

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	17
Program Memory Size	2KB (2K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 × 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VFQFN Exposed Pad
Supplier Device Package	20-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f334-gmr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

C8051F330/1/2/3/4/5

Г

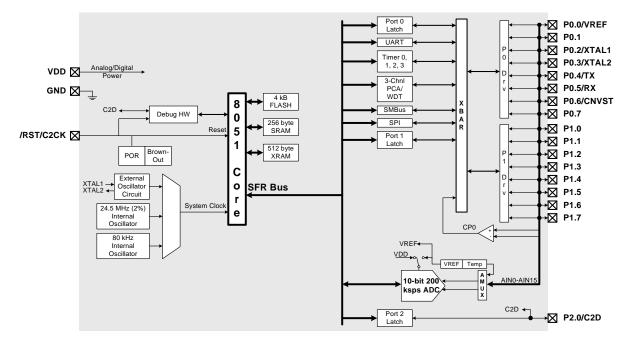

Ordering Part Number	MIPS (Peak)	Flash Memory (kB)	RAM (bytes)	Calibrated Internal 24.5 MHz Oscillator	Internal 80 kHz Oscillator	SMBus/I ² C	Enhanced SPI	UART	Timers (16-bit)	Programmable Counter Array	Digital Port I/Os	10-bit 200ksps ADC	10-bit Current Output DAC	Internal Voltage Reference	Temperature Sensor	Analog Comparator	Lead-free (RoHS Compliant)	Package
C8051F330-GM	25	8	768	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	4	V	17	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	QFN-20
C8051F331-GM	25	8	768	\checkmark	~	\checkmark	\checkmark	\checkmark	4	\checkmark	17	—	—			\checkmark	\checkmark	QFN-20
C8051F332-GM	25	4	768	\checkmark	~	\checkmark	~	\checkmark	4	~	17	~	—	\checkmark	\checkmark	~	\checkmark	QFN-20
C8051F333-GM	25	4	768	~	~	~	~	~	4	~	17	—	—	_	_	~	\checkmark	QFN-20
C8051F334-GM	25	2	768	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	4	~	17	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	QFN-20
C8051F335-GM	25	2	768	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	4	\checkmark	17					\checkmark	\checkmark	QFN-20

 Table 1.1. Product Selection Guide

٦

C8051F330/1/2/3/4/5

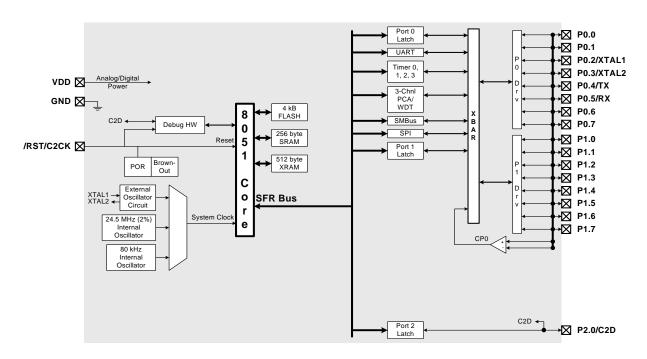
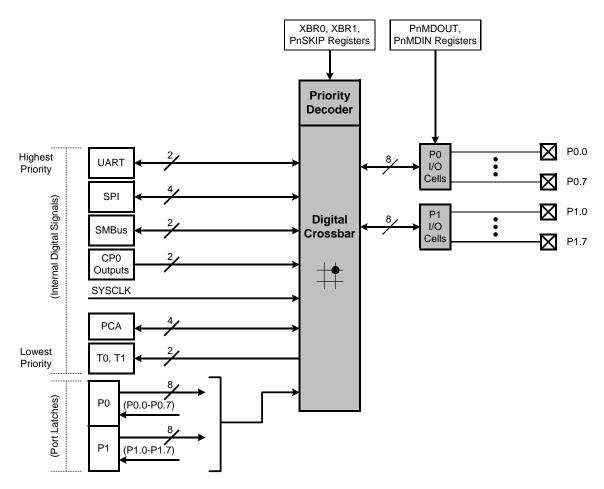


Figure 1.4. C8051F333 Block Diagram



C8051F330/1/2/3/4/5

1.4. Programmable Digital I/O and Crossbar

C8051F330/1/2/3/4/5 devices include 17 I/O pins (two byte-wide Ports and one 1-bit-wide Port). The C8051F330/1/2/3/4/5 Ports behave like typical 8051 Ports with a few enhancements. Each Port pin may be configured as an analog input or a digital I/O pin. Pins selected as digital I/Os may additionally be configured for push-pull or open-drain output. The "weak pullups" that are fixed on typical 8051 devices may be globally disabled, providing power savings capabilities.

