initial value of this bit varies with the reset source.
- #: The initial value of this bit varies with the operation mode.
- *1: Access prohibited
- *2: Only this area is open to external access in the area below address 0000FF_H (inclusive). All addresses which are not described in the table are reserved areas, and accesses to these areas are handled in the same manner as for internal areas. The access signal for the external bus is not generated.
- *3: When an external bus is enable mode, never access to resisters which are not used as general ports in areas address 000000H to 000005H or 000010H to 000015H.

(2) Block Diagram

5. 10-bit A/D Converter

The 10-bit A/D converter converts analog input voltage into a digital value. The features of this module are described below:

- Conversion time: 6.125 μs/channel (min.) (with machine clock running at 16 MHz)
- · Uses RC-type sequential comparison and conversion method with built-in sample and hold circuit
- 10-bit resolution

Analog input can be selected b	by software from among 16 channels
Single-conversion mode:	Selects and converts one channel.
Scan conversion mode:	Converts several consecutive channels (up to 16 can be programmed).
One-shot mode:	Converts the specified channel once and terminates.
Continuous conversion mode:	Repeatedly converts the specified channel.
Stop conversion mode:	Pauses after converting one channel and waits until the next startup (permits
	synchronization of start of conversion).

- When A/D conversion is completed, an "A/D conversion complete" interrupt request can be issued to the CPU. Because the generation of this interrupt can be used to start up the EI²OS and transfer the A/D conversion results to memory, this function is suitable for continuous processing.
- Startup triggers can be selected from among software, an external trigger (falling edge), and a timer (rising edge).

(1) Register Configuration

• A/D Channel Setting Register (ADCH)

This register specfies the A/D converter conversion channel.

Register name	Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Initial value
ADCH	000032н	ANS3	ANS2	ANS1	ANS0	ANE3	ANE2	ANE1	ANE0	00000000 в
		(R/W)								

• A/D Mode Register (ADMD)

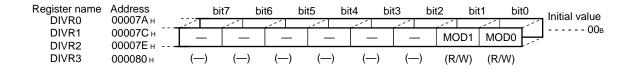
This register specfies the A/D converter operation mode and the startup source.

Register name Add	dress	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8	Initial value
ADMD 000	0033н [—	_	Reserved	MOD1	MOD0	STS1	STS0	Х0000 в
	-	(—)	(—)	(—)	(W)	(R/W)	(R/W)	(R/W)	(R/W)	

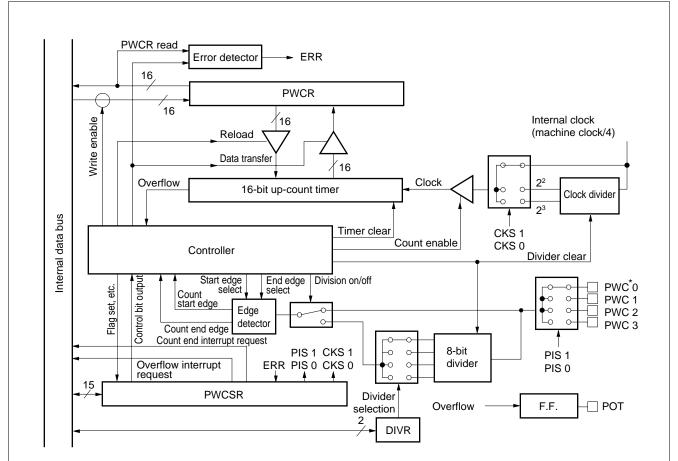
Note: Program "0" to bit 12 when write. Read value is indeterminated.

• A/D Control Status Register (ADCS)

This register is the A/D converter control and status register.


Register name		bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Initial value
ADCS	000034н	BUSY	INT	INTE	PAUS		_	STRT	Reserved	0000 00 в
		(R/W)	(R/W)	(R/W)	(R/W)	(—)	(—)	(W)	(R/W)	

A/D Data Register (ADCD)


This register stores the A/D converter conversion data.

