

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	Н8/300Н
Core Size	16-Bit
Speed	20MHz
Connectivity	I²C, SCI
Peripherals	PWM, WDT
Number of I/O	29
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LFQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/hd64f3694fyiv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin	No.		
Туре	Symbol	FP-64E FP-64A	FP-48F FP-48B TNP-48	I/O	Functions
Timer A	TMOW	23	17	Output	This is an output pin for divided clocks.
Timer V	TMOV	30	24	Output	This is an output pin for waveforms generated by the output compare function.
	TMCIV	29	23	Input	External event input pin.
	TMRIV	28	22	Input	Counter reset input pin.
	TRGV	54	40	Input	Counter start trigger input pin.
Timer W	FTCI	36	26	Input	External event input pin.
	FTIOA to FTIOD	37 to 40	27 to 30	I/O	Output compare output/input capture input/ PWM output pin
I ² C bus interface	SDA	26* ¹	20	I/O	IIC data I/O pin. Can directly drive a bus by NMOS open-drain output.
(IIC)	SCL	27*1	21	I/O (EEPROM: Input)	IIC clock I/O pin. Can directly drive a bus by NMOS open-drain output.
Serial	TXD	46	36	Output	Transmit data output pin
communi-	RXD	45	35	Input	Receive data input pin
interface (SCI)	SCK3	44	34	I/O	Clock I/O pin
A/D converter	AN7 to AN0	55 to 62	41 to 48	Input	Analog input pin
	ADTRG	22	16	Input	A/D converter trigger input pin.
I/O ports	PB7 to PB0	55 to 62	41 to 48	Input	8-bit input port.
	P17 to P14, P12 to P10	51 to 54, 23 to 25	37 to 40 17 to 19	I/O	7-bit I/O port.
	P22 to P20	44 to 46	34 to 36	I/O	3-bit I/O port.
	P57 to P50	13, 14, 19 to 22, 26* ² , 27* ²	20, 21, 13 to 16, 11, 12	I/O	8-bit I/O port

2.4 Instruction Set

2.4.1 Table of Instructions Classified by Function

The H8/300H CPU has 62 instructions. Tables 2.2 to 2.9 summarize the instructions in each functional category. The notation used in tables 2.2 to 2.9 is defined below.

Symbol	Description
Rd	General register (destination)*
Rs	General register (source)*
Rn	General register*
ERn	General register (32-bit register or address register)
(EAd)	Destination operand
(EAs)	Source operand
CCR	Condition-code register
Ν	N (negative) flag in CCR
Z	Z (zero) flag in CCR
V	V (overflow) flag in CCR
С	C (carry) flag in CCR
PC	Program counter
SP	Stack pointer
#IMM	Immediate data
disp	Displacement
+	Addition
_	Subtraction
×	Multiplication
÷	Division
^	Logical AND
\vee	Logical OR
\oplus	Logical XOR
\rightarrow	Move
ר	NOT (logical complement)
:3/:8/:16/:24	3-, 8-, 16-, or 24-bit length
Noto: * Cono	ral registers include 8 bit registers (DOLL to DZL) DOL to DZL) 16 bit registers (DO

Table 2.1Operation Notation

Note: * General registers include 8-bit registers (R0H to R7H, R0L to R7L), 16-bit registers (R0 to R7, E0 to E7), and 32-bit registers/address register (ER0 to ER7).

