E·XFL

NXP USA Inc. - PXAH40KFBE,557 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	XA
Core Size	16-Bit
Speed	30MHz
Connectivity	EBI/EMI, UART/USART
Peripherals	DMA, WDT
Number of I/O	33
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/pxah40kfbe-557

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1999 Sep 24

Single-chip 16-bit microcontroller

DESCRIPTION

The powerful 16-bit XA CPU core and rich feature set make the XA-H3 and XA-H4 devices ideal for high-performance real-time applications such as industrial control and networking. By supporting of up to 32 MB of external memory, these devices provide a low-cost solution to embedded applications of any complexity. Features like DMA, memory controller and four advanced USARTs help solve I/O intensive tasks with a minimum of CPU load.

FEATURES

- Large Memory Support
- De-multiplexed Address/Data Bus
- Six Programmable Chip Selects
 - Support for Unified Memory allows easy user modification of all code
 - External ISP Flash support for easy code download
- Dynamic Bus Sizing each of 6 Chip Selects can be programmed for 8-bit or 16-bit bus.

ADDITIONAL XA-H4 FEATURES (NOT AVAILABLE ON XA-H3)

- Complete DRAM controller supports up to four banks of 8 MB each
- Memory controller supports 16 MB in Unified Mode
- Memory controller supports 32 MB in Harvard Mode
- Serial ports are USARTs
 - Synchronous capability up to 1 Mbps, and include HDLC/SDLC support

The XA-H3 feature set is a subset of the XA-H4 (see Table 1). The XA-H3/H4 devices are members of the Philips XA (eXtended Architecture) family of high performance 16-bit microcontrollers.

The XA-H3 and XA-H4 are designed to significantly minimize the need for external components.

- Dynamic Bus Timing each of 6 chip selects has individual programmable bus timing.
- 32 Programmable General Purpose I/O Pins
- Four USARTs with 230.4 kbps capability
- Eight DMA Channels
 - Four Match Characters are supported on each USART in Async Mode
 - Hardware Autobaud on all four USARTs in Async Mode
 - USARTs are improved 85C30 style