Register name Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Initial value
ADCD 000036H	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXX в
	(R)	-							

• PWC Division Ratio Control Register 0 to 3 (DIVR0 to DIVR3)

(2) Block Diagram

*: In the MB90220 series, only the module input PWC 0 of each channel is connected to the respective external pins.

Channel	POT pin
PWC ch. 0	PA 1/PWC 0/POT 0
PWC ch. 1	PA 2/PWC 1/POT 1/ASR 1
PWC ch. 2	PA 3/PWC 2/POT 2/ASR 2
PWC ch. 3	PA 4/PWC 3POT 3/ASR 3

8. 24-bit Timer Counter

The 24-bit timer counter consists of a 24-bit up-counter, an 8-bit output buffer register, and a control register. The count value output by this timer counter is used to generate the base time used for input capture and output compare.

The interrupt functions provided are timer overflow interrupts and timer intermediate bit interrupts. The intermediate bit interrupt permits four time settings.

The 24-bit timer counter value is cleared to all zeroes by a reset.

(1) Register Configuration

• Free-run Timer Control Register (TCCR)

Register name	Address	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8	Initial value
TCCR	000071н	—	_	Reserved	Reserved	Reserved	Reserved	Reserved	PR0	111111в
	•	(—)	(—)	(W)	(W)	(R/W)	(R/W)	(R/W)	(R/W)	
Register name	-	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Initial value
TCCR	000070н	CLR2	CLR	IVF	IVFE	TIM	TIME	TIS1	TIS0	1100000в
		(W)	(W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	

• Free-run Timer Low-order Data Register (TCRL)

Register name	Address	bit15		bit0	
TCRL	000072 н		TCRL		Initial value Access
	000073н		ICRL		0000000 в К

• Free-run Timer High-order Data Register (TCRH)

Register name	Address	bit15	bit8 bit7	bit0	
TCRH	000074н 000075н	—	TCRH		Initial value Access 00000000 B R

(Continued)

Parameter	Symbol	Pin name	Condition		Value		Unit	Remarks
Farameter	Symbol	Fin name	Condition	Min.	Тур.	Max.	Unit	Remarks
Analog power	la	AVcc	fc = 16 MHz*9		3	7	mA	
supply voltage	Іан	AVCC		—	—	5 ^{*6}	μA	At stop mode
Input capacitance	CIN	*7	_		10	_	pF	

*1: <u>Hysteresis</u> input pins

RST, HST, P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P80 to P87, P90 to P97, PA0 to PA7, PB0 to PB7, PC0 to PC5

*2: Ouput pins P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P70 to P77, P80 to P87, PA0 to PA7, PB0 to PB7, PC0 to PC5

*3: Output pins P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, PA0 to PA7, PB0 to PB7, PC0 to PC5

*4: A list of availabilities of pull-up/pull-down resistors

Pin name	MB90223/224	MB90P224A/W224A	MB90P224B/W224B
RST	Availability of pull-up resistors is optionally defined.	Pull-up resistors available	Unavailable
MD1	Pull-up resistors available	Unavailable	Unavailable
MD0, MD2	Pull-up resistors available	Unavailable	Unavailable

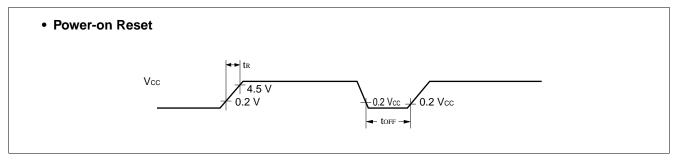
*5: Vcc = +5.0 V, Vss = 0.0 V, TA = +25°C, Fc = 16 MHz

*6: The current value applies to the CPU stop mode with A/D converter inactive ($V_{CC} = AV_{CC} = AVRH = +5.5 V$).

