

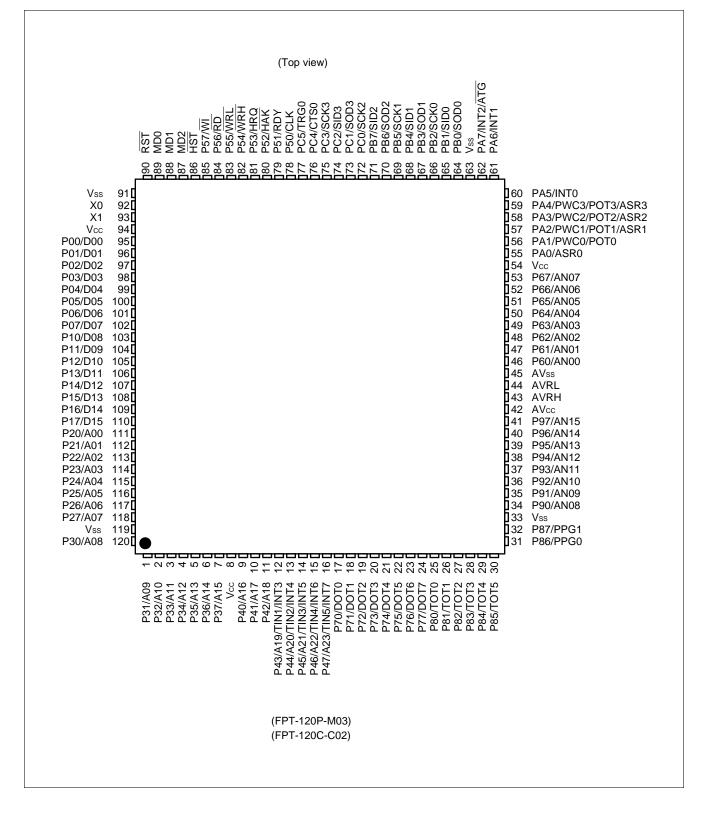
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Product Status	Active
Core Processor	F ² MC-16F
Core Size	16-Bit
Speed	16MHz
Connectivity	EBI/EMI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	102
Program Memory Size	96KB (96K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	4.5K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	120-BQFP
Supplier Device Package	120-QFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90224pf-gt-368

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIN ASSIGNMENT

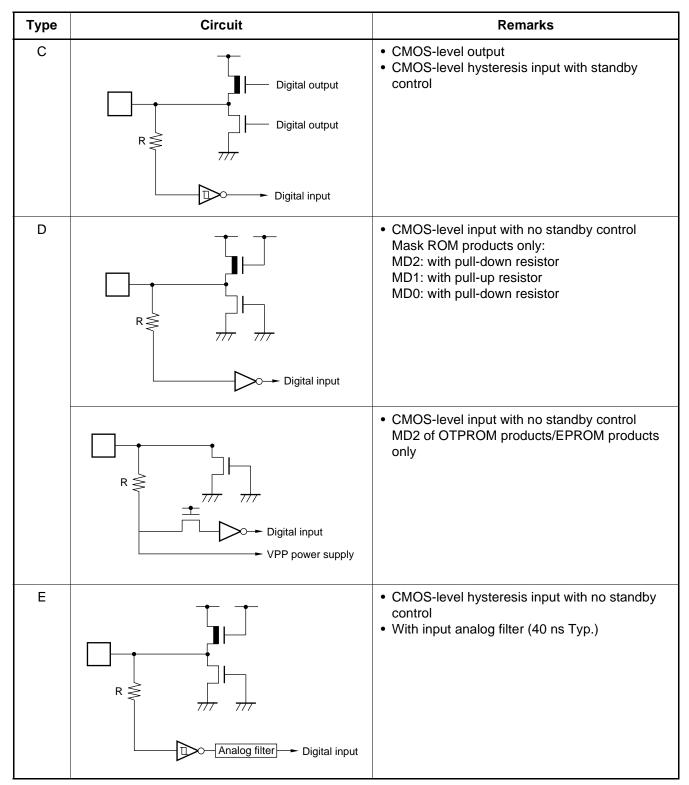
■ PIN DESCRIPTION

Pin no.	Pin name	Circuit	Function
QFP*	Finname	type	Function
92, 93	X0, X1	A	Crystal oscillation pins (16 MHz)
89 to 87	MD0 to MD2	D	Operation mode specification input pins Connect directly to Vcc or Vss.
90	RST	G	External reset request input
86	HST	E	Hardware standby input pin
95 to 102	P00 to P07	С	General-purpose I/O ports This function is valid only in single-chip mode.
	D00 to D07		Output pins for low-order 8 bits of the external address bus. This function is valid only in modes where the external bus is enabled.
103 to 110	P10 to P17	С	General-purpose I/O ports This function is valid only in single-chip mode or when the external bus is enabled and the 8-bit data bus specification has been made.
	D08 to D15		I/O pins for higher-order 8 bits of the external data bus This function is valid only when the external bus is enabled and the 16-bit bus specification has been made.
111 to 118	P20 to P27	С	General-purpose I/O ports This function is valid only in single-chip mode.
	A00 to A07		Output pins for lower-order 8 bits of the external address bus This function is valid only in modes where the external bus is enabled.
120, 1 to 7	P30, P31 to P37	С	General-purpose I/O ports This function is valid either in single-chip mode or when the address mid-order control register specification is "port".
	A08, A09 to A15		Output pins for mid-order 8 bits of the external address bus This function is valid in modes where the external bus is enabled and the address mid-order control register specification is "address".
9 to 11	P40 to P42	С	General-purpose I/O ports This function is valid either in single-chip mode or when the address high-order control register specification is "port".
	A16 to A18		Output pins for higher-order 8 bits of the external address bus This function is valid in modes where the external bus is enabled and the address high-order control register specification is "address".
12 to 16	P43 to P47	С	General-purpose I/O ports This function is valid when either single-chip mode is enabled or the address higher-order control register specification is "port".
	A19 to A23		Output pins for higher-order 8 bits of the external address bus This function is valid in modes where the external bus is enabled and the address higher-order control register specification is "address".
	TIN1 to TIN5		16-bit reload timer input pins This function is valid when the timer input specification is "enabled". The data on the pins is read as timer input (TIN1 to TIN5).