The Digital Crossbar allows mapping of internal digital system resources to Port I/O pins. (See Figure 1.11.) On-chip counter/timers, serial buses, HW interrupts, comparator output, and other digital signals in the controller can be configured to appear on the Port I/O pins specified in the Crossbar Control registers. This allows the user to select the exact mix of general purpose Port I/O and digital resources needed for the particular application.

1.5. Serial Ports

The C8051F330/1/2/3/4/5 Family includes an SMBus/I²C interface, a full-duplex UART with enhanced baud rate configuration, and an Enhanced SPI interface. Each of the serial buses is fully implemented in hardware and makes extensive use of the CIP-51's interrupts, thus requiring very little CPU intervention.

1.9. 10-bit Current Output DAC

The C8051F330 device includes a 10-bit current-mode Digital-to-Analog Converter (IDA0). The maximum current output of the IDA0 can be adjusted for three different current settings; 0.5 mA, 1 mA, and 2 mA. IDA0 features a flexible output update mechanism which allows for seamless full-scale changes and supports jitter-free updates for waveform generation. Three update modes are provided, allowing IDA0 output updates on a write to IDA0H, on a Timer overflow, or on an external pin edge.

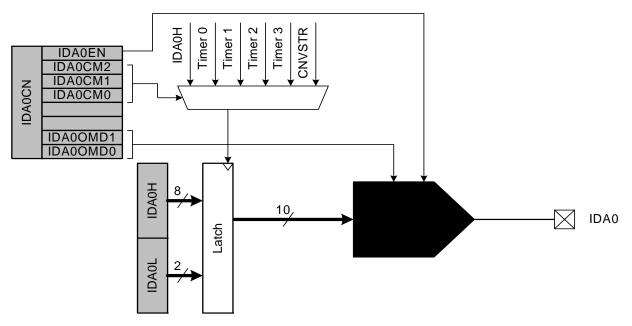


Figure 1.16. IDA0 Functional Block Diagram

3. Global Electrical Characteristics

Table 3.1. Global Electrical Characteristics

-40 to +85 °C, 25 MHz system clock unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
Digital Supply Voltage		V_{RST}^{1}	3.0	3.6	V
Digital Supply RAM Data Retention Voltage		_	1.5	_	V
SYSCLK (System Clock) (Note 2)		0		25	MHz
T _{SYSH} (SYSCLK High Time)		18	_		ns
T _{SYSL} (SYSCLK Low Time)		18	_	_	ns
Specified Operating Temperature Range		-40		+85	°C
Digital Supply Current—CPU	Active (Normal Mode, fetching instr	uctions	from F	lash)	
I _{DD} (Note 3)	V _{DD} = 3.6 V, F = 25 MHz	—	10.7	11.7	mA
	V _{DD} = 3.0 V, F = 25 MHz	—	7.8	8.3	mA
	V _{DD} = 3.0 V, F = 1 MHz	—	0.38	—	mA
	V _{DD} = 3.0 V, F = 80 kHz	_	31	_	μA
I _{DD} Supply Sensitivity (Note 3)	F = 25 MHz	_	65		%/V
	F = 1 MHz		61		%/V
I _{DD} Frequency Sensitivity	V_{DD} = 3.0 V, F \leq 15 MHz, T = 25 °C	_	0.38	_	mA/MHz
(Note 3, Note 4)	V _{DD} = 3.0 V, F > 15 MHz, T = 25 °C	—	0.21	—	mA/MHz
	$V_{DD} = 3.6 \text{ V}, \text{ F} \le 15 \text{ MHz}, \text{ T} = 25 \text{ °C}$	—	0.53	—	mA/MHz
	V _{DD} = 3.6 V, F > 15 MHz, T = 25 °C	_	0.27	_	mA/MHz

Table 3.1. Global Electrical Characteristics

-40 to +85 °C, 25 MHz system clock unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
Digital Supply Current—CPU	Inactive (Idle Mode, not fetching ins	tructior	ns from	Flash)	
I _{DD} (Note 3)	V _{DD} = 3.6 V, F = 25 MHz	_	4.8	5.2	mA
	V _{DD} = 3.0 V, F = 25 MHz	—	3.8	4.1	mA
	V _{DD} = 3.0 V, F = 1 MHz	_	0.20	—	mA
	V _{DD} = 3.0 V, F = 80 kHz	_	16	—	μA
I _{DD} Supply Sensitivity (Note 3)	F = 25 MHz	_	43	_	%/V
	F = 1 MHz	—	55	—	%/V
I _{DD} Frequency Sensitivity	V _{DD} = 3.0 V, F <u><</u> 1 MHz, T = 25 °C	_	0.20	—	mA/MHz
(Note 3, Note 5)	V _{DD} = 3.0 V, F > 1 MHz, T = 25 °C	—	0.15	—	mA/MHz
	V _{DD} = 3.6 V, F <u><</u> 1 MHz, T = 25 °C	_	0.24	—	mA/MHz
	V _{DD} = 3.6 V, F > 1 MHz, T = 25 °C	_	0.19	_	mA/MHz
Digital Supply Current (Stop Mode, shutdown)	Oscillator not running, V _{DD} Monitor Disabled	—	< 0.1	—	μA