*7: Other than Vcc, Vss, AVcc and AVss

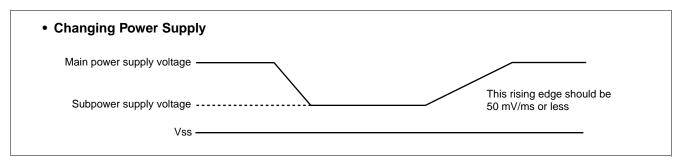
*8: Measurement condition of power supply current; external clock pin and output pin are open. Measurement condition of Vcc; see the table above mentioned.

*9: Fc = 12 MHz for MB90223


(4) Power on Supply Specifications (Power-on Reset)

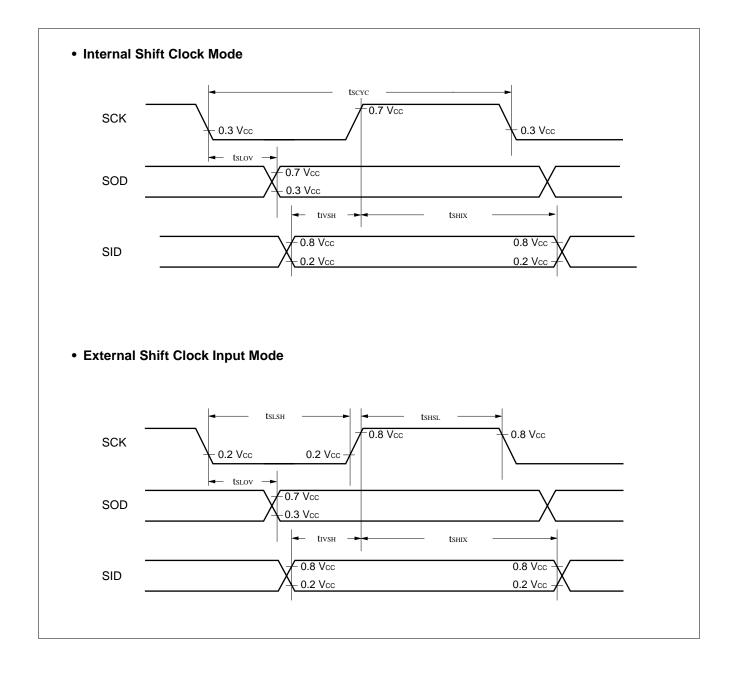
	$ MB90223/224/P224B/W224B: (V_{CC} = +4.5 V \text{ to } +5.5 V, V_{SS} = 0.0 V, T_A = -40^{\circ}\text{C to } +105^{\circ}\text{C}) $ $ MB90P224A/W224A : (V_{CC} = +4.5 V \text{ to } +5.5 V, V_{SS} = 0.0 V, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}) $											
External bus mode			: (Vcc = +4	.5 V to +	5.5 V, Vss	s = 0.0 V,	$T_A = -40$)°C to +70°C)				
Parameter	Symbol	Pin name	Condition		Value		Unit	Remarks				
Falameter	Symbol		Condition	Min.	Тур.	Max.	Unit	Remains				
Power supply rising time	tR	Vcc		_	—	30	ms	*				
Power supply cut-off time	toff	Vcc	_	1	_	_	ms					

* : Before power supply rising, it is required to be $V_{CC} < 0.2$ V.

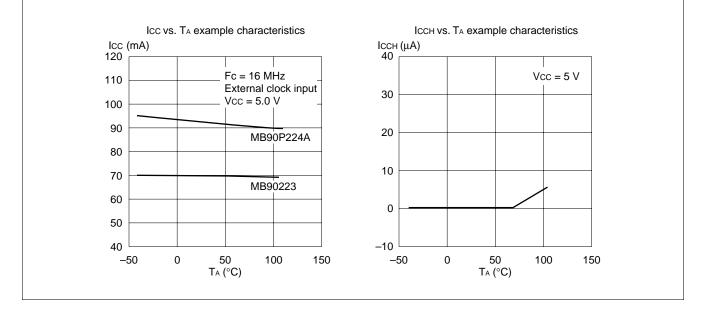

Notes: • Power-on reset assumes the above values.