* : FPT-120P-M03, FPT-120C-C02

-

Pin no.	– Pin name	Circuit	Function
QFP*	Tinname	type	i unction
12 to 16	INT3 to INT7	С	External interrupt request input pins When external interrupts are enabled, these inputs may be used suddenly at any time; therefore, it is necessary to stop output by other functions on these pins, except when using them for output deliberately.
78	P50	С	General-purpose I/O port This function is valid in single-chip mode and when the CLK output specification is disabled.
	CLK		CLK output pin This function is valid in modes where the external bus is enabled and the CLK output specification is enabled.
79	P51	С	General-purpose I/O port This function is valid in single-chip mode or when the ready function is disabled.
	RDY		Ready input pin This function is valid in modes where the external bus is enabled and the ready function is enabled.
80	P52	С	General-purpose I/O port This function is valid in single-chip mode or when the hold function is disabled.
	HAK		Hold acknowledge output pin This function is valid in modes where the external bus is enabled and the hold function is enabled.
81	P53	С	General-purpose I/O port This function is valid in single-chip mode or external bus mode and when the hold function is disabled.
	HRQ	-	Hold request input pin This function is valid in modes where the external bus is enabled and the hold function is enabled. During this operation, the input may be used suddenly at any time; therefore, it is necessary to stop output by other fuctions on this pin, except when using it for output deliberately.
82	P54	С	General-purpose I/O port This function is valid in single-chip mode, when the external bus is in 8-bit mode, or when WRH pin output is disabled.
	WRH		Write strobe output pin for the high-order 8 bits of the data bus This function is valid in modes where the external bus is enabled, the external bus is in 16-bit mode, and WRH pin output is enabled.
83	P55	С	General-purpose I/O port This function is valid in single-chip mode or when $\overline{\text{WRL}}$ pin output is disabled.
	WRL		Write strobe output pin for the low-order 8 bits of the data bus This function is valid in modes where the external bus is enabled and WRL pin output is enabled.


* : FPT-120P-M03, FPT-120C-C02

(Continued)

Pin no.	Pin name	Circuit	Function
QFP*		type	
62	INT2	В	DTP/External interrupt request input pin When DTP/external interrupts are enabled, these inputs may be used suddenly at any time; therefore, it is necessary to stop output by other functions on these pins, except when using them for output deliberately. When these pins are open in input mode, through current may leak in stop mode/reset mode, be sure to fix these pins to Vcc/Vss level to use these pins in input mode.
	ATG		10-bit A/D converter external trigger input pin When these pins are open in input mode, through current may leak in stop mode/reset mode, be sure to fix these pins to V_{CC}/V_{SS} level to use these pins in input mode.
64	PB0	С	General-purpose I/O port This function is valid when the UART0 (ch.0) serial data output specification is "disabled".
	SOD0		UART0 (ch.0) serial data output This function is valid when the UART0 (ch.0) serial data output specification is "enabled".
65	PB1	С	General-purpose I/O port This function is always valid.
	SIDO		UART0 (ch.0) serial data input pin During UART0 (ch.0) input operations, this input may be used suddenly at any time; therefore, it is necessary to stop output by other functions on this pin, except when using it for output deliberately.
66	PB2	С	General-purpose output port This function is valid when the UART0 (ch.0) clock output specification is "disabled".
	SCK0		UART0 (ch.0) clock output pin The clock output function is valid when the UART0 (ch.0) clock output specification is "enabled". UART0 (ch.0) external clock input pin. This function is valid when the port is in input mode and the UART0 (ch.0) specification is external clock mode.
67	PB3	С	General-purpose I/O port This function is valid when the UART0 (ch.1) serial data output specification is "disabled".
	SOD1		UART0 (ch.1) serial data output pin This function is valid when the UART0 (ch.1) serial data output specification is "enabled".
68	PB4	С	General-purpose I/O port This function is always valid.
	SID1		UART0 (ch.1) serial data input pin During UART0 (ch.1) input operations, this input may be used suddenly at any time; therefore, it is necessary to stop output by other functions on this pin, except when using it for output deliberately.

* : FPT-120P-M03, FPT-120C-C02

(Continued)

Note: The pull-up and pull-down resistors are always connected, regardless of the state.

(Continued)

■ HANDLING DEVICES

1. Preventing Latchup

CMOS ICs may cause latchup when a voltage higher than V_{cc} or lower than V_{ss} is applied to input or output pins other than medium-and high-voltage pins, or when a voltage exceeding the rating is applied between V_{cc} and V_{ss} .

If latch-up occurs, the power supply current increases rapidly, sometimes resulting in thermal breakdown of the device. Use meticulous care not to let any voltage exceed the maximum rating.

Also, take care to prevent the analog power supply (AV_{cc} and AVRH) and analog input from exceeding the digital power supply (V_{cc}) when the analog system power supply is turned on and off.

2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor.

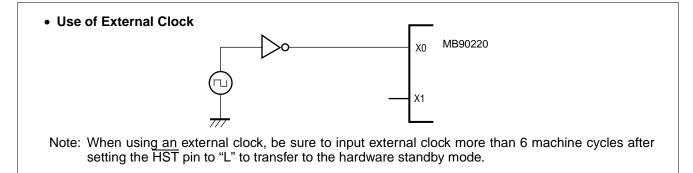
3. Treatment of Pins when A/D is not Used

Connect to be AVcc = AVRH = Vcc and AVss = AVRL = Vss even if the A/D converter is not in use.

4. Precautions when Using an External Input

To reset the internal circuit properly by the "L" level input to the \overline{RST} pin, the "L" level input to the \overline{RST} pin must be maintained for at least five machine cycles. Pay attention to it if the chip uses external clock input.

5. Vcc and Vss Pins


Apply equal potential to the Vcc and Vss pins.

6. Supply Voltage Variation

The operation assurance range for the V_{cc} supply voltage is as given in the ratings. However, sudden changes in the supply voltage can cause misoperation, even if the voltage remains within the rated range. Therefore, it is important to supply a stable voltage to the IC. The recommended power supply control guidelines are that the commercial frequency (50 to 60 Hz) ripple variation (P-P value) on V_{cc} should be less than 10% of the standard V_{cc} value and that the transient rate of change during sudden changes, such as during power supply switching, should be less than 0.1 V/ms.

7. Notes on Using an External Clock

When using an external clock, drive the X0 pin as illustrated below. When an external clock is used, oscillation stabilization time is required even for power-on reset and wake-up from stop mode.

■ PERIPHERAL RESOURCES

1. Parallel Ports

The MB90220 series has 86 I/O pins and 16 open-drain I/O pins.

