

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	F ² MC-16F
Core Size	16-Bit
Speed	16MHz
Connectivity	EBI/EMI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	102
Program Memory Size	64KB (64K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	3K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	120-BQFP
Supplier Device Package	120-QFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90223pf-gt-374

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin no. QFP*	Pin name	Circuit type	Function
84	P56	С	General-purpose I/O port This function is valid in single-chip mode. This function is valid in modes where the external bus is valid.
	RD		Read strobe output pin for the data bus This function is valid in modes where the external bus is enabled.
85	P57	В	General-purpose I/O port This function is always valid. When these pins are open in input mode, through current may leak in stop mode/reset mode, be sure to fix these pins to Vcc/Vss level to use these pins in input mode.
	WI		RAM write disable request input During this operation, the input may be used suddenly at any time; therefore, it is necessary to stop output by other fuctions on this pin, except when using it for output deliberately.
46 to 53	P60 to P67	F	Open-drain I/O ports This function is valid when the analog input enable register specification is "port".
	AN00 to AN07		10-bit A/D converter analog input pins This function is valid when the analog input enable register specification is "analog input".
17 to 24	P70 to P77	С	General-purpose I/O ports This function is valid when the output specification for DOT0 to DOT7 is "disabled".
	DOT0 to DOT7		This function is valid when OCU (output compare unit) output is enabled.
25 to 30	P80 to P85	С	General-purpose I/O ports This function is valid when the output specification for TOT0 to TOT5 is "disabled".
	TOT0 to TOT5		16-bit reload timer output pins (TOT0 to TOT5)
31, 32	P86, P87	С	General-purpose I/O ports This function is valid when the PPG0, and PPG1 output specification is "disabled".
	PPG0, PPG1		16-bit PPG timer output pins This function is valid when the PPG control/status register specification is "PPG output pins".
34 to 41	P90 to P97	F	Open-drain I/O ports This function is valid when the analog input enable register specification is "port".
	AN08 to AN15		10-bit A/D converter analog input pins This function is valid when the analog input enable register specification is "analog input".

* : FPT-120P-M03, FPT-120C-C02

Pin no. QFP*	Pin name	Circuit type	Function
62	INT2	В	DTP/External interrupt request input pin When DTP/external interrupts are enabled, these inputs may be used suddenly at any time; therefore, it is necessary to stop output by other functions on these pins, except when using them for output deliberately. When these pins are open in input mode, through current may leak in stop mode/reset mode, be sure to fix these pins to Vcc/Vss level to use these pins in input mode.
	ATG		10-bit A/D converter external trigger input pin When these pins are open in input mode, through current may leak in stop mode/reset mode, be sure to fix these pins to Vcc/Vss level to use these pins in input mode.
64	PB0	С	General-purpose I/O port This function is valid when the UART0 (ch.0) serial data output specification is "disabled".
	SOD0		UART0 (ch.0) serial data output This function is valid when the UART0 (ch.0) serial data output specification is "enabled".
65	PB1	С	General-purpose I/O port This function is always valid.
	SID0		UART0 (ch.0) serial data input pin During UART0 (ch.0) input operations, this input may be used suddenly at any time; therefore, it is necessary to stop output by other functions on this pin, except when using it for output deliberately.
66	PB2	С	General-purpose output port This function is valid when the UART0 (ch.0) clock output specification is "disabled".
	SCK0		UART0 (ch.0) clock output pin The clock output function is valid when the UART0 (ch.0) clock output specification is "enabled". UART0 (ch.0) external clock input pin. This function is valid when the port is in input mode and the UART0 (ch.0) specification is external clock mode.
67	PB3	С	General-purpose I/O port This function is valid when the UART0 (ch.1) serial data output specification is "disabled".
	SOD1		UART0 (ch.1) serial data output pin This function is valid when the UART0 (ch.1) serial data output specification is "enabled".
68	PB4	С	General-purpose I/O port This function is always valid.
	SID1		UART0 (ch.1) serial data input pin During UART0 (ch.1) input operations, this input may be used suddenly at any time; therefore, it is necessary to stop output by other functions on this pin, except when using it for output deliberately.