Instructio	n Size*	Function						
ADD SUB	B/W/L	$Rd \pm Rs \rightarrow Rd$, $Rd \pm \#IMM \rightarrow Rd$ Performs addition or subtraction on data in two general registers, or on immediate data and data in a general register (immediate byte data cannot be subtracted from byte data in a general register. Use the SUBX or ADD instruction.)						
ADDX SUBX	В	$Rd \pm Rs \pm C \rightarrow Rd$, $Rd \pm \#IMM \pm C \rightarrow Rd$ Performs addition or subtraction with carry on byte data in two general registers, or on immediate data and data in a general register.						
INC DEC	B/W/L	$Rd \pm 1 \rightarrow Rd$, $Rd \pm 2 \rightarrow Rd$ Increments or decrements a general register by 1 or 2. (Byte operands can be incremented or decremented by 1 only.)						
ADDS SUBS	L	$\begin{array}{ll} Rd\pm 1\rightarrow Rd, & Rd\pm 2\rightarrow Rd, & Rd\pm 4\rightarrow Rd\\ \mbox{Adds or subtracts the value 1, 2, or 4 to or from data in a 32-bit register.} \end{array}$						
DAA DAS	В	Rd decimal adjust \rightarrow Rd Decimal-adjusts an addition or subtraction result in a general register by referring to the CCR to produce 4-bit BCD data.						
MULXU	B/W	$Rd \times Rs \rightarrow Rd$ Performs unsigned multiplication on data in two general registers: either 8 bits \times 8 bits \rightarrow 16 bits or 16 bits \times 16 bits \rightarrow 32 bits.						
MULXS	B/W	$Rd \times Rs \rightarrow Rd$ Performs signed multiplication on data in two general registers: either 8 bits \times 8 bits \rightarrow 16 bits or 16 bits \times 16 bits \rightarrow 32 bits.						
DIVXU	B/W	Rd \div Rs \rightarrow Rd Performs unsigned division on data in two general registers: either 16 bits \div 8 bits \rightarrow 8-bit quotient and 8-bit remainder or 32 bits \div 16 bits \rightarrow 16-bit quotient and 16-bit remainder.						
Note: *	Refers to the	operand size.						
	B: Byte							
	W: Word							
	L: Longword							

Table 2.3 Arithmetic Operations Instructions (1)

Section 3 Exception Handling

Exception handling may be caused by a reset, a trap instruction (TRAPA), or interrupts.

• Reset

A reset has the highest exception priority. Exception handling starts as soon as the reset is cleared by the $\overline{\text{RES}}$ pin. The chip is also reset when the watchdog timer overflows, and exception handling starts. Exception handling is the same as exception handling by the $\overline{\text{RES}}$ pin.

Trap Instruction

Exception handling starts when a trap instruction (TRAPA) is executed. The TRAPA instruction generates a vector address corresponding to a vector number from 0 to 3, as specified in the instruction code. Exception handling can be executed at all times in the program execution state, regardless of the setting of the I bit in CCR.

• Interrupts

External interrupts other than NMI and internal interrupts other than address break are masked by the I bit in CCR, and kept masked while the I bit is set to 1. Exception handling starts when the current instruction or exception handling ends, if an interrupt request has been issued.

3.1 Exception Sources and Vector Address

Table 3.1 shows the vector addresses and priority of each exception handling. When more than one interrupt is requested, handling is performed from the interrupt with the highest priority.

Relative Module	Exception Sources	Vector Number	Vector Address	Priority
RES pin Watchdog timer	Reset	0	H'0000 to H'0001	High ▲
—	Reserved for system use	1 to 6	H'0002 to H'000D	_
External interrupt pin	NMI	7	H'000E to H'000F	
CPU	Trap instruction (#0)	8	H'0010 to H'0011	_
	(#1)	9	H'0012 to H'0013	_
	(#2)	10	H'0014 to H'0015	_
	(#3)	11	H'0016 to H'0017	_
Address break	Break conditions satisfied	12	H'0018 to H'0019	Low

 Table 3.1
 Exception Sources and Vector Address

3.2 Register Descriptions

Interrupts are controlled by the following registers.

- Interrupt edge select register 1 (IEGR1)
- Interrupt edge select register 2 (IEGR2)
- Interrupt enable register 1 (IENR1)
- Interrupt flag register 1 (IRR1)
- Wakeup interrupt flag register (IWPR)

3.2.1 Interrupt Edge Select Register 1 (IEGR1)

IEGR1 selects the direction of an edge that generates interrupt requests of pins $\overline{\text{NMI}}$ and $\overline{\text{IRQ3}}$ to $\overline{\text{IRQ0}}$.