(1) Register Configuration

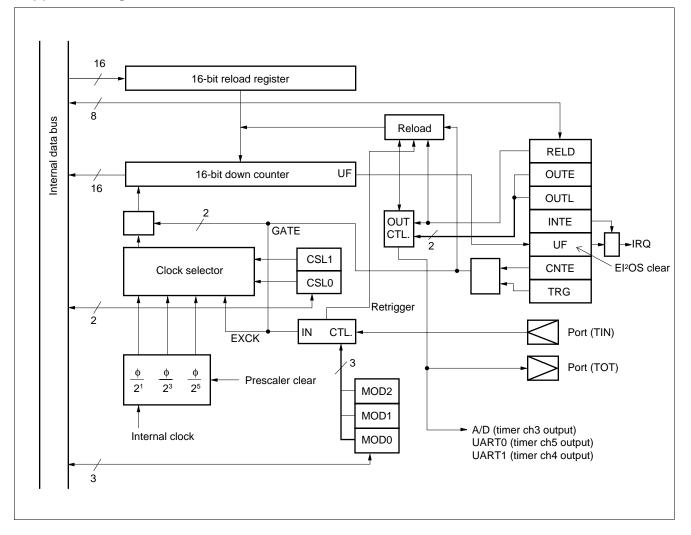
• Port 0 to C Data Register (PDR0 to PDRC)

Register name PDR1 PDR3 PDR5 PDR7	Address 000001 н 000003 н 000005 н 000007 н	bit15 bit14 bit13 bit12 bit11 bit10 bit9 bit8 Initial value PD x 7 PD x 6 PD x 5 PD x 4 PD x 3 PD x 2 PD x 1 PD x 0 XXXXXXX B	
PDR9	000009 н	(R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (PDR9 only: 1111111)	
PDRB	00000Вн	PDR7 only: (R) (R) (R) (R) (R) (R) (R)	
Register name	Address		
PDR0	00000 н		
PDR2	000002 н		
PDR4	000004 н	bit7 bit6 bit5 bit 4 bit3 bit2 bit1 bit0 Initial value	
PDR6	00006 н		
PDR8	000008 н	PD x 7 PD x 6 PD x 5 PD x 4 PD x 3 PD x 2 PD x 1 PD x 0 XXXXXXXX	
PDRA PDRC	00000Ан 00000Сн	(R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (PDR6 only: 1111111)	

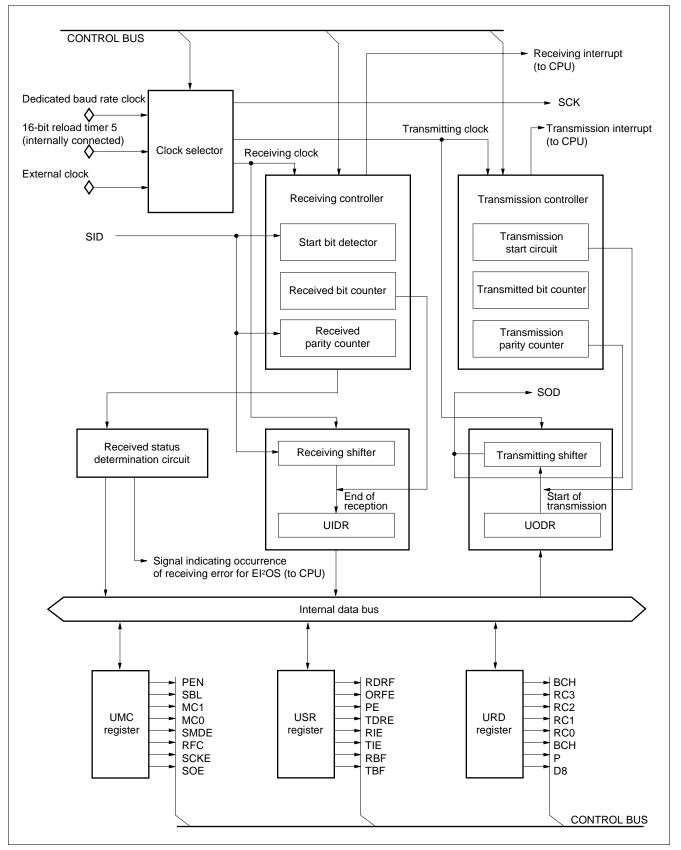
Note: There are no register bits for bits 7 and 6 of port C.

• Port 0 to C Data Register (PDR0 to PDRC)

Register name DDR1 DDR3 DDR5 DDR7	Address 000011 н 000013 н 000015 н 000017 н	bit15 bit14 bit13 bit12 bit11 bit10 bit9 bit8 Initial value $\begin{bmatrix} DD x 7 & DD x 6 & DD x 5 & DD x 4 & DD x 3 & DD x 2 & DD x 1 & DD x 0 & \hline \\ DD x 7 & DD x 6 & DD x 5 & DD x 4 & DD x 3 & DD x 2 & DD x 1 & DD x 0 & \hline \\ DD x 7 & DD x 6 & DD x 5 & DD x 4 & DD x 0 & DD x 0 & \hline \\ DD x 7 & DD x 6 & DD x 5 & DD x 4 & DD x 0 & DD x 0 & \hline \\ DD x 7 & DD x 6 & DD x 5 & DD x 4 & DD x 0 & DD x 0 & \hline \\ DD x 7 & DD x 6 & DD x 5 & DD x 4 & DD x 0 & DD x 0 & DD x 0 & \hline \\ DD x 7 & DD x 6 & DD x 5 & DD x 4 & DD x 0 & DD x 0 & \hline \\ DD x 7 & DD x 6 & DD x 5 & DD x 4 & DD x 0 & DD x 0 & DD x 0 & \hline \\ DD x 7 & DD x 6 & DD x 5 & DD x 4 & DD x 0 & DD x 0 & \hline \\ DD x 7 & DD x 6 & DD x 5 & DD x 4 & DD x 0 & DD x 0 & DD x 0 & \hline \\ DD x 7 & DD x 6 & DD x 5 & DD x 4 & DD x 0 & DD x 0 & DD x 0 & \hline \\ DD x 7 & DD x 6 & DD x 5 & DD x 4 & DD x 0 & DD x 0 & DD x 0 & D0 & \hline \\ DD x 7 & DD x 6 & DD x 5 & DD x 4 & DD x 0 & DD x 0 & D0 & \hline \\ DD x 7 & DD x 6 & DD x 5 & DD x 4 & DD x 0 & D0 & D0 & \hline \\ DD x 7 & DD x 6 & DD x 5 & DD x 4 & DD x 0 & D0 & D0 & D0 & \hline \\ DD x 7 & DD x 6 & DD x 5 & DD x 4 & DD x 0 & D0 & D0 & D0 & \hline \\ DD x 7 & DD x 6 & DD x 5 & DD x 4 & DD x 0 & D0 & D0 & D0 & \hline \\ DD x 7 & DD x 6 & DD x 5 & DD x 4 & DD x 0 & D0 & D0 & D0 & D0 & \hline \\ DD x 7 & DD x 0 & D0 & D0 & D0 & D0 & D0 & D0 $
DDRB	00001Вн	(R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (PDR7 only: 1111111)
Register name DDR0 DDR2 DDR4	Address 000010 н 000012 н 000014 н	
DDR4 DDR8	000014н 000018н	bit7 bit6 bit5 bit 4 bit3 bit2 bit1 bit0 Initial value
DDRO	000018н 00001Ан	
DDRA	00001Aн 00001Cн -	DD x 7 DD x 6 DD x 5 DD x 4 DD x 3 DD x 2 DD x 1 DD x 0 0000000 B
-		(R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)


Note: There are no register bits for bits 7 and 6 of port C.