* : FPT-120P-M03, FPT-120C-C02

■ I/O CIRCUIT TYPE

Note: The pull-up and pull-down resistors are always connected, regardless of the state.

■ PROGRAMMING FOR MB90P224A/P224B/W224A/W224B

In EPROM mode, the MB90P224A/P224B/W224A/W224B functions equivalent to the MBM27C1000. This allows the EPROM to be programmed with a general-purpose EPROM programmer by using the dedicated socket adapter (do not use the electronic signature mode).

1. Program Mode

When shipped from Fujitsu, and after each erasure, all bits (96 K \times 8 bits) in the MB90P224A/P224B/W224A/W224B are in the "1" state. Data is written to the ROM by selectively programming "0's" into the desired bit locations. Bits cannot be set to "1" electrically.

2. Programming Procedure

- (1) Set the EPROM programmer to MBM27C1000.
- (2) Load program data into the EPROM programmer at 08000H to 1FFFFH.

Note that ROM addresses FE8000_H to FFFFFF_H in the operation mode in the MB90P224A/P224B/W224A/ W224B series assign to 08000_H to 1FFFF_H in the EPROM mode (on the EPROM programmer).

- (3) Mount the MB90P224A/P224B/W224A/W224B on the adapter socket, then fit the adapter socket onto the EPROM programmer. When mounting the device and the adapter socket, pay attention to their mounting orientations.
- (4) Start programming the program data to the device.
- (5) If programming has not successfully resulted, connect a capacitor of approx. 0.1 μF between V_{CC} and GND, between V_{PP} and GND.
- Note: The mask ROM products (MB90223, MB90224) does not support EPROM mode. Data cannot, therefore, be read by the EPROM programmer.

PROGRAMMING MODEL

Address	Register	Register name	Access	Resouce name	Initial value
001F02н	DWC data huffer register 1		D ///	DWC timer 1	00000000
001F03н		FVUCKI	R/VV	FWC timer 1	00000000
001F04н	DWC data huffer register 2		D ///	DWC timer 2	00000000
001F05н	FWC data buller register 2	FVUCKZ	R/VV	FWC timer 2	00000000
001F06н	DWC data huffer register 2			DWC timer 2	00000000
001F07н	FWC data buller register 5	FVURS	R/VV	FWC timer 3	00000000
001F08н to 1F0Fн		(Reserved	d area)*1		
001F10н	OCU compare lower-order data				00000000
001F11н	register 00	GEROOL	D/\\/	Output	00000000
001F12н	OCU compare higher-order data	CPROO		compare 00	00000000
001F13н	register 00	GENUU			00000000
001F14н	OCU compare lower-order data				00000000
001F15н	register 01	CPRUIL	R/W	Output	00000000
001F16н	OCU compare higher-order data			compare 01	00000000
001F17н	register 01	GENUI			00000000
001F18н	OCU compare lower-order data				00000000
001F19⊦	register 02	OF NUZL	R/W	Output compare 02	00000000
001F1Aн	OCU compare higher-order data	CDD02			00000000
001F1Bн	register 02	CF NUZ			00000000
001F1Cн	OCU compare lower-order data	CDD03I			00000000
001F1Dн	register 03	OFIXUSE	D/\\/	Output	00000000
001F1Eн	OCU compare higher-order data	CPP03		compare 03	00000000
001F1Fн	register 03	CF NU3			00000000
001F20н	OCU compare lower-order data				00000000
001F21н	register 04	OF N04L	D/\\/	Output	00000000
001F22н	OCU compare higher-order data	CPR04	1\/ VV	compare 10	00000000
001F23н	register 04	OF IX04			00000000
001F24н	OCU compare lower-order data				00000000
001F25н	register 05	OFINUL	R/\//	Output	00000000
001F26н	OCU compare higher-order data			compare 11	00000000
001F27н	register 05				0000000