	Initial		
Bit Name	Value	R/W	Description
NMIEG	0	R/W	NMI Edge Select
			0: Falling edge of $\overline{\text{NMI}}$ pin input is detected
			1: Rising edge of NMI pin input is detected
	All 1		Reserved
			These bits are always read as 1.
IEG3	0	R/W	IRQ3 Edge Select
			0: Falling edge of IRQ3 pin input is detected
			1: Rising edge of IRQ3 pin input is detected
IEG2	0	R/W	IRQ2 Edge Select
			0: Falling edge of IRQ2 pin input is detected
			1: Rising edge of IRQ2 pin input is detected
IEG1	0	R/W	IRQ1 Edge Select
			0: Falling edge of IRQ1 pin input is detected
			1: Rising edge of IRQ1 pin input is detected
IEG0	0	R/W	IRQ0 Edge Select
			0: Falling edge of IRQ0 pin input is detected
			1: Rising edge of IRQ0 pin input is detected
	Bit Name NMIEG IEG3 IEG2 IEG1 IEG0	Initial ValueNMIEG0All 1IEG30IEG20IEG10IEG00	Initial ValueR/WNMIEG0R/W—All 1—IEG30R/WIEG20R/WIEG10R/WIEG00R/W

5.2.2 Pin Connection when Not Using Subclock

When the subclock is not used, connect pin X_1 to V_{cL} or V_{ss} and leave pin X_2 open, as shown in figure 5.10.

5.3 Prescalers

5.3.1 Prescaler S

Prescaler S is a 13-bit counter using the system clock (ϕ) as its input clock. It is incremented once per clock period. Prescaler S is initialized to H'0000 by a reset, and starts counting on exit from the reset state. In standby mode, subactive mode, and subsleep mode, the system clock pulse generator stops. Prescaler S also stops and is initialized to H'0000. The CPU cannot read or write prescaler S. The output from prescaler S is shared by the on-chip peripheral modules. The divider ratio can be set separately for each on-chip peripheral function. In active mode and sleep mode, the clock input to prescaler S is determined by the division factor designated by MA2 to MA0 in SYSCR2.

5.3.2 Prescaler W

Prescaler W is a 5-bit counter using a 32.768 kHz signal divided by 4 ($\phi_w/4$) as its input clock. The divided output is used for clock time base operation of timer A. Prescaler W is initialized to H'00 by a reset, and starts counting on exit from the reset state. Even in standby mode, subactive mode, or subsleep mode, prescaler W continues functioning so long as clock signals are supplied to pins X_1 and X_2 . Prescaler W can be reset by setting 1s in bits TMA3 and TMA2 of timer mode register A (TMA).

Section 7 ROM

The features of the 32-kbyte flash memory built into the flash memory version are summarized below.

- Programming/erase methods
 - The flash memory is programmed 128 bytes at a time. Erase is performed in single-block units. The flash memory is configured as follows: 1 kbyte × 4 blocks and 28 kbytes × 1 block. To erase the entire flash memory, each block must be erased in turn.
- Reprogramming capability
 - The flash memory can be reprogrammed up to 1,000 times.
- On-board programming
 - On-board programming/erasing can be done in boot mode, in which the boot program built into the chip is started to erase or program of the entire flash memory. In normal user program mode, individual blocks can be erased or programmed.
- Programmer mode
 - Flash memory can be programmed/erased in programmer mode using a PROM programmer, as well as in on-board programming mode.
- Automatic bit rate adjustment
 - For data transfer in boot mode, this LSI's bit rate can be automatically adjusted to match the transfer bit rate of the host.
- Programming/erasing protection
 - Sets software protection against flash memory programming/erasing.
- Power-down mode
 - Operation of the power supply circuit can be partly halted in subactive mode. As a result, flash memory can be read with low power consumption.

7.1 Block Configuration

Figure 7.1 shows the block configuration of 32-kbyte flash memory. The thick lines indicate erasing units, the narrow lines indicate programming units, and the values are addresses. The flash memory is divided into 1 kbyte \times 4 blocks and 28 kbytes \times 1 block. Erasing is performed in these units. Programming is performed in 128-byte units starting from an address with lower eight bits H'00 or H'80.

9.3.1 Port Mode Register 5 (PMR5)

PMR5 switches the functions of pins in port 5.