- Whether the power-on reset is required or not, turn the power on according to these characteristics and trigger the power-on reset.
- There are internal registers (STBYC, etc.) which is initialized only by the power-on reset in the device.

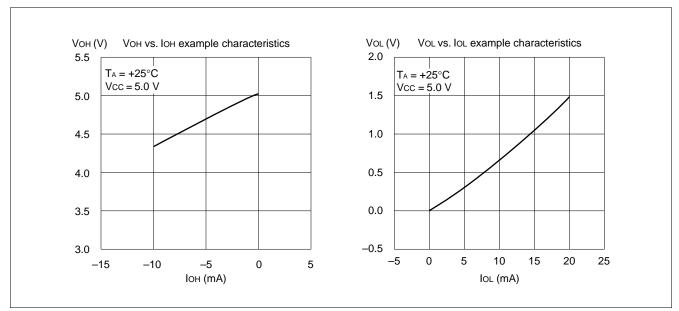
Note: Note on changing power supply


Even if above characteristics are not insufficient, abrupt changes in power supply voltage may cause a poweron reset. Therefore, at the time of a momentary changes such as when power is turned on, rise the power smoothly as shown below.

(9) UART Timing

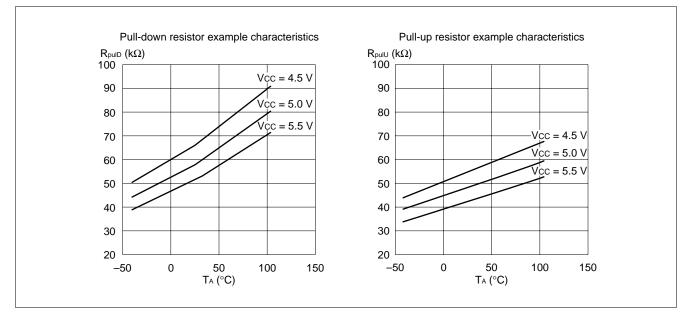

Single-chip modeMB90223/224/P224B/W224B: (Vcc = +4.5 V to +5.5 V, Vss = 0.0 V, T_A = -40°C to +105°C) $MB90P224A/W224A$: (Vcc = +4.5 V to +5.5 V, Vss = 0.0 V, T_A = -40°C to +85°C) $: (Vcc = +4.5 V to +5.5 V, Vss = 0.0 V, T_A = -40°C to +70°C)$ External bus mode: (Vcc = +4.5 V to +5.5 V, Vss = 0.0 V, T_A = -40°C to +70°C)													
Parameter	Symbol	Pin	Condition	Va	lue	Unit	Remarks						
Parameter	Symbol	name	Condition	Min.	Max.	Unit	Remarks						
Serial clock cycle time	tscyc	_		8 tcyc		ns	Internal						
$SCLK \downarrow \to SOUT \text{ delay time}$	t slov	_	Load condition:	-80	80	ns	clock						
Valid SIN \rightarrow SCLK \uparrow	t ivsh	—	80 pF	100	_	ns	operation output pin						
SCLK $\uparrow \rightarrow$ Valid SIN hold time	t shix	—		60	_	ns	output pin						
Serial clock "H" pulse width	t shsl	_		4 tcyc	—	ns							
Serial clock "L" pulse width	t slsh	_		4 tcyc	—	ns	External						
$SCLK \downarrow \to SOUT$ delay time	t slov	_	Load condition: 80 pF		150	ns	clock operation						
$Valid\;SIN\toSCLK\;\uparrow$	t ivsh	—		60	—	ns	output pin						
SCLK $\uparrow \rightarrow$ valid SIN hold time	t shix			60	_	ns							

Notes: • These AC characteristics assume in CLK synchronization mode. • "tcvc" is the machine cycle (unit: ns).