5. 10-bit A/D Converter

The 10-bit A/D converter converts analog input voltage into a digital value. The features of this module are described below:

- Conversion time: 6.125 μs/channel (min.) (with machine clock running at 16 MHz)
- · Uses RC-type sequential comparison and conversion method with built-in sample and hold circuit
- 10-bit resolution

Analog input can be selected b	by software from among 16 channels
Single-conversion mode:	Selects and converts one channel.
Scan conversion mode:	Converts several consecutive channels (up to 16 can be programmed).
One-shot mode:	Converts the specified channel once and terminates.
Continuous conversion mode:	Repeatedly converts the specified channel.
Stop conversion mode:	Pauses after converting one channel and waits until the next startup (permits
	synchronization of start of conversion).

- When A/D conversion is completed, an "A/D conversion complete" interrupt request can be issued to the CPU. Because the generation of this interrupt can be used to start up the EI²OS and transfer the A/D conversion results to memory, this function is suitable for continuous processing.
- Startup triggers can be selected from among software, an external trigger (falling edge), and a timer (rising edge).

(1) Register Configuration

• A/D Channel Setting Register (ADCH)

This register specfies the A/D converter conversion channel.

Register name	Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Initial value
ADCH	000032н	ANS3	ANS2	ANS1	ANS0	ANE3	ANE2	ANE1	ANE0	00000000 в
		(R/W)								

• A/D Mode Register (ADMD)

This register specfies the A/D converter operation mode and the startup source.

Register name	Address	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8	Initial value
ADMD	000033н	—	—	_	Reserved	MOD1	MOD0	STS1	STS0	Х0000 в
		(—)	(—)	(—)	(W)	(R/W)	(R/W)	(R/W)	(R/W)	-

Note: Program "0" to bit 12 when write. Read value is indeterminated.

• A/D Control Status Register (ADCS)

This register is the A/D converter control and status register.

Register name	Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Initial value
ADCS	000034н	BUSY	INT	INTE	PAUS		_	STRT	Reserved	0000 00 в
		(R/W)	(R/W)	(R/W)	(R/W)	(—)	(—)	(W)	(R/W)	

A/D Data Register (ADCD)

This register stores the A/D converter conversion data.

Register name	Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Initial value
ADCD	000036н	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXX в
		(R)	-							

Register name	Address	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8	Initial value
ADCD	0000378	_	—	—	—	_	—	D9	D8	000000XX в
		(R)	(R)	(R)	(R)	(R)	(R)	(R)	(R)	

6. PWC (Pulse Width Count) Timer

The PWC (pulse width count) timer is a 16-bit multifunction up-count timer with an input-signal pulse-width count function and a reload timer function. The hardware configuration of this module is a 16-bit up-count timer, an input pulse divider with divide ratio control register, four count input pins, and a 16-bit control register. Using these components, the PWC timer provides the following features:

Timer functions: An interrupt request can be generated at set time intervals.

Pulse signals synchronized with the timer cycle can be output.

- Pulse-width count functions: The reference internal clock can be selected from among three internal clocks.
 The time between arbitrary pulse input events can be counted.
 - The reference internal clock can be selected from among three internal clocks. Various count modes:

"H" pulse width (\uparrow to \downarrow)/"L" pulse width (\downarrow to \uparrow) Rising-edge cycle (\uparrow to \uparrow /Falling-edge cycle (\downarrow to \downarrow) Count between edges (\uparrow or \downarrow to \downarrow or \uparrow)

Cycle count can be performed by 2^{2n} division (n = 1, 2, 3, 4) of the input pulse, with an 8 bit input divider.

An interrupt request can be generated once counting has been performed. The number of times counting is to be performed (once or subsequently) can be selected.

The MB90220 series has four channels for this module.