PIN CONFIGURATION

XA-H4

XA-H4 MEMORY MAPS

Lafp Г

PIN DESCRIPTIONS

Mnemonic	Lqfp Pin No.	Туре	Name and Function		
V _{SS}	1, 19, 28, 44, 59, 76, 88	I	Ground: 0 V reference.		
V _{DD}	2, 20, 29, 43, 62, 77, 89	I	Power Supply: This is the power supply voltage for normal, idle, and power down operation.		
ResetIn	55	I	Reset: A low on this pin resets the microcontroller, causing I/O ports and peripherals to take on their default states, and the processor to begin execution at the address contained in the reset vector.		
WAIT/ Size16	52	1	Wait/Size16: During Reset, this input determines bus size for boot device ("1" = 16-bit boot device; "0" = 8-bit.) During normal operation this is the Wait input ("1" = Wait; "0" = Proceed.)		
XTALIn	60	I	Crystal 1: Input to the inverting amplifier used in the oscillator circuit and input to the internal clock generator circuits.		
XTALOut	61	1	Crystal 2: Output from the oscillator amplifier.		
CS0	49	0	Chip Select 0: This output provides the active low chip select to the boot device (usually ROM or Flash.) It cannot be connected to DRAM. From reset, it is enabled and mapped to an address range based at 000000h. It can be remapped by software to a higher base in the address map (see the "Memory Interface" chapter in the <i>XA-H4 User Manual</i> .)		
CS1_RAS1	48	0	Chip Select 1 or RAS1 : Chip Selects and RAS 1 through 5 come out of reset disabled. They can be programmed to function as normal chip selects, or as RAS strobes to DRAM. CS1 can be "swapped" with CS0 (see the SWAP operation and control bit in the "Memory Controller" chapter of the <i>XA-H4 User Manual</i> .) CS1 is usually mapped to be based at 000000h after the swap, but is capable of being based anywhere in the 16 MB space.		
CS2_RAS2	47	0	Chip Select 2 or RAS2 : Active low Chip Selects CS1 through CS5 come out of reset disabled. They can be programmed to function as normal chip selects, or as RAS strobes to DRAM. CS2 through CS5 are not used with the "SWAP" operation (see the "Memory Controller" chapter in the <i>XA-H4 User Manual.</i>) They are mappable to any region of the 16 MB address space.		
CS3_RAS3	46	0	CS3 or RAS3: See Chip Select 2 for description.		
See Pins 56,	57 for 2 ad	ditional C	Chip Selects		
WE	50	0	Write Enable: Goes active low during all bus write cycles only.		
OE	51	0	Output Enable: Goes active low during all bus read cycles only.		
BLE_CASL	54	0	Byte Low Enable or CAS_Low_Byte: Goes active low during all bus cycles that access D7 – D0, read or write, Generic or DRAM. Functions as CAS during DRAM cycles.		
BHE_CASH	53	0	Byte High Enable or CAS_High_Byte: Goes active low during all bus cycles that access data bus lines D15 – D8, read or write, Generic or DRAM. Functions as CAS during DRAM cycles.		
ClkOut	45	0	Clock Output: This pin outputs a buffered version of the internal CPU clock. The clock output may be used in conjunction with the external bus to synchronize WAIT state generators, etc. The clock output may be disabled by software. WARNING: The capacitive loading on this output must not exceed 40 pf.		
A19 – A0	24 – 21,	0	Address[19:0]: These address lines output A19 – A0 during (SRAM, etc.) bus cycles.		
	18 – 3		DRAMS (H4 only) are connected only to pins 22, 21, 18 – 10 (pins A17 to A7; see user manual "MIF Chapter" for connecting various DRAM sizes); the appropriate address values are multiplexed onto these 11 pins for RAS and CAS during DRAM bus cycles.		
D15 – D0	42 – 30, 27 – 25	I/O	Data[15:0]: Bi-directional data bus, D15 – D0.		
P0.0	90	I/O	P0.0_Sync0_BRG0 : Port 0 Bit 0, or USART0 Sync input or output, or USART0 BRG output, or USART0 TxClk output.	1	
P0.1	91	I/O	P0.1_RTS0: Port 0 Bit 1, or USART0 RTS (Request To Send) output.	1	
P0.2	92	I/O	P0.2_CTS0: Port 0 Bit 2, or USART0 CTS (Clear To Send) input.	1	
P0.3	93	I/O	P0.3_CD0: Port 0 Bit 3, or USART0 Carrier Detect input.	1	
P0.4	94	I/O	P0.4_TRCIk0: Port 0 Bit 4, or USART0 TR clock input.	1, 2	
P0.5	95	I/O	P0.5_RTCIk0: Port 0 Bit 5, or USART0 RT clock input.	1, 2	
P0.6	99	I/O	P0.6: Port 0 Bit 6	1	
P0.7	100	I/O	P0.7: Port 0 Bit 7	1	