• Port 6, 9 Analog Input Enable Register (ADER0, ADER1)


Register name Address ADER0 000016 н		bit7	bit6	bit5	bit 4	bit3	bit2	bit1	bit0	Initial value
	0000101	AE07	AE06	AE05	AE04	AE03	AE02	AE01	AE00	11111111 в
		(R/W)								
Register name ADER1	Address 000019 H	bit7	bit6	bit5	bit 4	bit3	bit2	bit1	bit0	Initial value
ADEINI	0000198	AE15	AE14	AE13	AE12	AE11	AE10	AE09	AE08	11111111 в
		(R/W)								

(2) Block Diagram

(2) Block Diagram

5. 10-bit A/D Converter

The 10-bit A/D converter converts analog input voltage into a digital value. The features of this module are described below:

- Conversion time: 6.125 μs/channel (min.) (with machine clock running at 16 MHz)
- · Uses RC-type sequential comparison and conversion method with built-in sample and hold circuit
- 10-bit resolution

Analog input can be selected b	by software from among 16 channels
Single-conversion mode:	Selects and converts one channel.
Scan conversion mode:	Converts several consecutive channels (up to 16 can be programmed).
One-shot mode:	Converts the specified channel once and terminates.
Continuous conversion mode:	Repeatedly converts the specified channel.
Stop conversion mode:	Pauses after converting one channel and waits until the next startup (permits
	synchronization of start of conversion).

- When A/D conversion is completed, an "A/D conversion complete" interrupt request can be issued to the CPU. Because the generation of this interrupt can be used to start up the EI²OS and transfer the A/D conversion results to memory, this function is suitable for continuous processing.
- Startup triggers can be selected from among software, an external trigger (falling edge), and a timer (rising edge).

(1) Register Configuration

• A/D Channel Setting Register (ADCH)

This register specfies the A/D converter conversion channel.

Register name	Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Initial value
ADCH	000032н	ANS3	ANS2	ANS1	ANS0	ANE3	ANE2	ANE1	ANE0	00000000 в
		(R/W)								

• A/D Mode Register (ADMD)

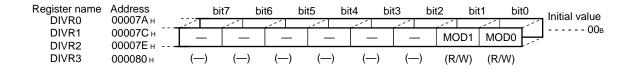
This register specfies the A/D converter operation mode and the startup source.

Register name Add	dress	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8	Initial value
ADMD 000	0033н [—	_	Reserved	MOD1	MOD0	STS1	STS0	Х0000 в
	-	(—)	(—)	(—)	(W)	(R/W)	(R/W)	(R/W)	(R/W)	

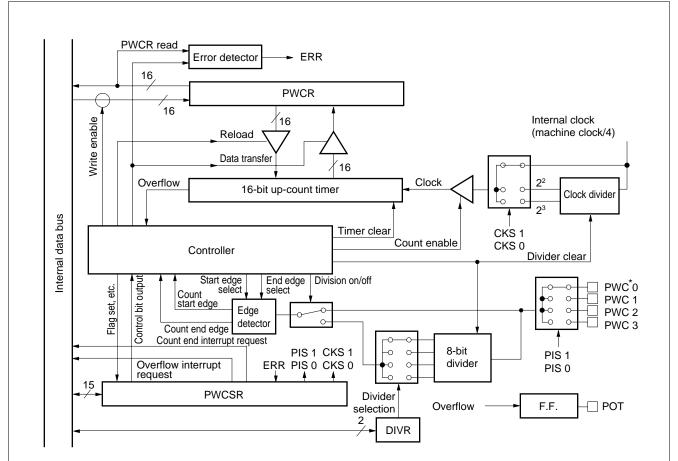
Note: Program "0" to bit 12 when write. Read value is indeterminated.

• A/D Control Status Register (ADCS)

This register is the A/D converter control and status register.

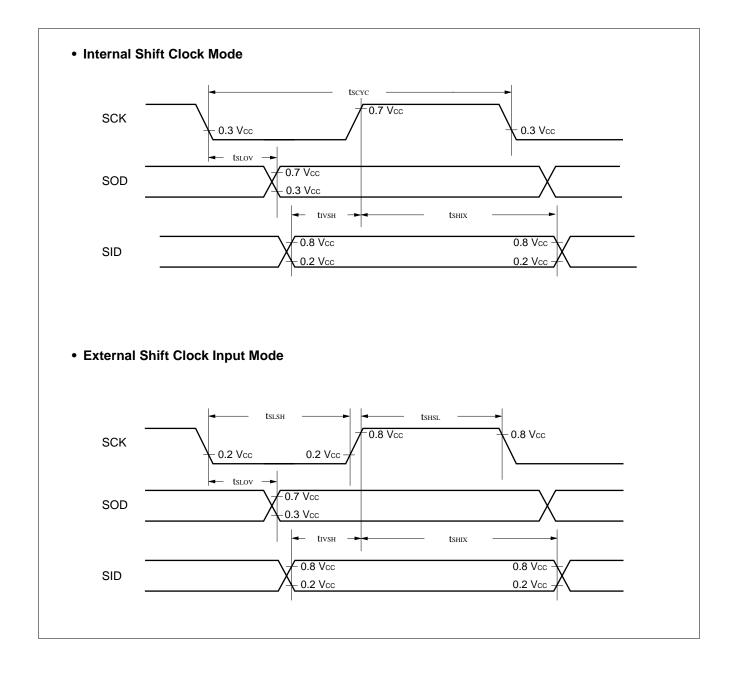

Register name		bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Initial value
ADCS	000034н	BUSY	INT	INTE	PAUS	_	_	STRT	Reserved	0000 00 в
		(R/W)	(R/W)	(R/W)	(R/W)	(—)	(—)	(W)	(R/W)	

A/D Data Register (ADCD)


This register stores the A/D converter conversion data.