Bit	Bit Name	Initial Value	R/W	Description
7,6	_	All 0	_	Reserved
,				These bits are always read as 0.
5	WKP5	0	R/W	P55/WKP5/ADTRG Pin Function Switch
				Selects whether pin P55/WKP5/ADTRG is used as P55 or as WKP5/ADTRG input.
				0: General I/O port
				1: WKP5/ADTRG input pin
4	WKP4	0	R/W	P54/WKP4 Pin Function Switch
				Selects whether pin P54/ $\overline{WKP4}$ is used as P54 or as $\overline{WKP4}$.
				0: General I/O port
				1: WKP4 input pin
3	WKP3	0	R/W	P53/WKP3 Pin Function Switch
				Selects whether pin P53/WKP3 is used as P53 or as WKP3.
				0: General I/O port
				1: WKP3 input pin
2	WKP2	0	R/W	P52/WKP2 Pin Function Switch
				Selects whether pin P52/WKP2 is used as P52 or as WKP2.
				0: General I/O port
				1: WKP2 input pin
1	WKP1	0	R/W	P51/WKP1 Pin Function Switch
				Selects whether pin P51/ $\overline{WKP1}$ is used as P51 or as $\overline{WKP1}$.
				0: General I/O port
				1: WKP1 input pin
0	WKP0	0	R/W	P50/WKP0 Pin Function Switch
				Selects whether pin P50/WKP0 is used as P50 or as WKP0.
				0: General I/O port
				1: WKP0 input pin

9.5.2 Port Data Register 8 (PDR8)

Bit	Bit Name	Initial Value	R/W	Description
7	P87	0	R/W	PDR8 stores output data for port 8 pins.
6	P86	0	R/W	If PDR8 is read while PCR8 bits are set to 1, the value
5	P85 0	0	R/W	stored in PDR8 is read. If PDR8 is read while PCR8 bits
4	P84	0	R/W	value stored in PDR8.
3	P83	0	R/W	
2	P82	0	R/W	
1	P81	0	R/W	
0	P80	0	R/W	

PDR8 is a general I/O port data register of port 8.

9.5.3 Pin Functions

The correspondence between the register specification and the port functions is shown below.

P87 pin

Register	PCR8		
Bit Name	PCR87	Pin Function	
Setting Value	0	P87 input pin	
	1	P87 output pin	

P86 pin

Register	PCR8	
Bit Name	PCR86	Pin Function
Setting Value	0	P86 input pin
	1	P86 output pin

14.3.1 Receive Shift Register (RSR)

RSR is a shift register that is used to receive serial data input from the RxD pin and convert it into parallel data. When one byte of data has been received, it is transferred to RDR automatically. RSR cannot be directly accessed by the CPU.

14.3.2 Receive Data Register (RDR)

RDR is an 8-bit register that stores received data. When the SCI3 has received one byte of serial data, it transfers the received serial data from RSR to RDR, where it is stored. After this, RSR is receive-enabled. As RSR and RDR function as a double buffer in this way, continuous receive operations are possible. After confirming that the RDRF bit in SSR is set to 1, read RDR only once. RDR cannot be written to by the CPU. RDR is initialized to H'00.

14.3.3 Transmit Shift Register (TSR)

TSR is a shift register that transmits serial data. To perform serial data transmission, the SCI3 first transfers transmit data from TDR to TSR automatically, then sends the data that starts from the LSB to the TXD pin. TSR cannot be directly accessed by the CPU.

14.3.4 Transmit Data Register (TDR)

TDR is an 8-bit register that stores data for transmission. When the SCI3 detects that TSR is empty, it transfers the transmit data written in TDR to TSR and starts transmission. The doublebuffered structure of TDR and TSR enables continuous serial transmission. If the next transmit data has already been written to TDR during transmission of one-frame data, the SCI3 transfers the written data to TSR to continue transmission. To achieve reliable serial transmission, write transmit data to TDR only once after confirming that the TDRE bit in SSR is set to 1. TDR is initialized to H'FF.

	Operating Frequency φ (MHz)									
		14			14.7456			16		
Bit Rate (bit/s)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	
110	2	248	-0.17	3	64	0.70	3	70	0.03	
150	2	181	0.16	2	191	0.00	2	207	0.16	
300	2	90	0.16	2	95	0.00	2	103	0.16	
600	1	181	0.16	1	191	0.00	1	207	0.16	
1200	1	90	0.16	1	95	0.00	1	103	0.16	
2400	0	181	0.16	0	191	0.00	0	207	0.16	
4800	0	90	0.16	0	95	0.00	0	103	0.16	
9600	0	45	-0.93	0	47	0.00	0	51	0.16	
19200	0	22	-0.93	0	23	0.00	0	25	0.16	
31250	0	13	0.00	0	14	-1.70	0	15	0.00	
38400	_	_	_	0	11	0.00	0	12	0.16	