1999 Sep 24

Single-chip 16-bit microcontroller

Name	Description	SFR Address	Bit Functions and Addresses Re MSB LSB Va				Reset Value				
P0CFGA	Port 0 Configuration A	470h									5
P1CFGA	Port 1 Configuration A	471h									5
P2CFGA	Port 2 Configuration A	472h									5
P3CFGA	Port 3 Configuration A	473h									5
P0CFGB	Port 0 Configuration B	4F0h									5
P1CFGB	Port 1 Configuration B	4F1h									5
P2CFGB	Port 2 Configuration B	4F2h									5
P3CFGB	Port 3 Configuration B	4F3h									5
			227	226	225		222	222	221	220	
	Dower Control Dog	101h	221	220	225	224	223	222		220	006
PCON	Power Control Reg	4040		_	_	_	_	_		IDL	000
			20F	20F	20D	200	20B	20A	209	208	
PSWH*	Program Status Word High	401h	SM	ТМ	RS1	RS0	IM3	IM2	IM1	IMO	2
			207	206	205	204	203	202	201	200	
PSWL*	Program Status Word Low	400h	C	AC				 V	N N	Z	2
			217	216	215	214	213	212	211	210	
PSW51*	80C51 Compatible PSW	402h	C	AC	F0	RS1	RS0	V	F1	P	3
		-				_					
RSTSRC	Reset Source Reg	463h	ROEN	-	-	-	-	R_WD	R_CMD	R_EXT	7
RTH0	Timer 0 Reload High	455h									00h
RTH1	Timer 1 Reload High	457h									00h
RTL0	Timer 0 Reload Low	454h									00h
RTL1	Timer 1 Reload Low	456h									00h
SCR	System Configuration Reg	440h	_	-	_	-	PT1	PT0	СМ	PZ	00h
				1	1	1	1		1	1	
			21F	21E	21D	21C	21B	21A	219	218	
SSEL*	Segment Selection Reg	403h	ESWEN	R6SEG	R5SEG	R4SEG	R3SEG	R2SEG	R1SEG	R0SEG	00h
				1							1
SWE	Software Interrupt Enable	47Ah	-	SWE7	SWE6	SWE5	SWE4	SWE3	SWE2	SWE1	00h
							•			•	1
			357	356	355	354	353	352	351	350	
SWR*		42Ah	-	SWR7	SWR6	SWR5	SWR4	SWR3	SWR2	SWR1	00h
											1
			287	286	285	284	283	282	281	280	
TCON*	Timer 0/1 Control	410h	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	00h
TH0	Timer 0 High	451h		•		•			•		00h
TH1	Timer 1 High	453h									00h
TL0	Timer 0 Low	450h									00h
TL1	Timer 1 Low	452h									00h
TMOD	Timer 0/1 Mode	45Ch	GATE	C/T	M1	MO	GATE	C/T	M1	MO	00h

Nama	Description	SFR		Bit Functions and Addresses						Reset	
Name	Description	Address	MSB							LSB	Value
			28F	28E	28D	28C	28B	28A	289	288	
TSTAT*	Timer 0/1 Extended Status	411h	_	-	-	_	-	T10E	-	T0OE	00h
				-				_			
			2FF	2FE	2FD	2FC	2FB	2FA	2F9	2F8	
WDCON*	Watchdog Control	41Fh	PRE2	PRE1	PRE0	-	-	WDRUN	WDTOF	-	6
WDL	Watchdog Timer Reload	45Fh									00h
WFEED1	Watchdog Feed 1	45Dh									x
WFEED2	Watchdog Feed 2	45Eh									x

NOTES:

* SFRs marked with an asterisk (*) are bit addressable.

SFRs marked with a pound sign (#) are additional SFR registers specific to the XA-H3 and XA-H4.

1. The XA-H4 implements an 8-bit SFR bus, as stated in Chapter 8 of the *IC25 Data Handbook XA User Guide*. All SFR accesses must be 8-bit operations. Attempts to write 16 bits to an SFR will actually write only the lower 8 bits. 16-bit SFR reads will return undefined data in the upper byte.

2. SFR is loaded from the reset vector.

3. F1, F0, and P reset to "0". All other bits are loaded from the reset vector.

4. Unimplemented bits in SFRs are "X" (unknown) at all times. "1"s should not be written to these bits since they may be used for other purposes in future XA derivatives. The reset value shown for these bits is "0".

5. Port configurations default to quasi-bidirectional when the XA begins execution after reset. Thus all PnCFGA registers will contain FFh and PnCFGB register will contain 00h. See warning in XA-H4 User Manual about P3.2_Timer0_ResetOut pin during first 258 clocks after power up. Basically, during this period, this pin may output a strongly-driven low pulse. If the pulse does occur, it will terminate in a transition to high at a time no later than the 259th system clock after valid V_{CC} power up.