Register name Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Initial value
ADCD 000036H	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXX в
	(R)	-							

• PWC Division Ratio Control Register 0 to 3 (DIVR0 to DIVR3)



(2) Block Diagram

*: In the MB90220 series, only the module input PWC 0 of each channel is connected to the respective external pins.

Channel	POT pin
PWC ch. 0	PA 1/PWC 0/POT 0
PWC ch. 1	PA 2/PWC 1/POT 1/ASR 1
PWC ch. 2	PA 3/PWC 2/POT 2/ASR 2
PWC ch. 3	PA 4/PWC 3POT 3/ASR 3

■ INSTRUCTION SET (412 INSTRUCTIONS)

Table 1	Explanation of Items in Table of Instructions
---------	---

Item	Explanation
Mnemonic	Upper-case letters and symbols: Represented as they appear in assembler Lower-case letters: Replaced when described in assembler. Numbers after lower-case letters: Indicate the bit width within the instruction.
#	Indicates the number of bytes.
~	Indicates the number of cycles. See Table 4 for details about meanings of letters in items.
В	Indicates the correction value for calculating the number of actual cycles during execution of instruction. The number of actual cycles during execution of instruction is summed with the value in the "cycles" column.
Operation	Indicates operation of instruction.
LH	Indicates special operations involving the bits 15 through 08 of the accumulator. Z: Transfers "0". X: Extends before transferring. —: Transfers nothing.
AH	Indicates special operations involving the high-order 16 bits in the accumulator. *: Transfers from AL to AH. —: No transfer. Z: Transfers 00 _H to AH. X: Transfers 00 _H or FF _H to AH by extending AL.
I	Indicates the status of each of the following flags: I (interrupt enable), S (stack), T (sticky
S	 bit), N (negative), Z (zero), V (overflow), and C (carry). *: Changes due to execution of instruction.
Т	—: No change.
N	 Set by execution of instruction. R: Reset by execution of instruction.
Z	,
V	
С	
RMW	Indicates whether the instruction is a read-modify-write instruction (a single instruction that reads data from memory, etc., processes the data, and then writes the result to memory.). *: Instruction is a read-modify-write instruction —: Instruction is not a read-modify-write instruction Note: Cannot be used for addresses that have different meanings depending on whether they are read or written.

(Continued)

	Mnemonic	#	cycles	В	Operation	LH	AH	I	S	Т	Ν	Ζ	۷	С	RMW
XCH	A, ear	2	3	0	byte (A) \leftrightarrow (ear)	Ζ	_	_	-	-	-	-	-	_	-
XCH	A, eam	2+	3+ (a)	2×(b)	byte (A) \leftrightarrow (eam)	Z	—	_	—	_	_	_	_	—	-
XCH	Ri, ear	2	4	0	byte (Ri) \leftrightarrow (ear)	-	—	_	—	—	_	—	_	_	-
XCH	Ri, eam	2+	5+ (a)	2× (b)	byte (Ri) \leftrightarrow (eam)	-	—	-	-	-	-	-	-	_	-

For an explanation of "(a)" and "(b)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Mnemonic	#	cycles	В	Operation	LH	AH	I	S	Т	Ν	Ζ	۷	С	RMW
DIV A	2	*1	0	word (AH) /byte (AL)	Ζ	_	_	_	-	_	_	*	*	-
DIV A, ear	2	*2	0	Quotient \rightarrow byte (AL) Remainder \rightarrow byte (AH) word (A)/byte (ear) Quotient \rightarrow byte (A) Remainder \rightarrow byte (ear)	z	_	_	_	_	_	_	*	*	_
DIV A, eam	2+	*3	*6	word (A)/byte (eam)	Ζ	_	_	_	-	_	_	*	*	-
DIVWA, ear DIVWA, eam	2 2+	*4 *5	0 *7	$\begin{array}{l} \mbox{Quotient} \rightarrow \mbox{byte (A)} \ \mbox{Remainder} \rightarrow \mbox{byte (eam)} \\ \mbox{long (A)/word (ear)} \\ \mbox{Quotient} \rightarrow \mbox{word (A)} \ \mbox{Remainder} \rightarrow \mbox{word (ear)} \\ \mbox{Quotient} \rightarrow \mbox{word (A)} \ \mbox{Remainder} \rightarrow \mbox{word (eam)} \\ \mbox{Quotient} \rightarrow \mbox{word (A)} \ \mbox{Remainder} \rightarrow \mbox{word (eam)} \end{array}$	_	_		_	_	_	_	*	* *	-
MUL A	2	*8	0	byte (AH) \times byte (AL) \rightarrow word (A)	_	_	_	_	-	_	_	_	_	-
MUL A, ear	2	*9	0	byte (A) \times byte (ear) \rightarrow word (A)	—	—	—	—	-	—	—	—	—	—
MUL A, eam	2+	*10	(b)	byte (A) \times byte (eam) \rightarrow word (A)	-	—	—	—	-	—	—	—	—	—
MULW A	2	*11	0	word (AH) \times word (AL) \rightarrow long (A)	-	—	—	—	-	—	—	—	—	—
MULW A, ear	2	*12	0	word (A) \times word (ear) \rightarrow long (A)	-	—	—	—	-	—	—	—	—	—
MULW A, eam	2+	*13	(b)	word (A) \times word (eam) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-

Table 13 Signed Multiplication and Division Instructions (Word/Long Word) [11 Insturctions]

For an explanation of "(b)" and "(c)", refer to Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

- *1: 3 when dividing into zero, 8 or 18 when an overflow occurs, and 18 normally.
- *2: 3 when dividing into zero, 10 or 21 when an overflow occurs, and 22 normally.
- *3: 4 + (a) when dividing into zero, 11 + (a) or 22 + (a) when an overflow occurs, and 23 + (a) normally.
- *4: When the dividend is positive: 4 when dividing into zero, 10 or 29 when an overflow occurs, and 30 normally. When the dividend is negative: 4 when dividing into zero, 11 or 30 when an overflow occurs, and 31 normally.
- *5: When the dividend is positive: 4 + (a) when dividing into zero, 11 + (a) or 30 + (a) when an overflow occurs, and 31 + (a) normally.
 When the dividend is negative: 4 + (a) when dividing into zero, 12 + (a) or 31 + (a) when an overflow occurs, and 32 + (a) normally.
- *6: (b) when dividing into zero or when an overflow occurs, and $2 \times (b)$ normally.
- *7: (c) when dividing into zero or when an overflow occurs, and $2 \times$ (c) normally.
- *8: 3 when byte (AH) is zero, 12 when the result is positive, and 13 when the result is negative.
- *9: 3 when byte (ear) is zero, 12 when the result is positive, and 13 when the result is negative.
- *10: 4 + (a) when byte (eam) is zero, 13 + (a) when the result is positive, and 14 + (a) when the result is negative.
- *11: 3 when word (AH) is zero, 12 when the result is positive, and 13 when the result is negative.
- *12: 3 when word (ear) is zero, 16 when the result is positive, and 19 when the result is negative.
- *13: 4 + (a) when word (eam) is zero, 17 + (a) when the result is positive, and 20 + (a) when the result is negative.
- Note: Which of the two values given for the number of execution cycles applies when an overflow error occurs in a DIV or DIVW instruction depends on whether the overflow was detected before or after the operation.