(1) Register Configuration

• PWC Control Status Register 0 to 3 (PWCSR0 to PWCSR3)

Register name PWCSR0	Address 000051 н	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8	
PWCSR1	000053 н	STRT	STOP	EDIR	EDIE	OVIR	OVIE	ERR	POUT	Initial value
PWCSR2 PWCSR3	000055н 000057н	(R/W)	(R/W)	(R)	(R/W)	(R/W)	(R/W)	(R)	(R/W)	

Register name PWCSR0	Address 000050 н	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
PWCSR1	000052н	CKS1	CKS0	PIS1	PIS0	S/C	MOD1	MOD1	MOD0	00000000B
PWCSR3	000054 н 000056 н	 (R/W)	(R/W)							

• PWC Data Buffer Register 0 to 3 (PWCR0 to PWCR3)

Register name PWCR0 PWCR1 PWCR2	Address 001F01 н 001F03 н 001F05 н	bit	15 bit	14 bit	13 bit	12 bit	11 bit	10 bi	t9 b		Initial value 00000000₿
PWCR3	001F07 н	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)		
Register name	Address		bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Initial value
PWCRU	001F00H	<u></u>								· · · · `	
PWCR1	001F02н										0000000в
PWCR2	001F04 н										
PWCR3	001F06 н	(R/V	V) (R/V	V) (R/V	V) (R/\	N) (R/	W) (R/	W) (R/	′W) (R/	'W)	

• PWC Division Ratio Control Register 0 to 3 (DIVR0 to DIVR3)

(2) Block Diagram

*: In the MB90220 series, only the module input PWC 0 of each channel is connected to the respective external pins.

Channel	POT pin
PWC ch. 0	PA 1/PWC 0/POT 0
PWC ch. 1	PA 2/PWC 1/POT 1/ASR 1
PWC ch. 2	PA 3/PWC 2/POT 2/ASR 2
PWC ch. 3	PA 4/PWC 3POT 3/ASR 3

7. DTP/External Interrupts

DTP (Data Transfer Peripheral) is located between external peripherals and the F²MC-16F CPU. It receives a DMA request or an interrupt request generated by the external peripherals and reports it to the F²MC-16F CPU to activate the extended intelligent I/O service or interrupt handler. The user can select two request levels of "H" and "L" for extended intelligent I/O service or, and four request levels of "H," "L," rising edge and falling edge for external interrupt requests. In MB90220, only parts corresponding to INT2 to INT0 are usable as external interrupt/DTP request.

Parts corresponding to INT7 to INT3 cannot be used as external interrupt/DTP request, but only for edge detection at external terminals.

Note: INT7 to INT3 are not usable as DTP/external interrupts.

(1) Register Configuration

• DTP/Interrupt Enable Register (ENIR)

Register name	Address	 bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Initial value
ENIR 00	00003Ан	EN7	EN6	EN5	EN4	EN3	EN2	EN1	EN0	00000000в
		 (R/W)	(R/W)							

• DTP/Interrupt Source Register (EIRR)

Register name	Address	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8	Initial value
EIRR	00003Вн	ER7	ER6	ER5	ER4	ER3	ER2	ER1	ER0	0000000в
		(R/W)								

• Request Level Setting Register (ELVR)

Register name	Address	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8	Initial value
ELVR	00003D н	LB7	LA7	LB6	LA6	LB5	LA5	LB4	LA4	0000000в
		(R/W)								
Register name	Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Initial value
ELVR	00003С н	LB3	LA3	LB2	LA2	LB1	LA1	LB0	LA0	0000000в
		(R/W)	-							

13. Delay Interruupt Generation Module

The delayed interrupt generation module is used to generate an interrupt task switching. Using this module allows an interrupt request to the F²MC-16F CPU to generated or cancel by software.