6. The WDCON reset value is É6 for a Watchdog reset; E4 for all other reset causes.

The RSTSRC register reflects the cause of the last XA reset. One bit will be set to "1", the others will be "0". RSTSRC[7] enables the ResetOut function; "1" = Enabled, "0" = Disabled. See XA-H4 User Manual for details; RSTSRC[7] differs in function from most other XA derivatives.

8. The XA guards writes to certain bits (typically interrupt flags) that may be written by a peripheral function. This prevents loss of an interrupt or other status if a bit was written directly by a peripheral action between the read and write of an instruction that performs a read-modify-write operation. XA-H4 SFR bits that are guarded in this manner are: TF1, TF0, IE1, and IE0 (in TCON), and WDTOF (in WDCON).

MMR Name	Read/Write or Read Only	Size	Address Offset	Description	Reset Value
USART3 Registers					
USART3 Write Register 0	R/W	8	8C0h	Command register	00h
USART3 Write Register 1	R/W	8	8C2h	Tx/Rx Interrupt & data transfer mode	xx
USART3 Write Register 2	R/W	8	8C4h	Extended Features Control	хх
USART3 Write Register 3	R/W	8	8C6h	Receive Parameter and Control	00h
USART3 Write Register 4	R/W	8	8C8h	Tx/Rx miscellaneous parameters & mode	00h
USART3 Write Register 5	R/W	8	8CAh	Tx parameter and control	00h
USART3 Write Register 6	R/W	8	8CCh	HDLC/SDLC address field or Match Character 0	00h
USART3 Write Register 7	R/W	8	8CEh	HDLC/SDLC flag or Match Character 1	xx
USART3 Write Register 8	R/W	8	8D0h	Transmit Data Buffer	хх
USART3 Write Register 9	R/W	8	8D2h	Master Interrupt control	xx
USART3 Write Register 10	R/W	8	8D4h	Miscellaneous Tx/Rx control register	00h
USART3 Write Register 11	R/W	8	8D6h	Clock Mode Control	xx
USART3 Write Register 12	R/W	8	8D8h	Lower Byte of Baud rate time constant	00h
USART3 Write Register 13	R/W	8	8DAh	Upper Byte of Baud rate time constant	00h
USART3 Write Register 14	R/W	8	8DCh	Miscellaneous Control bits	xx
USART3 Write Register 15	R/W	8	8DEh	External/Status interrupt control	f8h
USART3 Write Register 16	R/W	8	8E8h	Match Character 2 (WR16)	00h
USART3 Write Register 17	R/W	8	8EAh	Match Character 3 (WR17)	00h
USART3 Read Register 0	RO	8	8E0h	Tx/Rx buffer and external status	
USART3 Read Register 1	RO	8	8E2h	Receive condition status/residue code	
Reserved			8E4h		
USART3 Read Register 3	RO	8	8E6h	Interrupt Pending Bits	
USART3 Read Register 6	RO	8	8ECh	SDLC byte count low register	
USART3 Read Register 7	RO	8	8EEh	SDLC byte count high and FIFO status	
USART3 Read Register 8	RO	8	8F0h	Receive Buffer	
Reserved			8F2h		-
USART3 Read Register 10	RO	8	8F4h	Loop/clock status	
Reserved			8F6-8FEh		
	•	Rx D	MA Register	'S	
DMA Control Register Ch.0 Rx	R/W	8	100h	Control Register	00h
FIFO Control & Status Reg Ch.0 Rx	R/W	8	101h	Control & Status Register	00h
Segment Register Ch.0 Rx	R/W	8	102h	Points to 64 k data segment	00h
Buffer Base Register Ch.0 Rx	R/W	8	104h	Wrap Reload Value for A15 – A8, A7 – A0 reloaded to zero by hardware	00h
Buffer Bound Register Ch.0 Rx	R/W	16	106h	Upper Bound (plus 1) on A15 – A0	0000h
Address Pointer Reg Ch.0 Rx	R/W	16	108h	Current Address pointer A15 – A0	0000h
Byte Count Register Ch.0 Rx	R/W	16	10Ah	Corresponds to A15 – A0 Byte Count, generates interrupt if enabled and byte count exceeded.	0000h
Data EIEO Register Ch.0.L.o.Ry	R/\/	16	10Cb	10Ch = Byte 0 = older,	00h
	12/10	10	10011	10Dh = Byte 1 = younger	00h
Data EIEO Register Ch 0 Hi Ry	R/W	16	10Eb	10Eh = Byte 2 = older,	00h
	1.57.9.9	.0		10Fh = Byte 3 = younger	00h
DMA Control Register Ch.1 Rx	R/W	8	110h	Control Register	00h
FIFO Control & Status Register Ch.1 Rx	R/W	8	111h	Control & Status Register	00h
Segment Register Ch. 1 Rx	R/W	8	112h	Points to 64 k data segment	00h