Mn	emonic	#	cycles	В	Operation	LH	AH	I	S	Т	Ν	Ζ	۷	С	RMW
ANDL ANDL	A, ear A, eam	2 2+	5 6+ (a)		long (A) \leftarrow (A) and (ear) long (A) \leftarrow (A) and (eam)			_	-	-	*	*	R R	-	
ORL ORL	A, ear A, eam	2 2+	5 6+ (a)		long (A) \leftarrow (A) or (ear) long (A) \leftarrow (A) or (eam)	_ _	-	_	_	-	*	*	R R		
XORL XORL	A, ear A, eam	2 2+	5 6+ (a)	0 (d)	long (A) \leftarrow (A) xor (ear) long (A) \leftarrow (A) xor (eam)	_ _	-	_	_ _		*	*	R R		

Table 15 Logical 2 Instructions (Long Word) [6 Instructions]

For an explanation of "(a)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 16	Sign Inversion	Instructions	(Byte/Word)	[6 Instructions]
----------	----------------	--------------	-------------	------------------

Mn	emonic	#	cycles	В	Operation	LH	AH	I	S	Т	Ν	Ζ	۷	С	RMW
NEG	А	1	2	0	byte (A) \leftarrow 0 – (A)	Х	_	-	_	_	*	*	*	*	_
NEG NEG	ear eam	2 2+	2 3+ (a)		byte (ear) \leftarrow 0 – (ear) byte (eam) \leftarrow 0 – (eam)	-	_ _	-		_ _	*	*	*	*	*
NEGW	А	1	2	0	word (A) \leftarrow 0 – (A)	-	-	Ι	-	-	*	*	*	*	_
NEGW NEGW		2 2+	2 3+ (a)	0 2× (c)	word (ear) \leftarrow 0 – (ear) word (eam) \leftarrow 0 – (eam)	-	_ _		_ _	_ _	* *	* *	* *	* *	*

For an explanation of "(a)", "(b)" and "(c)" and refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 17	Absolute Value Instructions	(Byte/Word/Long	Word) [3 Insturctions]
----------	-----------------------------	-----------------	------------------------

Mnemonic	#	cycles	В	Operation	LH	AH	Ι	S	Т	Ν	Ζ	۷	С	RMW
ABS A	2	2	0	byte (A) \leftarrow absolute value (A)	Ζ	-	-	_	Ι	*	*	*	-	_
ABSW A	2	2	0	word $(A) \leftarrow absolute value (A)$	_	—	_	_	—	*	*	*	_	-
ABSL A	2	4	0	long $(A) \leftarrow absolute value (A)$	—	-	-	—	-	*	*	*	—	-

Table 18	Normalize Instructions	(Long Word) [ˈ	1 Instruction]
----------	------------------------	----------------	----------------

Mnem	onic	#	cycles	В	Operation	LH	AH	I	S	Т	Ν	Ζ	۷	С	RMW
NRML /	A, R0	2	*		long (A) \leftarrow Shifts to the position at which "1" was set first byte (R0) \leftarrow current shift count	-	Ι	-	-	*	_	_	-	-	_

*: 5 when the contents of the accumulator are all zeroes, 5 + (R0) in all other cases.

Mnemonic	#	cycles	В	Operation	LH	AH	Ι	S	Т	Ν	Ζ	V	С	RMW
RORC A	2	2	0	byte (A) \leftarrow Right rotation with carry	_	_	-	—	_	*	*	-	*	—
ROLC A	2	2	0	byte (A) \leftarrow Left rotation with carry	-	-	-	-	-	*	*	-	*	-
RORC ear	2	2	0	byte (ear) \leftarrow Right rotation with carry	_	_	_	_	_	*	*	_	*	*
RORC eam	2+			byte (eam) \leftarrow Right rotation with carry	-	-	-	-	-	*	*	-	*	*
ROLC ear	2	2	0	byte (ear) \leftarrow Left rotation with carry	-	-	-	-	-	*	*	-	*	*
ROLC eam	2+	3+ (a)	2× (b)	byte (eam) \leftarrow Left rotation with carry	_	_	_	_	_			_		
ASR A, R0	2	*1	0	byte (A) \leftarrow Arithmetic right barrel shift (A, R0)	_	_	—	_	*	*	*	_	*	-
LSR A, RO	2	*1	0	byte (A) \leftarrow Logical right barrel shift (A, R0)	-	-	-	-	*	*	*	-	*	-
LSL A, R0	2	*1	0	byte (A) \leftarrow Logical left barrel shift (A, R0)	_	_	-	-	_	~	^	_	~	-
ASR A, #imm8	3	*3	0	byte (A) \leftarrow Arithmetic right barrel shift (A, imm8)	_	_	—	_	*	*	*	_	*	-
LSR A, #imm8	3	*3	0	byte (A) \leftarrow Logical right barrel shift (A, imm8)	-	-	-	-	*	*	*	-	*	-
LSL A, #imm8	3	*3	0	byte (A) \leftarrow Logical left barrel shift (A, imm8)	-	-	-	-	-	*	*	-	*	-
ASRW A	1	2	0	word (A) \leftarrow Arithmetic right shift (A, 1 bit)	_	—	—	—	*	*	*	-	*	—
LSRW A/SHRW A	1	2 2	0	word $(A) \leftarrow$ Logical right shift $(A, 1 \text{ bit})$	-	-	-	-	*	R	*	-	*	-
LSLW A/SHLW A	1	2	0	word (A) \leftarrow Logical left shift (A, 1 bit)	_	_	_	_	_			_		-
ASRW A, R0	2	*1	0	word (A) \leftarrow Arithmetic right barrel shift (A, R0)	_	_	_	_	*	*	*	_	*	_
LSRW A, RO	2	*1	0	word (A) \leftarrow Logical right barrel shift (A, R0)	-	-	-	-	*	*	*	-	*	-
LSLW A, R0	2	*1	0	word (A) \leftarrow Logical left barrel shift (A, R0)	_	-	-	-	-	^	^	_	^	-
ASRW A, #imm8	3	*3	0	word (A) \leftarrow Arithmetic right barrel shift (A, imm8)	_	_	_	_	*	*	*	_	*	_
LSRW A, #imm8	3	*3	0	word (A) \leftarrow Logical right barrel shift (A, imm8)	—	-	-	-	*	*	*	-	*	-
LSLW A, #imm8	3	*3	0	word (A) \leftarrow Logical left barrel shift (A, imm8)	—	—		—	—	*	*	-	*	-
ASRL A, R0	2	*2	0	long (A) \leftarrow Arithmetic right shift (A, R0)	_	Ι	_	-	*	*	*	-	*	—
LSRL A, R0	2	*2	0	long (A) \leftarrow Logical right barrel shift (A, R0)	-	-	-	-	*	*	*	-	*	—
LSLL A, R0	2	*2	0	long (A) \leftarrow Logical left barrel shift (A, R0)	-	-	-	—	-	*	*	-	*	—
ASRL A, #imm8	3	*4	0	long (A) \leftarrow Arithmetic right shift (A, imm8)	_	_	_	_	*	*	*	_	*	_
LSRL A, #imm8	3	*4	0	long (A) \leftarrow Logical right barrel shift (A, imm8)	-	_	_	-	*	*	*	-	*	—
LSLL A, #imm8	3	*4	0	long (A) \leftarrow Logical left barrel shift (A, imm8)	-	-	—	-	-	*	*	-	*	-