Notes:

- 1. Given in Table 10.1 on page 102.
- 2. SYSCLK must be at least 32 kHz to enable debugging.
- 3. Based on device characterization data; Not production tested.
- 4. IDD can be estimated for frequencies <= 15 MHz by simply multiplying the frequency of interest by the frequency sensitivity number for that range. When using these numbers to estimate I_{DD} for >15 MHz, the estimate should be the current at 25 MHz minus the difference in current indicated by the frequency sensitivity number. For example: V_{DD} = 3.0 V; F = 20 MHz, I_{DD} = 7.8 mA (25 MHz 20 MHz) * 0.21 mA/MHz = 6.75 mA.
- 5. Idle IDD can be estimated for frequencies <= 1 MHz by simply multiplying the frequency of interest by the frequency sensitivity number for that range. When using these numbers to estimate Idle I_{DD} for >1 MHz, the estimate should be the current at 25 MHz minus the difference in current indicated by the frequency sensitivity number. For example: V_{DD} = 3.0 V; F = 5 MHz, Idle I_{DD} = 4.8 mA (25 MHz 5 MHz) * 0.15 mA/MHz = 1.8 mA.

Other electrical characteristics tables are found in the data sheet section corresponding to the associated peripherals. For more information on electrical characteristics for a specific peripheral, refer to the page indicated in Table 3.2.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value					
AD0EN	AD0TM	AD0INT	AD0BUSY	AD0WINT	AD0CM2	AD0CM1	AD0CM0	00000000					
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:					
						(bit addr	essable)	0xE8					
Bit7:	AD0EN: AD 0: ADC0 Dis			power shutc	lown.								
Bit6:	 1: ADC0 Enabled. ADC0 is active and ready for data conversions. AD0TM: ADC0 Track Mode Bit. 0: Normal Track Mode: When ADC0 is enabled, tracking is continuous unless a conversion 												
Bit5:	is in progress. 1: Low-power Track Mode: Tracking Defined by AD0CM2–0 bits (see below).												
	AD0INT: ADC0 Conversion Complete Interrupt Flag. 0: ADC0 has not completed a data conversion since the last time AD0INT was cleared. 1: ADC0 has completed a data conversion.												
Bit4:	AD0BUSY: / Read:												
	0: ADC0 cor to logic 1 on	the falling	edge of AD	0BUSY.	on is not cu	rrently in pr	ogress. AD	0INT is set					
	1: ADC0 cor Write:	nversion is	in progress										
	0: No Effect.												
	1: Initiates A												
Bit3:	ADOWINT: A		•	•	-		. ()						
	0: ADC0 Win 1: ADC0 Win					ed since this	s flag was la	ast cleared.					
Bits2–0:	AD0CM2-0:												
	When AD0T												
	000: ADC0 (0BUSY.							
	001: ADC0 0 010: ADC0 0												
	010: ADC0 0												
	100: ADC0 0					CNVSTR.							
	101: ADC0 o	conversion	initiated on	overflow of	Timer 3.								
	11x: Reserve												
	When AD0T 000: Trackin version.		on write of '	1' to AD0BU	SY and las	ts 3 SAR cl	ocks, follow	ved by con-					
	001: Trackin sion.	g initiated	on overflow	of Timer 0 a	ind lasts 3 \$	SAR clocks	, followed b	y conver-					
	010: Trackin sion.	g initiated	on overflow	of Timer 2 a	ind lasts 3 \$	SAR clocks	, followed b	y conver-					
	011: Trackin sion.	g initiated o	on overflow	of Timer 1 a	nd lasts 3 S	SAR clocks	, followed b	y conver-					
	100: ADC0 t CNVSTR ed	•	when CNV	STR input is	logic low; c	conversion s	starts on ris	ing					
	101: Trackin sion.		on overflow	of Timer 3 a	ind lasts 3 \$	SAR clocks	, followed b	y conver-					
	11x: Reserve	ed.											

SFR Definition 5.6. ADC0CN: ADC0 Control

6. 10-Bit Current Mode DAC (IDA0, C8051F330 only)

The C8051F330 device includes a 10-bit current-mode Digital-to-Analog Converter (IDAC). The maximum current output of the IDAC can be adjusted for three different current settings; 0.5 mA, 1 mA, and 2 mA. The IDAC is enabled or disabled with the IDA0EN bit in the IDA0 Control Register (see SFR Definition 6.1). When IDA0EN is set to '0', the IDAC port pin (P0.1) behaves as a normal GPIO pin. When IDA0EN is set to '1', the digital output drivers and weak pullup for the IDAC pin are automatically disabled, and the pin is connected to the IDAC output. An internal bandgap bias generator is used to generate a reference current for the IDAC whenever it is enabled. When using the IDAC, bit 1 in the POSKIP register should be set to '1', to force the Crossbar to skip the IDAC pin.