Single-chip 16-bit microcontroller

diagrams and the XA-H4 User Manual for complete details.

1999 Sep 24

Clock Output

The ClkOut pin allows easier external bus interfacing in some situations. This output reflects the XTALIn clock input to the XA (referred to internally as CClk or System Clock), but is delayed to match the external bus outputs and strobes. The default is for

ClkOut to be output enabled at reset, but it may be turned off (tri-state disabled) by software via the MICFG MMR. **WARNING:** The capacitive loading on this output must not exceed 40 pf.

SU01275

Figure 4. Typical system bus configuration

Single-chip 16-bit microcontroller

Table 4.	Memory	interface	control	registers
----------	--------	-----------	---------	-----------

	Register Name	Reg Type	Description
MRBH	"MMR Base Address" High	SFR 8 bits	This SFR is used to relocate the MMRs. It contains address bits a23 – a16 of the base address for the 4 kB Memory Mapped Register space. See the <i>XA-H4 User Manual</i> for using this SFR to relocate the MMRs.
MRBL	"MMR Base Address" Low	SFR 8 bits	Contains address bits a15 – a12 of the base address for the 4 kB Memory Mapped Register space.
MICFG	MIF Configuration	MMR 8 bits	Contains the ClkOut Enable bit.
MBCL	Memory Bank Configuration Lock	MMR 8 bits	Contains the bits for locking and unlocking the BiCFG Registers.
BiCFG	Bank i Configuration	MMR 8 bits	Contains the size, type, bus width, and enable bits for Memory Bank i.
BiAM	Bank i Base Address/DRAM Address Multiplexer Control	MMR 8 bits	Contains the base address bits and DRAM address multiplex control bits for Memory Bank i.
BiTMG	Bank i Timing	MMR 8 bits	Contains the timing control bits for Memory Bank i.
RFSH	Refresh Timing	MMR 8 bits	Contains the refresh time constant and DRAM Refresh Timer enable bit.

EIGHT CHANNEL DMA CONTROLLER

The XA-H3/H4 has eight DMA channels; one Rx DMA channel dedicated to each USART Receive (Rx) channel, and one Tx DMA channel dedicated to each USART Transmit (Tx) channel. All DMA channels are optimized to support memory efficient circular data buffers in external memory. All DMA channels can also support traditional linear data buffers.

Transmit DMA Channel Modes

The four Tx channels have four DMA modes specifically designed for various applications of the attached USARTs. These modes are summarized in Table 5. Full details for all DMA functions can be found in the DMA chapter of the *XA-H4 User Manual*.