Table 19	Shift Instructions	(Byte/Word/Long Word)	[27 Instructions]
----------	--------------------	-----------------------	-------------------

For an explanation of "(a)" and "(b)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

*1: 3 when R0 is 0, 3 + (R0) in all other cases.

*2: 3 when R0 is 0, 4 + (R0) in all other cases.

*3: 3 when imm8 is 0, 3 + (imm8) in all other cases.

*4: 3 when imm8 is 0, 4 + (imm8) in all other cases.

Mnemonic	#	cycles	В	Operation	LH	AH	I	S	Т	Ν	Ζ	V	С	RMW
BZ/BEQ rel	2	*1	0	Branch when (Z) = 1	_	_		Ι	_	_	Ι	_		_
BNZ/BNE rel	2	*1	0	Branch when $(Z) = 0$	_	—	_	_	-	—	—	—	_	—
BC/BLO rel	2	*1	0	Branch when $(C) = 1$	_	—	_	—	-	-	—	—	—	—
BNC/BHS rel	2	*1	0	Branch when $(C) = 0$	_	_	_	—	—	—	—	—	—	—
BN rel	2	*1	0	Branch when $(N) = 1$	_	—	—	—	-	—	—	—	—	—
BP rel	2	*1	0	Branch when $(N) = 0$	_	—	_	—	-	-	—	—	—	—
BV rel	2	*1	0	Branch when $(V) = 1$	_	—	_	—	-	-	_	—	—	—
BNV rel	2	*1	0	Branch when $(V) = 0$	_	_	_	_	-	—	—	—	—	—
BT rel	2	*1	0	Branch when $(T) = 1$	_	_	_	_	-	—	—	—	_	—
BNT rel	2	*1	0	Branch when $(T) = 0$	_	_	_	_	-	—	_	—	_	—
BLT rel	2	*1	0	Branch when (V) xor $(N) = 1$	_	—	_	_	—	-	—	—	—	—
BGE rel	2	*1	0	Branch when (V) xor $(N) = 0$	_	—	_	_	—	—	—	—	_	—
BLE rel	2	*1	0	((V) xor (N)) or (Z) = 1	_	—	_	_	-	—	_	—	_	—
BGT rel	2	*1	0	(\dot{V}) xor \dot{N} \dot{V} or \dot{Z} = 0	_	_	_	_	—	—	_	—	_	—
BLS rel	2	*1	0	Branch when (C) or $(Z) = 1$	_	_	_	_	—	—	_	—	_	—
BHI rel	2	*1	0	Branch when (C) or $(Z) = 0$	_	_	_	_	-	—	_	—	_	—
BRA rel	2	*1	0	Branch unconditionally	—	-	-	-	-	-	-	—	-	-
JMP @A	1	2	0	word (PC) \leftarrow (A)	_	_	_	_	_	_	_	_	_	_
JMP addr16	3	2	0	word (PC) \leftarrow addr16	_	_	_	_	-	_	_	_	_	—
JMP @ear	2	3	0	word (PC) \leftarrow (ear)	_	_	_	_	—	_	_	—	_	—
JMP @eam	2+	4+ (a)	(c)	word (PC) \leftarrow (eam)	_	_	_	_	—	_	_	—	_	—
JMPP @ear *3	2	3) O	word (PC) \leftarrow (ear), (PCB) \leftarrow (ear +2)	_	_	_	_	—	—	_	—	_	—
JMPP @eam *3	2+	4+ (a)	(d)	word (PC) \leftarrow (eam), (PCB) \leftarrow (eam +2)	_	_	_	_	—	_	_	—	_	—
JMPP addr24	4	3) O	word (PC) \leftarrow ad24 0 to 15	_	_	_	_	—	_	_	—	_	—
				(PCB) ← ad24 16 to 23										
CALL @ear *4	2	4	(c)	word (PC) \leftarrow (ear)	_	_	_	_	—	_	_	—	_	—
CALL @eam *4	2+	5+ (a)	$2 \times (c)$	word (PC) \leftarrow (eam)	_	_	_	_	—	_	_	—	_	—
CALL addr16 *5	3	5	(c)	word (PC) \leftarrow addr16	_	—	_	_	-	—	_	—	_	—
CALLV #vct4 *5	1	5	$2 \times (c)$	Vector call linstruction	_	_	_	_	—	_	_	—	_	_
CALLP @ear *6	2	7	$2 \times (c)$	word (PC) \leftarrow (ear) 0 to 15,	_	_	_	_	-	_	_	—	_	_
			. ,	$(PCB) \leftarrow (ear) \ 16 \ to \ 23$										
CALLP @eam *6	2+	8+ (a)	*2	word (PC) \leftarrow (eam) 0 to 15,	—	-	_	_	-	-	—	_	—	-
				(PCB) ← (eam) 16 to 23										
CALLP addr24 *7	4	7	2× (c)	word (PC) \leftarrow addr 0 to 15, (PCB) \leftarrow addr 16 to 23	-	-	-	-	-	-	-	-	-	-

Table 20	Branch 1 Instructions	[31 Instructions]
----------	-----------------------	-------------------

For an explanation of "(a)", "(c)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

- *1: 3 when branching, 2 when not branching.
- *2: 3 × (c) + (b)
- *3: Read (word) branch address.
- *4: W: Save (word) to stack; R: Read (word) branch address.
- *5: Save (word) to stack.
- *6: W: Save (long word) to W stack; R: Read (long word) branch address.
- *7: Save (long word) to stack.