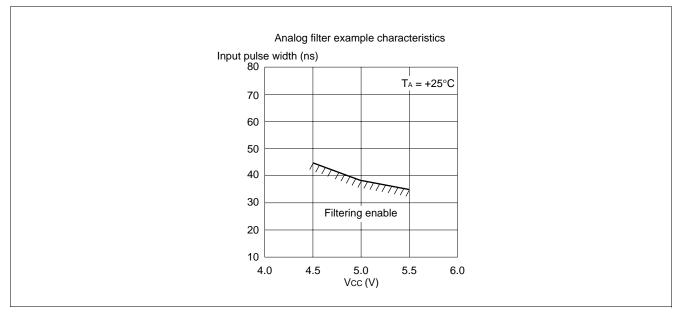


■ EXAMPLE CHARACTERISTICS

(1) Power Supply Current


Note: These are not assured value of characteristics but example characteristics.

(2) Output Voltage


Note: These are not assured value of characteristics but example characteristics.

(3) Pull-up/Pull-down Resistor

Note: These are not assured value of characteristics but example characteristics.

(4) Analog Filter

Mn	emonic	#	cycles	В	Operation	LH	AH	Ι	S	Т	Ν	Ζ	۷	С	RMW
INC INC	ear eam	2 2+	2 3+ (a)	0 2× (b)	byte (ear) ← (ear) +1 byte (eam) ← (eam) +1	-	_	_	_	_	*	*	*		*
DEC DEC	ear eam	2 2+	2 3+ (a)	0 2× (b)	byte (ear) ← (ear) −1 byte (eam) ← (eam) −1	-	_ _	-	-	-	*	*	*		*
INCW INCW	ear eam	2 2+	2 3+ (a)	0 2× (c)	word (ear) \leftarrow (ear) +1 word (eam) \leftarrow (eam) +1	-	_	_	_	_	*	*	*		*
DECW DECW	ear eam	2 2+	2 3+ (a)	0 2× (c)	word (ear) \leftarrow (ear) –1 word (eam) \leftarrow (eam) –1	-	-	_	_	-	*	*	*	-	*
INCL INCL	ear eam	2 2+	4 5+ (a)	0 2× (d)	long (ear) \leftarrow (ear) +1 long (eam) \leftarrow (eam) +1	_ _	_	_	_	_	*	*	*	_	*
DECL DECL	ear eam	2 2+	4 5+ (a)	0 2× (d)	long (ear) ← (ear) −1 long (eam) ← (eam) −1	-		_ _	_ _	-	*	*	*		*

Table 10 Increment and Decrement Instructions (Byte/Word/Long Word) [12 Instructions]

For an explanation of "(a)", "(b)", "(c)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 11 Compare Instructions (Byte/Word/Long Word) [11 Instructions]

Mn	emonic	#	cycles	В	Operation	LH	AH	I	S	Т	Ν	Ζ	۷	С	RMW
CMP	А	1	2	0	byte (AH) – (AL)	-	-	-	-	-	*	*	*	*	_
CMP	A, ear	2	2	0	byte (A) – (ear)	—	_	_	_	_	*	*	*	*	-
CMP	A, eam	2+	2+ (a)	(b)	byte (A) – (eam)	_	_	_	_	_	*	*	*	*	-
CMP	A, #imm8	2	2	`Ó	byte (A) – imm8	-	-	—	_	-	*	*	*	*	—
CMPW	А	1	2	0	word (AH) – (AL)	-	_	Ι	_	_	*	*	*	*	_
CMPW	A, ear	2	2	0	word (A) – (ear)	—	—	_	_	—	*	*	*	*	-
CMPW	A, eam	2+	2+ (a)	(c)	word (A) – (eam)	—	—	_	_	—	*	*	*	*	-
CMPW	A, #imm16	3	2	0	word (A) – imm16	-	-	—	—	-	*	*	*	*	-
CMPL	A, ear	2	3	0	long (A) – (ear)	-	_	Ι	_	_	*	*	*	*	_
CMPL	A, eam	2+	4+ (a)	(d)	long (A) – (eam)	-	—	—	—	-	*	*	*	*	—
CMPL	A, #imm32	5	3	0	long (A) – imm32	-	—		—	-	*	*	*	*	—