Table 5.	Tx DMA	modes	summary
----------	--------	-------	---------

Mode	Byte Count Source	Maskable Interrupt	Description
Non-SDLC/HDLC Tx Chaining	Header in memory	On stop	DMA channel picks up header from memory at the end of transmission. If the byte count in the header is greater than zero, then DMA transmits the number of bytes specified in the byte count. If byte count equals 0, then a maskable interrupt is generated. This process repeats until the byte count in the data header is zero. See XA-H4 User Manual for details.
SDLC/HDLC Tx Chaining	Header in memory	End of packet (not end of fragment)	Same as above, except DMA header distinguishes between fragment of packet and full pack. See XA-H4 User Manual for details.
Stop on TC	Processor loads Byte Count Register (for each fragment)	Byte count completed (Tx DMA stops)	Processor loads byte count into DMA. DMA sends that number of bytes, generates maskable interrupt, and stops.
Periodic Interrupt	Porcessor loads Byte Count Register (only once)	When Byte Counter reaches zero and is reloaded by DMA hardware from the byte count register.	DMA runs until commanded to stop by processor. Every time byte counter rolls over, a new maskable interrupt is generated.

Single-chip 16-bit microcontroller

The XA-H4 has a standard XA CPU Interrupt Controller, implemented with 15 Maskable Event Interrupts. Event Interrupts are defined as maskable interrupts usually generated by hardware events. However, in the XA-H4, 4 of the 15 Event Interrupts are generated by software writing directly to the interrupt flag bit. These 4 interrupts are referred to as "High Priority Software Interrupts." See the *IC25 XA Data Handbook* for a full explanation of the exception structure, including event interrupts, of the XA CPU. Because the High Priority Software Interrupts are not implemented on all XA derivitives, they are explained in the *XA-H4 User Manual*.

Figure 6. XA-H4 Interrupt Structure Overview

XA-H4

Potential USART0	Individual Enable Bit	Source Bit	Group Enable Bit(S)	Group Flag Bit	Master Enable Bit
Interrupt	MMR Hex Offset	MMR Hex Offset	MMR Hex Offset	MMR Hex Offset	MMR Hex Offset
Rx Character Available	-	RR0[0] 820[0]	WR1[4:3] 802[4:3]	Even Channel Rx IP RR3[5] 826[5]	USART0/1 Master Interrupt Enable WR9[3] 812[3]
SDLC EOF (XA-H4 Only)	-	RR1[7] 822[7]			
CRC/Framing Error	-	RR1[6] 822[6]			
Rx Overrun	-	RR1[5] 822[5]			
Parity Error	WR1[2] 802[2]	RR1[4] 822[4]			
Tx Buffer Empty	See WR1[1]	RR0[2] 820[2]	Tx Interrupt Enable WR1[1] 802[1]	Even Channel Tx IP RR3[4] 826[4]	
Break/Abort	Break/ Abort IE WR15[7] 81E[7]	RR0[7] 820[7]	Master External/Status Interrupt Enable WR1[0] 802[0]	Even Channel External/Status IP RR3[3] 826[3]	
Tx Underrun/EOM	Tx Underrun/EOM IE WR15[6] 81E[6]	RR0[6] 820[6]			
CTS	CTS IE WR15[5] 81E[5]	RR0[5] 820[5]			
SYNC/HUNT (XA-H4 Only)	SYNC/ HUNT IE WR15[4] 81E[4]	RR0[4] 822[4]			
DCD	DCD IE WR15[3] 81E[3]	RR0[3] 820[3]			
Zero Count	Zero Count IE WR15[1] 81E[1]	RR0[1] 820[1]			

Table 7. USART0 Interrupts (Interrupt structure is the same, except for bit locations, for all 4 USARTs)

EXCEPTION/TRAPS PRECEDENCE

Description	Vector Address	Arbitration Ranking
Reset (h/w, watchdog, s/w)	0000–0003	0 (High)
Break Point	0004–0007	1
Trace	0008–000B	1
Stack Overflow	000C-000F	1
Divide by 0	0010–0013	1
User RETI	0014–0017	1
TRAP 0–15 (software)	0040–007F	1