(1) Register Configuration

• Delay Interrupt Source Generation/Cancel Register (DIRR)

Register name	Address	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8	
DIRR	00009 F н	_	—	—	—	—	—	—	R0	Initial value
		(—)	(—)	(—)	(—)	(—)	(—)	(—)	(R/W)	

Symbol	Explanation
A	32-bit accumulator The number of bits used varies according to the instruction. Byte: Low order 8 bits of AL Word: 16 bits of AL Long: 32 bits of AL, AH
AH	High-order 16 bits of A
AL	Low-order 16 bits of A
SP	Stack pointer (USP or SSP)
PC	Program counter
SPCU	Stack pointer upper limit register
SPCL	Stack pointer lower limit register
PCB	Program bank register
DTB	Data bank register
ADB	Additional data bank register
SSB	System stack bank register
USB	User stack bank register
SPB	Current stack bank register (SSB or USB)
DPR	Direct page register
brg1	DTB, ADB, SSB, USB, DPR, PCB, SPB
brg2	DTB, ADB, SSB, USB, DPR, SPB
Ri	R0, R1, R2, R3, R4, R5, R6, R7
RWi	RW0, RW1, RW2, RW3, RW4, RW5, RW6, RW7
RWj	RW0, RW1, RW2, RW3
RLi	RL0, RL1, RL2, RL3
dir addr16 addr24 addr24 0 to 15 addr24 16 to 23	Compact direct addressing Direct addressing Physical direct addressing Bits 0 to 15 of addr24 Bits 16 to 23 of addr24
io	I/O area (000000н to 0000FFн)

	Table 2	Explanation of	Symbols in	Table of	Instructions
--	---------	----------------	------------	----------	--------------

Code	Operand	(a)*
Code	Operatio	Number of execution cycles for each from of addressing
00 to 07	Ri RWi RLi	Listed in Table of Instructions
08 to 0B	@RWj	1
0C to 0F	@RWj +	4
10 to 17	@RWi + disp8	1
18 to 1B	@RWj + disp16	1
1C 1D 1E 1F	@RW0 + RW7 @RW1 + RW7 @PC + dip16 @addr16	2 2 2 1

Table 4 Number of Execution Cycles for Each Form of Addressing

*: "(a)" is used in the "cycles" (number of cycles) column and column B (correction value) in the Table of Instructions.

 Table 5
 Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles

Operand	(t) *	(c	;)*	(0	ł)*		
Operand	by	/te	wo	ord	long			
Internal register	+	0	+	0	+	0		
Internal RAM even address	+	0	+	0	+	0		
Internal RAM odd address	+	0	+	1	+	2		
Even address not in internal RAM	+	1	+	1	+	2		
Odd address not in internal RAM	+	1	+	3	+	6		
External data bus (8 bits)	+	1	+	3	+	6		

* : "(b)", "(c)", and "(d)" are used in the "cycles" (number of cycles) column and column B (correction value) in the Table of Instructions.

Mnemonic	#	cycles	B	Operation	ιн	٨н	1	S	т	Ν	7	V	C	PMW
Willemonic	π	cycles		Operation				0	•		~	v	0	
MOVL A, ear	2	1	0	long (A) \leftarrow (ear)	_	_	_	_	_	*	*	_	-	-
MOVL A, eam	2+	3+ (a)	(d)	long (A) \leftarrow (eam)	—	—	—	—	—	*	*	—	—	—
MOVL A, # imm32	5	3	0	long (A) ← imm32	-	-	_	—	—	*	*	—	—	—
MOVL A, @SP + disp8	3	4	(d)	long (A) \leftarrow ((SP) +disp8)	—	—	—	—	—	*	*	—	—	-
MOVPL A, addr24	5	4	(d)	long (A) \leftarrow (addr24)	—	—	—	—	—	*	*	—	—	—
MOVPL A, @A	2	3	(d)	long (A) \leftarrow ((A))	—	—	—	—	—	*	*	—	—	-
MOVPL @A, RLi	2	5	(d)	$long\;((A)) \gets (RLi)$	_	_	_	_	_	*	*	_	_	-
MOVL @SP + disp8, A	3	4	(d)	long ((SP) + disp8) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVPL addr24, A	5	4	(d)	long (addr24) \leftarrow (Å)	_	-	_	_	_	*	*	_	_	-
MOVL ear, A	2	2	0	long (ear) \leftarrow (A)	_	-	_	—	—	*	*	_	-	-
MOVL eam, A	2+	3+ (a)	(d)	long (eam) \leftarrow (Å)	-	-	-	-	-	*	*	-	-	-