For an explanation of "(a)", "(b)", "(c)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Mn	emonic	#	cycles	В	Operation	LH	AH	I	S	Т	Ν	Ζ	۷	С	RMW
ANDL ANDL	A, ear A, eam	2 2+	5 6+ (a)		long (A) \leftarrow (A) and (ear) long (A) \leftarrow (A) and (eam)			_	-	-	*	*	R R	-	
ORL ORL	A, ear A, eam	2 2+	5 6+ (a)		long (A) \leftarrow (A) or (ear) long (A) \leftarrow (A) or (eam)	_ _	-	_	_	-	*	*	R R		
XORL XORL	A, ear A, eam	2 2+	5 6+ (a)	0 (d)	long (A) \leftarrow (A) xor (ear) long (A) \leftarrow (A) xor (eam)	_ _	-	_	_ _		*	*	R R		

Table 15 Logical 2 Instructions (Long Word) [6 Instructions]

For an explanation of "(a)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 16	Sign Inversion	Instructions	(Byte/Word)	[6 Instructions]
----------	----------------	--------------	-------------	------------------

Mn	emonic	#	cycles	В	Operation	LH	AH	I	S	Т	Ν	Ζ	۷	С	RMW
NEG	А	1	2	0	byte (A) \leftarrow 0 – (A)	Х	_	-	_	_	*	*	*	*	_
NEG NEG	ear eam	2 2+	2 3+ (a)		byte (ear) \leftarrow 0 – (ear) byte (eam) \leftarrow 0 – (eam)	-	_ _	-		_ _	*	*	*	*	*
NEGW	А	1	2	0	word (A) \leftarrow 0 – (A)	-	-	Ι	-	-	*	*	*	*	_
NEGW NEGW		2 2+	2 3+ (a)	0 2× (c)	word (ear) \leftarrow 0 – (ear) word (eam) \leftarrow 0 – (eam)	-	_ _		_ _	_ _	* *	* *	* *	* *	*

For an explanation of "(a)", "(b)" and "(c)" and refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 17	Absolute Value Instructions	(Byte/Word/Long	Word) [3 Insturctions]
----------	-----------------------------	-----------------	------------------------

Mnemonic	#	cycles	В	Operation	LH	AH	Ι	S	Т	Ν	Ζ	۷	С	RMW
ABS A	2	2	0	byte (A) \leftarrow absolute value (A)	Ζ	-	-	_	Ι	*	*	*	-	_
ABSW A	2	2	0	word $(A) \leftarrow absolute value (A)$	_	—	_	_	—	*	*	*	—	-
ABSL A	2	4	0	long $(A) \leftarrow absolute value (A)$	—	-	-	—	-	*	*	*	—	-

Table 18	Normalize Instructions	(Long Word) [ˈ	1 Instruction]
----------	------------------------	----------------	----------------

Mne	emonic	#	cycles	В	Operation	LH	AH	I	S	Т	Ν	Ζ	۷	С	RMW
NRML	- A, R0	2	*		long (A) \leftarrow Shifts to the position at which "1" was set first byte (R0) \leftarrow current shift count	-	-	-	-	*	-	_	-	-	-

*: 5 when the contents of the accumulator are all zeroes, 5 + (R0) in all other cases.