6.1. IDA0 Output Scheduling

IDA0 features a flexible output update mechanism which allows for seamless full-scale changes and supports jitter-free updates for waveform generation. Three update modes are provided, allowing IDAC output updates on a write to IDA0H, on a Timer overflow, or on an external pin edge.

6.1.1. Update Output On-Demand

In its default mode (IDA0CN.[6:4] = '111') the IDA0 output is updated "on-demand" on a write to the highbyte of the IDA0 data register (IDA0H). It is important to note that writes to IDA0L are held in this mode, and have no effect on the IDA0 output until a write to IDA0H takes place. If writing a full 10-bit word to the IDAC data registers, the 10-bit data word is written to the low byte (IDA0L) and high byte (IDA0H) data registers. Data is latched into IDA0 after a write to the IDA0H register, **so the write sequence should be IDA0L followed by IDA0H** if the full 10-bit resolution is required. The IDAC can be used in 8-bit mode by initializing IDA0L to the desired value (typically 0x00), and writing data to only IDA0H (see **Section 6.2** for information on the format of the 10-bit IDAC data word within the 16-bit SFR space).

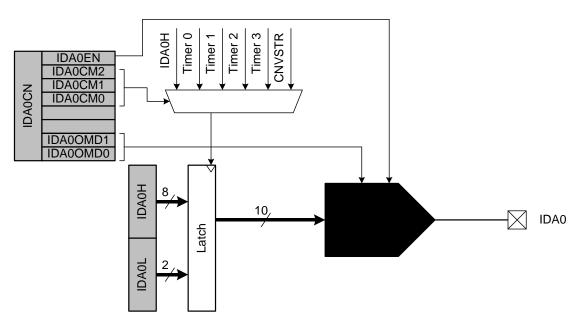


Figure 6.1. IDA0 Functional Block Diagram

9.2.2. Data Memory

The CIP-51 includes 256 bytes of internal RAM mapped into the data memory space from 0x00 through 0xFF. The lower 128 bytes of data memory are used for general purpose registers and scratch pad memory. Either direct or indirect addressing may be used to access the lower 128 bytes of data memory. Locations 0x00 through 0x1F are addressable as four banks of general purpose registers, each bank consisting of eight byte-wide registers. The next 16 bytes, locations 0x20 through 0x2F, may either be addressed as bytes or as 128 bit locations accessible with the direct addressing mode.

The upper 128 bytes of data memory are accessible only by indirect addressing. This region occupies the same address space as the Special Function Registers (SFR) but is physically separate from the SFR space. The addressing mode used by an instruction when accessing locations above 0x7F determines whether the CPU accesses the upper 128 bytes of data memory space or the SFRs. Instructions that use direct addressing will access the SFR space. Instructions using indirect addressing above 0x7F access the upper 128 bytes of data memory organization of the CIP-51.

9.2.3. General Purpose Registers

The lower 32 bytes of data memory, locations 0x00 through 0x1F, may be addressed as four banks of general-purpose registers. Each bank consists of eight byte-wide registers designated R0 through R7. Only one of these banks may be enabled at a time. Two bits in the program status word, RS0 (PSW.3) and RS1 (PSW.4), select the active register bank (see description of the PSW in SFR Definition 9.4). This allows fast context switching when entering subroutines and interrupt service routines. Indirect addressing modes use registers R0 and R1 as index registers.

9.2.4. Bit Addressable Locations

In addition to direct access to data memory organized as bytes, the sixteen data memory locations at 0x20 through 0x2F are also accessible as 128 individually addressable bits. Each bit has a bit address from 0x00 to 0x7F. Bit 0 of the byte at 0x20 has bit address 0x00 while bit7 of the byte at 0x20 has bit address 0x07. Bit 7 of the byte at 0x2F has bit address 0x7F. A bit access is distinguished from a full byte access by the type of instruction used (bit source or destination operands as opposed to a byte source or destination).

The MCS-51[™] assembly language allows an alternate notation for bit addressing of the form XX.B where XX is the byte address and B is the bit position within the byte. For example, the instruction:

MOV C, 22.3h

moves the Boolean value at 0x13 (bit 3 of the byte at location 0x22) into the Carry flag.

9.2.5. Stack

A programmer's stack can be located anywhere in the 256-byte data memory. The stack area is designated using the Stack Pointer (SP, 0x81) SFR. The SP will point to the last location used. The next value pushed on the stack is placed at SP+1 and then SP is incremented. A reset initializes the stack pointer to location 0x07. Therefore, the first value pushed on the stack is placed at location 0x08, which is also the first register (R0) of register bank 1. Thus, if more than one register bank is to be used, the SP should be initialized to a location in the data memory not being used for data storage. The stack depth can extend up to 256 bytes.