Table 8 Transfer Instructions (Long Word) [11 Instructions]

For an explanation of "(a)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Mn	emonic	#	cycles	В	Operation	LH	AH	I	S	Т	Ν	Ζ	۷	С	RMW
INC INC	ear eam	2 2+	2 3+ (a)	0 2× (b)	byte (ear) \leftarrow (ear) +1 byte (eam) \leftarrow (eam) +1	-	-	_	_	_	*	*	*	-	*
DEC DEC	ear eam	2 2+	2 3+ (a)	0 2× (b)	byte (ear) ← (ear) −1 byte (eam) ← (eam) −1	_ _	-	_	-	_ _	*	*	*	-	*
INCW INCW	ear eam	2 2+	2 3+ (a)	0 2× (c)	word (ear) \leftarrow (ear) +1 word (eam) \leftarrow (eam) +1	_		_	-	_	*	* *	*		*
DECW DECW	ear eam	2 2+	2 3+ (a)	0 2× (c)	word (ear) \leftarrow (ear) –1 word (eam) \leftarrow (eam) –1	-	-	_	_ _	_ _	*	*	*	-	*
INCL INCL	ear eam	2 2+	4 5+ (a)	0 2× (d)	long (ear) \leftarrow (ear) +1 long (eam) \leftarrow (eam) +1	-		_	-	-	*	* *	*		*
DECL DECL	ear eam	2 2+	4 5+ (a)	0 2× (d)	long (ear) ← (ear) −1 long (eam) ← (eam) −1	_	-	_	_ _	_ _	*	*	*	-	*

Table 10 Increment and Decrement Instructions (Byte/Word/Long Word) [12 Instructions]

For an explanation of "(a)", "(b)", "(c)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 11 Compare Instructions (Byte/Word/Long Word) [11 Instructions]

Mnemonic	#	cycles	В	Operation	LH	AH	I	S	Т	Ν	Ζ	۷	С	RMW
CMP A	1	2	0	byte (AH) – (AL)	-	-	_	_	-	*	*	*	*	_
CMP A, ear	2	2	0	byte (A) – (ear)	_	_	_	_	—	*	*	*	*	_
CMP A, eam	2+	2+ (a)	(b)	byte (A) – (eam)	—	_	_	_	—	*	*	*	*	_
CMP A, #imm8	2	2	0	byte (A) – imm8	-	-	—	—	-	*	*	*	*	-
CMPW A	1	2	0	word (AH) – (AL)	-	_	_	١	-	*	*	*	*	_
CMPW A, ear	2	2	0	word (A) – (ear)	-	—	_	_	-	*	*	*	*	—
CMPW A, eam	2+	2+ (a)	(C)	word (A) – (eam)	-	—	_	_	-	*	*	*	*	_
CMPW A, #imm16	3	2	0	word (A) – imm16	-	-	—	—	-	*	*	*	*	-
CMPL A, ear	2	3	0	long (A) – (ear)	-	_	_	Ι	—	*	*	*	*	_
CMPL A, eam	2+	4+ (a)	(d)	long (A) – (eam)	—	—	—	—	-	*	*	*	*	_
CMPL A, #imm32	5	3	0	long (A) – imm32	-	-	-	—	-	*	*	*	*	—

For an explanation of "(a)", "(b)", "(c)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

PACKAGE DIMENSIONS

Note: See to the latest version of Package Data Book for official package dimensions.