XA-H4

ABSOLUTE MAXIMUM RATINGS

Parameter	Rating	Unit
Operating temperature under bias	-55 to +125	°C
Storage temperature range	-65 to +150	°C
Voltage on any other pin to V _{SS}	–0.5 to V _{DD} +0.5 V	V
Maximum I _{OL} per I/O pin	15	mA
Power dissipation (based on package heat transfer, not device power consumption)	1.5	W

PRELIMINARY DC ELECTRICAL CHARACTERISTICS

V_{DD} = 5.0 V +/- 10% or 3.3 V +/- 10% unless otherwise specified; T_{amb} = -40°C to +85°C for industrial, unless otherwise specified.

Symbol	Parameter	Test Conditions	Limits			Unit
			Min	Тур	Max	
I _{DD}	Power supply current, operating	5.0 V, 30 MHz		64	80	mA
		3.3 V, 30 MHz		55	70	mA
I _{ID}	Power supply current, Idle mode	5.0 V, 30 MHz		50	70	mA
		3.3 V, 30 MHz		44	60	mA
I _{PDI}	Power supply current, Power Down mode ¹	5.0 V, 3.0 V			500	μA
V _{RAM}	RAM keep-alive voltage		1.5			V
V _{IL}	Input low voltage		-0.5		0.22 V _{DD}	V
V _{IH}	Input high voltage, except Xtal1, RST		2.2			V
V _{IH1}	Input high voltage to Xtal1, RST	For both 3.0 & 5.0 V	0.7 V _{DD}			V
V _{OL}	Output low voltage all ports ⁸	I _{OL} = 3.2 mA, V _{DD} = 4.5 V			0.5	V
		I _{OL} = 1.0 mA, V _{DD} = 3.0 V			0.4	V
V _{OH1}	Output high voltage, all ports	$I_{OH} = -100 \ \mu\text{A}, \ V_{DD} = 4.5 \ \text{V}$	2.4			V
		$I_{OH} = -30 \ \mu\text{A}, \ V_{DD} = 3.0 \ \text{V}$	2.0			V
V _{OH2}	Output high voltage, all ports	I _{OH} = 3.2 mA, V _{DD} = 4.5 V	2.4			V
		I _{OH} = 1.0 mA, V _{DD} = 3.0 V	2.2			V
C _{IO}	Input/Output pin capacitance				15	pF
۱ _{IL}	Logical 0 input current, all ports ⁷ $V_{IN} = 0.45 V$				-50	μΑ
Ι _{LI}	Input leakage current, all ports ⁶	$V_{IN} = V_{IL} \text{ or } V_{IH}$			±10	μA
I _{TL}	Logical 1 to 0 transition current, all ports ⁵	At V _{DD} = 5.5 V			-650	μA
		At V _{DD} = 3.6 V			-250	μA

NOTE:

1. V_{DD} must be raised to within the operating range before power down mode is exited.

2. Ports in quasi-bidirectional mode with weak pullup.

3. Ports in PUSH-PULL mode, both pullup and pulldown assumed to be the same strength.

4. In all output modes.

5. Port pins source a transition current when used in quasi-bidirectional mode and externally driven from 1 to 0. This current is highest when V_{IN} is approximately 2 V.

Measured with port in high impedance mode. 6.

Measured with port in quasi-bidirectional mode. 7.

8. Under steady state (non-transient) conditions, I_{OL} must be externally limited as follows:

Maximum IOL per port pin: 15 mA (NOTE: This is +85°C specification for V_{DD} = 5 V)

 Maximum IoL per 8-bit port:
 26 mA

 Maximum total IoL for all outputs:
 71 mA

 If IoL exceeds the test condition, VoL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed

 test conditions.