Table 9.3. Special Function Registers (Continued)

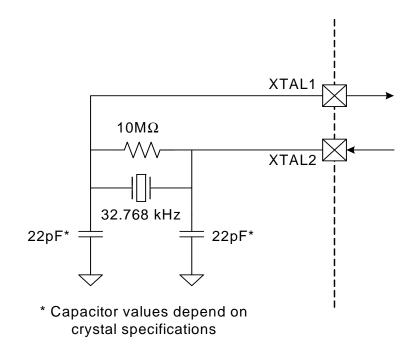
SFRs are listed in alphabetical order. All undefined SFR locations are reserved

Register	Address	Description	Page
OSCXCN	0xB1	External Oscillator Control	117
P0	0x80	Port 0 Latch	130
POMDIN	0xF1	Port 0 Input Mode Configuration	130
POMDOUT	0xA4	Port 0 Output Mode Configuration	131
POSKIP	0xD4	Port 0 Skip	131
P1	0x90	Port 1 Latch	131
P1MDIN	0xF2	Port 1 Input Mode Configuration	132
P1MDOUT	0xA5	Port 1 Output Mode Configuration	132
P1SKIP	0xD5	Port 1 Skip	132
P2	0xA0	Port 2 Latch	133
P2MDOUT	0xA6	Port 2 Output Mode Configuration	133
PCA0CN	0xD8	PCA Control	205
PCA0CPH0	0xFC	PCA Capture 0 High	208
PCA0CPH1	0xEA	PCA Capture 1 High	208
PCA0CPH2	0xEC	PCA Capture 2 High	208
PCA0CPL0	0xFB	PCA Capture 0 Low	208
PCA0CPL1	0xE9	PCA Capture 1 Low	208
PCA0CPL2	0xEB	PCA Capture 2 Low	208
PCA0CPM0	0xDA	PCA Module 0 Mode Register	207
PCA0CPM1	0xDB	PCA Module 1 Mode Register	207
PCA0CPM2	0xDC	PCA Module 2 Mode Register	207
PCA0H	0xFA	PCA Counter High	208
PCA0L	0xF9	PCA Counter Low	208
PCA0MD	0xD9	PCA Mode	206
PCON	0x87	Power Control	95
PSCTL	0x8F	Program Store R/W Control	108
PSW	0xD0	Program Status Word	84
REF0CN	0xD1	Voltage Reference Control	62
RSTSRC	0xEF	Reset Source Configuration/Status	101
SBUF0	0x99	UART0 Data Buffer	159
SCON0	0x98	UART0 Control	158
SMB0CF	0xC1	SMBus Configuration	142
SMB0CN	0xC0	SMBus Control	144
SMB0DAT	0xC2	SMBus Data	146

SFR Definition 9.9. EIE1: Extended Interrupt Enable 1

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value						
ET3	Reserved	ECP0	EPCA0	EADC0	EWADC0	Reserved	ESMB0	00000000						
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:						
								0xE6						
Bit7:	ET3: Enable			.										
		This bit sets the masking of the Timer 3 interrupt.												
	0: Disable Timer 3 interrupts.1: Enable interrupt requests generated by the TF3L or TF3H flags.													
D:+C.			•		IF3L OF IF	3H flags.								
Bit6:	RESERVED.			-										
Bit5:	ECP0: Enabl		```											
	This bit sets		•	o interrupt.										
	0: Disable Cl 1: Enable int			atod by the			•							
Bit4:	EPCA0: Ena						5.							
DIL4.	This bit sets	•		•	· · ·	enupt.								
	0: Disable all		•	Ao interiup										
	1: Enable int			ated by PC4	20									
Bit3:	EADC0: Ena		•											
Dito.	This bit sets				•	ete interrupt								
	0: Disable Al		•				•							
	1: Enable int				•	a .								
Bit2:	EWADC0: Er					5								
	This bit sets					terrupt.								
	0: Disable Al	DC0 Windo	w Compari	son interrup	ot.	·								
	1: Enable int	errupt requ	ests genera	ated by AD	C0 Window	Compare fla	ag (AD0WI	NT).						
Bit1:	RESERVED.	. Read = 0.	Must Write	e 0.										
Bit0:	ESMB0: Ena	ble SMBus	s (SMB0) In	terrupt.										
	This bit sets	the maskin	g of the SM	1B0 interrup	t.									
	0: Disable all SMB0 interrupts.													
	1: Enable interrupt requests generated by SMB0.													