Mnemonic	#	cycles	В	Operation	LH	AH	I	S	Т	Ν	Ζ	V	С	RMW
CBNE A, #imm8, rel	3	*1	0	Branch when byte (A) ≠ imm8	-	-	-	-	-	*	*	*	*	-
CWBNE A, #imm16, rel	4	*1	0	Branch when byte (A) \neq imm16	-	-	-	-	—	*	*	*	*	—
CBNE ear, #imm8, rel	4	*1 *3	0	Branch when byte (ear) ≠ imm8	_	_	_	_	_	*	*	*	*	_
CBNE eam, #imm8, rel	4+	^3 *1	(b)	Branch when byte (ear) \neq imm8	_	_	_	_	_	*	*	*	*	_
CWBNE ear, #imm16, rel	5	*3	0	Branch when word (ear) \neq imm16	_	_	_	_	_	*	*	*	*	_
CWBNE eam, #imm16, rel	5+	*2	(c)	Branch when word (eam) \neq imm16		_	_	_	_	*	*	*	*	—
DBNZ ear, rel	3		0	Branch when byte (ear) =	_	_	_	_	_	*	*	*	_	_
	0	*4	0	$(ear) - 1$, and $(ear) \neq 0$										
DBNZ eam, rel	3+	*2	2× (b)	Branch when byte (ear) =	—	-	_	_	_	*	*	*	_	*
	~		0	$(eam) - 1$, and $(eam) \neq 0$						*	*	*		
DWBNZ ear, rel	3	*4	0	Branch when word (ear) = $(ear) - 1$, and $(ear) \neq 0$	-	-	-	-	-	Â	~		-	_
DWBNZ eam, rel	3+		2× (c)		_	_	_	_	_	*	*	*	_	*
	01	14	2^ (0)	$(eam) - 1$, and $(eam) \neq 0$										
		12												
INT #vct8	2	13		Software interrupt	_	—	R	S	_	-	—	—	-	—
INT addr16	3	14		Software interrupt	—	—	R	S	—	—	—	—	-	—
INTP addr24	4	9		Software interrupt	—	—	R	S	—	-	—	—	—	—
INT9	1	11		Software interrupt	—	—	R	S	—	—	—	—	—	-
RETI	1			Return from interrupt	—	—	*	*	*	*	*	*	*	-
RETIQ *6	2	6	*5	Return from interrupt	-	-	*	*	*	*	*	*	*	—
LINK #imm8	2		(c)	At constant entry, save old	_	_	_	_	_	_	_	_	_	_
	-		()	frame pointer to stack, set new										
		5		frame pointer, and allocate										
				local pointer area										
UNLINK	1		(c)	At constant entry, retrieve old	_	_	_	_	_	_	_	_	_	_
	-	4		frame pointer from stack.										
		5		• • • • • • • • • •										
RET *7	1		(c)	Return from subroutine	_	_	_	_	_	_	_	_	_	_
RETP *8	1		(d)	Return from subroutine	_	_	_	_	_	-	_	_	_	_
L														

Table 21	Branch 2 Instructions [20 Instructions]
----------	---

For an explanation of "(b)", "(c)" and "(d)", refer to Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

- *1: 4 when branching, 3 when not branching
- *2: 5 when branching, 4 when not branching
- *3: 5 + (a) when branching, 4 + (a) when not branching
- *4: 6 + (a) when branching, 5 + (a) when not branching
- *5: $3 \times (b) + 2 \times (c)$ when an interrupt request is generated, $6 \times (c)$ when returning from the interrupt.
- *6: High-speed interrupt return instruction. When an interrupt request is detected during this instruction, the instruction branches to the interrupt vector without performing stack operations when the interrupt is generated.
- *7: Return from stack (word)
- *8: Return from stack (long word)

M	nemonic	#	cycles	В	Operation	LH	АН	I	S	Т	Ν	Z	V	С	RMW
MOVB MOVB MOVB	A, dir:bp A, addr16:bp A, io:bp	3 4 3	3 3 3	(b) (b) (b)	byte (A) \leftarrow (dir:bp) b byte (A) \leftarrow (addr16:bp) b byte (A) \leftarrow (io:bp) b	Z Z Z	* *		-	_ _ _	* * *	* * *		-	
MOVB MOVB MOVB	dir:bp, A addr16:bp, A io:bp, A	3 4 3	4 4 4	2× (b) 2× (b) 2× (b)	bit (addr16:bp) $\dot{b} \leftarrow (A)$		_ _ _			_ _ _	* *	* * *			* *
SETB SETB SETB	dir:bp addr16:bp io:bp	3 4 3	4 4 4	2× (b) 2× (b) 2× (b)	· · · · · · · · · · · · · · · · · · ·		_ _ _			_ _ _		_ _ _		 	* * *
CLRB CLRB CLRB	dir:bp addr16:bp io:bp	3 4 3	4 4 4	2× (b) 2× (b) 2× (b)			_ _ _			_ _ _		_ _ _			* * *
BBC BBC BBC	dir:bp, rel addr16:bp, rel io:bp, rel	4 5 4	*1 *1 *1	(b) (b) (b)	Branch when (dir:bp) $b = 0$ Branch when (addr16:bp) $b = 0$ Branch when (io:bp) $b = 0$		_ _ _		- - -	_ _ _	- - -	* * *			
BBS BBS BBS	dir:bp, rel addr16:bp, rel io:bp, rel	4 5 4	*1 *1 *1	(b) (b) (b)	Branch when (dir:bp) b = 1 Branch when (addr16:bp) b = 1 Branch when (io:bp) b = 1		_ _ _			_ _ _		* * *			
SBBS	addr16:bp, rel	5	*2	2× (b)	Branch when $(addr16:bp)b = 1, bit = 1$	_	_	_	_	_	_	*	_	_	*
WBTS	io:bp	3	*3	*4	Wait until (io:bp) b = 1	_	_	_	_	_	_	_	_	_	-
WBTC	io:bp	3	*3	*4	Wait until (io:bp) b = 0	-	_	_	_	_	_	-	_	_	-

For an explanation of "(b)", refer to Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

*1: 5 when branching, 4 when not branching

*2: 7 when condition is satisfied, 6 when not satisfied

- *3: Undefined count
- *4: Until condition is satisfied