XA-H4

PRELIMINARY AC ELECTRICAL CHARACTERISTICS (5.0 V +/-10%)

 V_{DD} = 5.0 V +/– 10%; T_{amb} = –40°C to +85°C (industrial)

All Cycles						
All Cycles						
F _C System Clock Frequency 0 30	IVIEZ					
t _C 23 System Clock Period = 1/FC 33.33 -	ns					
t _{CHCX} 23 XTALIN High Time t _C * 0.5 -	ns					
t _{CLCX} 23 XTALIN Low Time t _C * 0.4 -	ns					
t _{CLCH} 23 XTALIN Rise Time - 5	ns					
t _{CHCL} 23 XTALIN Fall Time - 5	ns					
t_{AVSL} All Address Valid to Strobe low $t_{C} - 21$ -	ns					
t _{CHAH} All Address hold after ClkOut rising edge ⁹ 1 –	ns					
t _{CHAV} All Delay from ClkOut rising edge to address valid – 25	ns					
t _{CHSH} All Delay from ClkOut rising edge to Strobe High ⁹ 1 21	ns					
t _{CHSL} All Delay from ClkOut rising edge to Strobe Low ⁹ 1 19	ns					
t _{CODH} 24 ClkOut Duty Cycle High (into 40 pF max.) t _{CHCX} -7 t _{CHCX} +3	ns					
t _{CPWH} 11, 12, 17, 18, 19, 20 CAS Pulse Width High t _C - 12 -	ns					
t _{CPWL} 11, 19 CAS Pulse Width Low t _C - 10 -	ns					
All DRAM Cycles						
t _{RP} 22 RAS precharge time, thus minimum RAS high time ⁸ $(n + t_c) - 16^8$ -	ns					
Generic Data Read Only						
t _{AHDR} 7, 14 Address hold (A19 – A1 only, not A0) after CS, BLE, BHE rise at t _C – 12 – end of Generic Data Read Cycle (not code fetch)	ns					
Data Read and Instruction Fetch Cycles	-					
t _{DIS} 7, 8, 10, 11, 12, 14, 15, Data In Valid setup to ClkOut rising edge 25 –	ns					
t _{DIH} 7, 8, 10, 14, 15, 17, 18 Data In Valid hold after ClkOut rising edge ² 0 –	ns					
t _{OHDE} 8, 10, 11, 14, 18 OE high to XA Data Bus Driver Enable t _C - 14 -	ns					
Write Cycles						
t _{CHDV} 9, 13 Clock High to Data Valid – 25	ns					
t _{DVSL} 16, 20 Data Valid prior to Strobe Low $t_{C} - 23$ -	ns					
t _{SHAH} 9, 16 Minimum Address Hold Time after strobe goes inactive t _C - 25 -	ns					
t_{SHDH} 9, 16 Data hold after strobes (\overline{CS} and $\overline{BHE}/\overline{BLE}$) high $t_C - 25$ -	ns					
Refresh						
t_{CLRL} 21 \overline{CAS} low to \overline{RAS} low $t_C - 15$ -	ns					
Wait Input						
t _{WS} 25 WAIT setup (stable high or low) to ClkOut rising edge 20 –	ns					
t _{WH} 25 WAIT hold (stable high or low) after ClkOut rising edge 0 –	ns					

NOTE:

1. See notes after the 3.3 V AC Timing Table

Figure 10. DRAM Single Read Cycle

Figure 11. DRAM EDO Burst Code Fetch on 16-Bit Bus

Figure 17. 16-Bit Read on 8-Bit Bus, DRAM (both FPM and EDO)

Figure 20. DRAM 16-Bit Write on 8-Bit Bus (FPM or EDO DRAMs)

Figure 22. RAS Precharge Time

Figure 24. ClkOut Duty Cycle

Figure 25. External WAIT Pin Timing

XA-H4

NOTES

XA-H4

Data sheet status

Data sheet status	Product status	Definition ^[1]		
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.		
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.		
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.		

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1999 All rights reserved. Printed in U.S.A.

Date of release: 09-99

Document order number:

9397 750 06432

Let's make things better.