SFR Definition 9.11. IT01CF: INT0/INT1 Configuration


R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
IN1PL	IN1SL2	IN1SL1	IN1SL0	IN0PL	IN0SL2	IN0SL1	IN0SL0	00000001
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xE4
*Note: Re	efer to SFR Defin	ition 18.1 f	or INT0/1 ed	ae- or level-	sensitive inte	rrupt selectio	n.	
				9				
Bit7:	IN1PL: /INT1 F	Polarity						
	0: /INT1 input		ow.					
	1: /INT1 input	is active h	nigh.					
Bits6–4:	IN1SL2-0: /IN							
	These bits sel							
	pendent of the							
	peripheral that							
	assign the Por					the selected	a pin (accor	npiisned by
	setting to '1' th	le corresp	onaing bit i	n register r	-USKIP).			
	IN1SL2-0	/INT	1 Port Pin					
	000		P0.0					
	001		P0.1					
	010		P0.2					
	011		P0.3					
	100		P0.4					
	101		P0.5					
	110		P0.6					
	111		P0.7					
D:40.								
Bit3:	INOPL: /INTO I 0: /INTO interro							
	1: /INT0 interro	•						
Bits2–0:	INT0SL2-0: /I	•	•	on Bits				
B102 01	These bits sel				/INT0. Note	e that this p	in assionm	ent is inde-
	pendent of the							
	peripheral that							
	assign the Por	• •	•	-	•	the selected	d pin (accor	mplished by
	setting to '1' th	ne corresp	onding bit i	n register F	POSKIP).			
		/////						
	IN0SL2–0 000	/IN I	P0.0					
	000	_	P0.0 P0.1					
	010	_	P0.1					
	010		P0.2 P0.3					
	100		P0.3 P0.4					
	100		P0.4					
	110		P0.5					
	110		P0.0					
			. 0.1					

The capacitors shown in the external crystal configuration provide the load capacitance required by the crystal for correct oscillation. These capacitors are "in series" as seen by the crystal and "in parallel" with the stray capacitance of the XTAL1 and XTAL2 pins.

Note: The desired load capacitance depends upon the crystal and the manufacturer. Please refer to the crystal data sheet when completing these calculations.

For example, a tuning-fork crystal of 32.768 kHz with a recommended load capacitance of 12.5 pF should use the configuration shown in Figure 13.1, Option 1. The total value of the capacitors and the stray capacitance of the XTAL pins should equal 25 pF. With a stray capacitance of 3 pF per pin, the 22 pF capacitors yield an equivalent capacitance of 12.5 pF across the crystal, as shown in Figure 13.2.

Figure 13.2. External 32.768 kHz Quartz Crystal Oscillator Connection Diagram

13.3.2. External RC Example

If an RC network is used as an external oscillator source for the MCU, the circuit should be configured as shown in Figure 13.1, Option 2. The capacitor should be no greater than 100 pF; however for very small capacitors, the total capacitance may be dominated by parasitic capacitance in the PCB layout. To determine the required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, first select the RC network value to produce the desired frequency of oscillation. If the frequency desired is 100 kHz, let R = 246 k Ω and C = 50 pF:

 $f = 1.23(10^3) / RC = 1.23(10^3) / [246 \times 50] = 0.1 MHz = 100 kHz$

Referring to the table in SFR Definition 13.4, the required XFCN setting is 010b.

13.3.3. External Capacitor Example

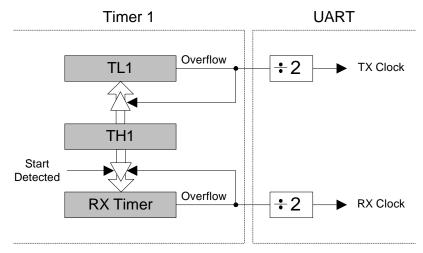
If a capacitor is used as an external oscillator for the MCU, the circuit should be configured as shown in Figure 13.1, Option 3. The capacitor should be no greater than 100 pF; however for very small capacitors, the total capacitance may be dominated by parasitic capacitance in the PCB layout. To determine the required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, select the capacitor to be used and find the frequency of oscillation from the equations below. Assume $V_{DD} = 3.0$ V and f = 150 kHz:

f = KF / (C x VDD) 0.150 MHz = KF / (C x 3.0)

Since the frequency of roughly 150 kHz is desired, select the K Factor from the table in SFR Definition 13.4 (OSCXCN) as KF = 22:

0.150 MHz = 22 / (C x 3.0) C x 3.0 = 22 / 0.150 MHz C = 146.6 / 3.0 pF = 48.8 pF

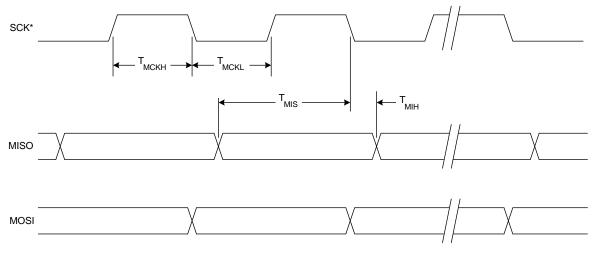
Therefore, the XFCN value to use in this example is 011b and C = 50 pF.