Mnemonic		cycles	В	Operation	LH	AH	Ι	S	Т	Ν	Ζ	V	С	RMW
PUSHW A PUSHW AH PUSHW PS PUSHW rlst	1 1 1 2	3 3 3 * ³	(C) (C) (C) *4	word (SP) \leftarrow (SP) -2, ((SP)) \leftarrow (A) word (SP) \leftarrow (SP) -2, ((SP)) \leftarrow (AH) word (SP) \leftarrow (SP) -2, ((SP)) \leftarrow (PS) (SP) \leftarrow (SP) -2n, ((SP)) \leftarrow (rlst)		- - -	- - -	_ _ _ _	_ _ _ _	 	 	 	- - -	- - -
POPW A POPW AH POPW PS POPW rlst	1 1 1 2	3 3 3 *2	(C) (C) (C) *4	$\begin{array}{l} \text{word} (A) \leftarrow ((SP)), (SP) \leftarrow (SP) + 2\\ \text{word} (AH) \leftarrow ((SP)), (SP) \leftarrow (SP) + 2\\ \text{word} (PS) \leftarrow ((SP)), (SP) \leftarrow (SP) + 2\\ (\text{rlst}) \leftarrow ((SP)), (SP) \leftarrow (SP) \end{array}$	 	*	 * 	*	_ * _	*	*	_ * _	*	
JCTX @A	1	9	6× (c)	Context switch instruction	_	_	*	*	*	*	*	*	*	-
AND CCR, #imm OR CCR, #imm		3 3	0 0	byte (CCR) \leftarrow (CCR) and imm8 byte (CCR) \leftarrow (CCR) or imm8	_	-	*	*	*	*	*	*	*	_ _
MOV RP, #imm8 MOV ILM, #imm8	2 2	2 2	0 0	byte (RP) ←imm8 byte (ILM) ←imm8	_	-	-		-	_ _	_ _	_ _	_	_
MOVEA RWi, ear MOVEA RWi, eam MOVEA A, ear MOVEA A, eam	2 2+ 2 2+	2	0	word (RWi) ←ear word (RWi) ←eam word(A) ←ear word (A) ←eam	 	*		_ _ _	- - -	_ _ _ _	_ _ _	_ _ _		
ADDSP #imm8 ADDSP #imm16	2 3	3 3	0 0	word (SP) \leftarrow ext (imm8) word (SP) \leftarrow imm16	_				-			_ _		_
MOV A, brgl MOV brg2, A MOV brg2, #imm8	2 2 3	*1 1 2	0 0 0	byte (A) \leftarrow (brgl) byte (brg2) \leftarrow (A) byte (brg2) \leftarrow imm8	Z - -	*		_ _ _	- - -	* * *	* * *	_ _ _	- - -	- - -
NOP ADB DTB PCB SPB NCC CMR	1 1 1 1 1 1	1 1 1 1 1 1	0 0 0 0 0 0	No operation Prefix code for AD space access Prefix code for DT space access Prefix code for PC space access Prefix code for SP space access Prefix code for no flag change Prefix code for the common register bank				 	- - - -	- - - -	 	- - - -		
MOVW SPCU, #imm1 MOVW SPCL, #imm1 SETSPC CLRSPC		2 2 2 2	0 0 0 0	word (SPCU) \leftarrow (imm16) word (SPCL) \leftarrow (imm16) Stack check ooperation enable Stack check ooperation disable	 		_ _ _	_ _ _	- - -	_ _ _	_ _ _	_ _ _ _	- - -	- - -
BTSCN A BTSCNS A BTSCND A	2 2 2	*5 *6 *7	0 0 0	byte (A) \leftarrow position of "1" bit in word (A) byte (A) \leftarrow position of "1" bit in word (A) $\times 2$ byte (A) \leftarrow position of "1" bit in word (A) $\times 4$	Z Z Z	_ _ _	_ _ _	_ _ _	- - -	_ _ _	* * *	_ _ _	- - -	- - -

Table 22 Other Control Instructions (Byte/Word/Long Word) [36 Instructions]

For an explanation of "(a)" and "(c)", refer to Tables 4 and 5.

- *1: PCB, ADB, SSB, USB, and SPB: 1 cycle
 - DTB: 2 cycles
 - DPR: 3 cycles
- *6
- *2: $3 + 4 \times (pop count)$
- *3: $3 + 4 \times (push count)$

- *4: Pop count \times (c), or push count \times (c)
- *5: 3 when AL is 0, 5 when AL is not 0.
- *6: 4 when AL is 0, 6 when AL is not 0.
- *7: 5 when AL is 0, 7 when AL is not 0.