 Table 14.2
 Examples of BRR Settings for Various Bit Rates (Asynchronous Mode) (3)

Operating	Frequency	φ	(MHz)
-----------	-----------	---	-------

		18		20			
Bit Rate (bit/s)	n	N	Error (%)	n	N	Error (%)	
110	3	79	-0.12	3	88	-0.25	
150	2	233	0.16	3	64	0.16	
300	2	116	0.16	2	129	0.16	
600	1	233	0.16	2	64	0.16	
1200	1	116	0.16	1	129	0.16	
2400	0	233	0.16	1	64	0.16	
4800	0	116	0.16	0	129	0.16	
9600	0	58	-0.96	0	64	0.16	
19200	0	28	1.02	0	32	-1.36	
31250	0	17	0.00	0	19	0.00	
38400	0	14	-2.34	0	15	1.73	

Legend:

-: A setting is available but error occurs.

	L١	DCR Se	ttings		Select Functions				
LVDE	LVDSEL	LVDRE	LVDDE	LVDUE	Power-On Reset	LVDR	Low-Voltage- Detection Falling Interrupt	Low-Voltage- Detection Rising Interrupt	
0	*	*	*	*	0	_	_	_	
1	1	1	0	0	0	0	_	_	
1	0	0	1	0	0	_	0	_	
1	0	0	1	1	0	_	0	0	
1	0	1	1	1	0	0	0	0	

Table 18.1 LVDCR Settings and Select Functions

Legend: *: means invalid.

18.2.2 Low-Voltage-Detection Status Register (LVDSR)

LVDSR indicates whether the power-supply voltage falls below or rises above the respective specified values.

		Initial		
Bit	Bit Name	Value	R/W	Description
7 to 2	_	All 1	_	Reserved
				These bits are always read as 1, and cannot be modified.
1	LVDDF	0*	R/W	LVD Power-Supply Voltage Fall Flag
				[Setting condition]
				When the power-supply voltage falls below Vint (D) (typ. = 3.7 V)
				[Clearing condition]
				Writing 0 to this bit after reading it as 1
0	LVDUF	0*	R/W	LVD Power-Supply Voltage Rise Flag
				[Setting condition]
				When the power supply voltage falls below Vint (D) while the LVDUE bit in LVDCR is set to 1, then rises above Vint (U) (typ. = 4.0 V) before falling below Vreset1 (typ. = 2.3 V)
				[Clearing condition]
				Writing 0 to this bit after reading it as 1
Note:	* Initialized	d by LVDR		

Rev.5.00 Nov. 02, 2005 Page 292 of 418 REJ09B0028-0500 this time, the LVDUF bit in LVDSR is set to 1 and an IRQ0 interrupt request is simultaneously generated.

If the power supply voltage (Vcc) falls below Vreset1 (typ. = 2.3 V) voltage, the LVDR function is performed.

Figure 18.4 Operational Timing of LVDI Circuit

Section 20 List of Registers

The register list gives information on the on-chip I/O register addresses, how the register bits are configured, and the register states in each operating mode. The information is given as shown below.

- 1. Register addresses (address order)
- Registers are listed from the lower allocation addresses.
- The symbol in the register-name column represents a reserved address or range of reserved addresses.

Do not attempt to access reserved addresses.

- When the address is 16-bit wide, the address of the upper byte is given in the list.
- Registers are classified by functional modules.
- The data bus width is indicated.
- The number of access states is indicated.
- 2. Register bits
- Bit configurations of the registers are described in the same order as the register addresses.
- Reserved bits are indicated by in the bit name column.
- When registers consist of 16 bits, bits are described from the MSB side.
- 3. Register states in each operating mode
- Register states are described in the same order as the register addresses.
- The register states described here are for the basic operating modes. If there is a specific reset for an on-chip peripheral module, refer to the section on that on-chip peripheral module.