R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	Reset Value					
ENSMB	INH	BUSY	EXTHOLD	SMBTOE	SMBFTE	SMBCS1	SMBCS0	0000000					
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0						
							SFR Address	s: 0xC1					
Bit7:	ENSMB: SM												
	This bit enab			is interface.	When enal	oled, the int	erface cons	tantly mon-					
	itors the SD												
	0: SMBus interface disabled. 1: SMBus interface enabled.												
Bit6:	INH: SMBus Slave Inhibit.												
Dito:	When this bi			MBus does	not genera	te an interr	upt when sla	ave events					
	occur. This e												
	not affected.	•						·					
	0: SMBus S	lave Mode e	enabled.										
	1: SMBus S												
Bit5:	BUSY: SMB	•											
	This bit is se	-	•		ansfer is in	progress. It	is cleared t	o logic 0					
Bit4:	when a STC EXTHOLD:				ncion Engh								
DIL4.	This bit cont												
	0: SDA Exte				•								
	1: SDA Exte												
Bit3:	SMBTOE: S												
	This bit enal	oles SCL lo	w timeout d	etection. If	set to logic	1, the SMB	us forces Ti	mer 3 to					
	reload while												
	figured to Sp		• •	•				-					
	Timer 3 sho					25 ms, and f	the Timer 3	interrupt					
Dit0	service routi												
Bit2:	SMBFTE: S When this bi					o if SCL on		ain high for					
	more than 1		-					annightor					
Bits1–0:	SMBCS1-S				ection.								
	These two b					sed to gene	rate the SM	lBus bit					
	rate. The se	lected devid	e should be	e configured	d according	to Equation	n 15.1.						
					_								
	SMBCS1	SMBCS0		Bus Clock									
	0	0		Fimer 0 Ove									
	0	1		Fimer 1 Ove	-								
	1	0		2 High Byte									
	1	1	limer	2 Low Byte	Overflow								

16.1. Enhanced Baud Rate Generation

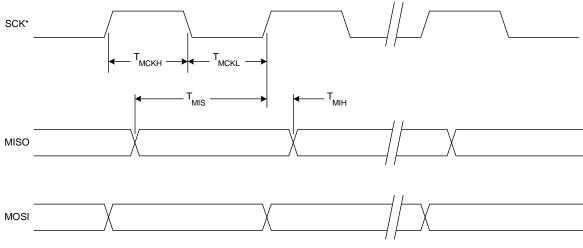
The UART0 baud rate is generated by Timer 1 in 8-bit auto-reload mode. The TX clock is generated by TL1; the RX clock is generated by a copy of TL1 (shown as RX Timer in Figure 16.2), which is not useraccessible. Both TX and RX Timer overflows are divided by two to generate the TX and RX baud rates. The RX Timer runs when Timer 1 is enabled, and uses the same reload value (TH1). However, an RX Timer reload is forced when a START condition is detected on the RX pin. This allows a receive to begin any time a START is detected, independent of the TX Timer state.


Timer 1 should be configured for Mode 2, 8-bit auto-reload (see **Section "18.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload" on page 179**). The Timer 1 reload value should be set so that overflows will occur at two times the desired UART baud rate frequency. Note that Timer 1 may be clocked by one of six sources: SYSCLK, SYSCLK / 4, SYSCLK / 12, SYSCLK / 48, the external oscillator clock / 8, or an external input T1. For any given Timer 1 clock source, the UART0 baud rate is determined by Equation 16.1-A and Equation 16.1-B.

A) UartBaudRate =
$$\frac{1}{2} \times T1_Overflow_Rate$$

B) T1_Overflow_Rate = $\frac{T1_{CLK}}{256 - TH1}$

Equation 16.1. UART0 Baud Rate


Where $T1_{CLK}$ is the frequency of the clock supplied to Timer 1, and T1H is the high byte of Timer 1 (reload value). Timer 1 clock frequency is selected as described in **Section "18. Timers" on page 177.** A quick reference for typical baud rates and system clock frequencies is given in Table 16.1 through Table 16.6. Note that the internal oscillator may still generate the system clock when the external oscillator is driving Timer 1.

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

Figure 17.9. SPI Master Timing (CKPHA = 1)

SFR Definition 18.1. TCON: Timer Control

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address
						(bit addr	essable)	0x88
Bit7:	TF1: Timer 1		-					
	Set by hardw				-	•		
	matically clea			ectors to the	Timer 1 int	errupt servi	ce routine	•
	0: No Timer							
D'10	1: Timer 1 ha							
Bit6:	TR1: Timer 1		rol.					
	0: Timer 1 di							
Bit5:	1: Timer 1 er		Eloa					
DIIO.	TF0: Timer 0 Set by hardw		-	offowe This	flag can be	cleared by	coftware	but is auto-
	matically clea							
	0: No Timer (chupt och h		•
	1: Timer 0 ha							
Bit4:	TR0: Timer 0							
	0: Timer 0 di	sabled.						
	1: Timer 0 er	nabled.						
Bit3:	IE1: External							
	This flag is s							
	cleared by so							
	Interrupt 1 se					-	' when /IN	IT1 is active
DVA	as defined by		-	IT01CF (se	e SFR Defir	nition 9.11).		
Bit2:	IT1: Interrupt							
	This bit select							
	is configured 9.11).	active low	or high by		bit in the ITU	TCF registe	er (see SF	R Definition
	9.11). 0: /INT1 is le	vel triggere	d					
	1: /INT1 is e							
Bit1:	IE0: External							
Ditt.	This flag is s	•		n edae/leve	el of type de	fined by IT() is detecte	ed. It can be
	cleared by so							
	Interrupt 0 se							
	as defined by	y bit IN0PL	in register	IT01CF (se	e SFR Defir	nition 9.11).		
Bit0:	IT0: Interrupt	t 0 Type Se	elect.					
	This bit seled		•			•		
	is configured	l active low	or high by	the IN0PL b	oit in registe	r IT01CF (s	ee SFR D	efinition
	9.11).							
	0: /INT0 is le							
	1: /INT0 is ed	dge triggere	ed.					

SFR Definition 18.13. TMR3CN: Timer 3 Control

R/W	R/W	R/W	R/W	R/W	R/W	R	R/W	Reset Value					
TF3H	TF3L	TF3LEN	TF3CEN	T3SPLIT	TR3		T3XCLK	00000000					
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:					
								0x91					
Bit7:	TF3H: Time												
	Set by hard												
	this will occur when Timer 3 overflows from 0xFFFF to 0x0000. When the Timer 3 interrupt is												
	enabled, setting this bit causes the CPU to vector to the Timer 3 interrupt service routine. TE3H is not automatically cleared by hardware and must be cleared by software.												
Bit6:	TF3H is not automatically cleared by hardware and must be cleared by software. TF3L: Timer 3 Low Byte Overflow Flag.												
Dito.	Set by hard			•	erflows fror	n 0xFF to 0	x00 When	this bit is					
	set, an interi												
	will set wher												
	ically cleared			0									
Bit5:	TF3LEN: Tir												
	This bit enal												
	rupts are en			•	d when the	e low byte o	f Timer 3 ov	/erflows.					
	0: Timer 3 L	•	•										
Bit4:	1: Timer 3 L TF3CEN: Ti	•	•		antura Engl	hlo							
Dit4.	This bit enab						Node If TE:	RCEN is set					
	and Timer 3			•	•	•							
	low-frequence	•		•	-								
	copied to TM												
	details.												
	0: Timer 3 L	•	•	•									
D'IO	1: Timer 3 L	•	•	•	enabled.								
Bit3:	T3SPLIT: Ti	•			hit timoro y	with outo ro	laad						
	When this bi 0: Timer 3 o		•			with auto-re	1080.						
	1: Timer 3 o	•											
Bit2:	TR3: Timer 3	•											
	This bit enab	oles/disable	s Timer 3. I	n 8-bit mod	e, this bit er	nables/disal	bles TMR3	H only;					
	TMR3L is al	ways enabl	ed in this m	node.				-					
	0: Timer 3 d												
5114	1: Timer 3 e												
Bit1:	UNUSED. R												
Bit0:	T3XCLK: Tir This bit sele				mor 3 If Tir	mor 3 is in 8	B-hit mode	thic hit					
	selects the e												
	Select bits (•							
	external cloc												
	0: Timer 3 e												
	1: Timer 3 e					•	Note that th	ne external					
	oscillator so	urce divideo	d by 8 is syr	nchronized \	with the sys	tem clock.							

20.2. C2 Pin Sharing

The C2 protocol allows the C2 pins to be shared with user functions so that in-system debugging and Flash programming may be performed. This is possible because C2 communication is typically performed when the device is in the halt state, where all on-chip peripherals and user software are stalled. In this halted state, the C2 interface can safely 'borrow' the C2CK (RST) and C2D (P2.0) pins. In most applications, external resistors are required to isolate C2 interface traffic from the user application. A typical isolation configuration is shown in Figure 20.1.

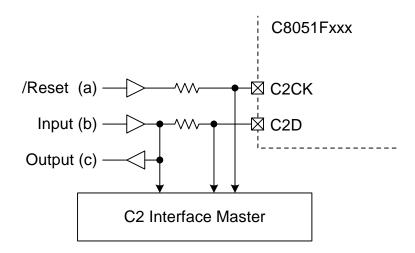


Figure 20.1. Typical C2 Pin Sharing

The configuration in Figure 20.1 assumes the following:

- 1. The <u>user input</u> (b) cannot change state while the target device is halted.
- 2. The \overline{RST} pin on the target device is used as an input only.

Additional resistors may be necessary depending on the specific application.