• EE	• EEPROM											
Register Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0									Module Name			
EKR									EEPROM			
Notes:	Votes: 1. LVDC: Low-voltage detection circuits (optional)											

2. WDT: Watchdog timer

3. These bits are reserved in the EEPROM stacked F-ZTATTM and mask-ROM versions.

					Values	5		
Item	Symbol	Applicable Pins	Test Condition	Min	Тур	Max	Unit	Notes
Pull-up MOS	-I _p	P10 to P12, P14 to P17,	$V_{\rm cc} = 5.0 \text{ V},$ $V_{\rm IN} = 0.0 \text{ V}$	50.0	_	300.0	μA	
current		P50 to P55	$V_{\rm cc} = 3.0 \text{ V},$ $V_{\rm IN} = 0.0 \text{ V}$	_	60.0	_		Reference value
Input capaci- tance	C _{in}	All input pins except power supply pins	f = 1 MHz, $V_{IN} = 0.0 V,$ $T_a = 25^{\circ}C$	_	_	15.0	pF	
	SDA, SCL		_	_	_	25.0	pF	HD64N3694G
Active mode current	I _{OPE1}	V _{cc}	Active mode 1 $V_{cc} = 5.0 V$, $f_{osc} = 20 MHz$	_	20.0	30.0	mA	*
consump- tion			Active mode 1 $V_{cc} = 3.0 V$, $f_{osc} = 10 MHz$		8.0	_		* Reference value
	I _{OPE2}	V _{cc}	Active mode 2 $V_{cc} = 5.0 V$, $f_{osc} = 20 MHz$	—	2.0	3.0	mA	*
			Active mode 2 $V_{cc} = 3.0 V$, $f_{osc} = 10 MHz$	—	1.2	_		* Reference value
Sleep mode current	I _{SLEEP1}	V _{cc}	Sleep mode 1 $V_{cc} = 5.0 V$, $f_{osc} = 20 MHz$	_	16.0	22.5	mA	*
consump- tion			Sleep mode 1 $V_{cc} = 3.0 V$, $f_{osc} = 10 MHz$	_	8.0	_		* Reference value
	I _{SLEEP2}	V _{cc}	Sleep mode 2 $V_{cc} = 5.0 V$, $f_{osc} = 20 MHz$	_	1.8	2.7	mA	*
			Sleep mode 2 $V_{cc} = 3.0 V$, $f_{osc} = 10 MHz$	_	1.2	_		* Reference value
Subactive mode current consump-	I _{SUB}	V _{cc}	$V_{cc} = 3.0 V$ 32-kHz crystal resonator $(\phi_{cup} = \phi_w/2)$	_	40.0	70.0	μA	*
tion			$V_{cc} = 3.0 V$ 32-kHz crystal resonator $(\phi_{SUB} = \phi_W/8)$	_	30.0	_		* Reference value

RENESAS

Table 21.2DC Characteristics (3)

 $V_{\rm cc}$ = 3.0 to 5.5 V, $V_{\rm ss}$ = 0.0 V, $T_{\rm a}$ = –20 to +75°C, unless otherwise indicated.

		Applicable			Value	s	
Item	Symbol	Pins	Test Condition	Min	Тур	Max	Unit
Allowable output low current (per pin)	I _{ol}	Output pins except port 8, SCL, and SDA	$V_{cc} = 4.0 \text{ to } 5.5 \text{ V}$	_	_	2.0	mA
		Port 8	_	—	—	20.0	
		Port 8			_	10.0	
		SCL and SDA	_	_	_	6.0	
		Output pins except port 8, SCL, and SDA	_	_	_	0.5	_
Allowable output low current (total)	ΣI_{OL}	Output pins except port 8, SCL, and SDA	V_{cc} = 4.0 to 5.5 V	_	_	40.0	mA
		Port 8, SCL, and SDA	_	_	_	80.0	
		Output pins except port 8, SCL, and SDA		_	—	20.0	
		Port 8, SCL, and SDA	_		_	40.0	
Allowable output high	-I _{он}	All output pins	$V_{\rm cc}$ = 4.0 to 5.5 V	_	_	2.0	mA
current (per pin)				_	_	0.2	
Allowable output high	−∑I _{oh}	All output pins	$V_{cc} = 4.0 \text{ to } 5.5 \text{ V}$			30.0	mA
current (total)				_	_	8.0	

Table 21.12 DC Characteristics (2)

 $V_{cc} = 2.7 \text{ V}$ to 5.5 V, $V_{ss} = 0.0 \text{ V}$, $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$, unless otherwise indicated.

					Va	ues		
ltem	Symbol	Applicable Pins	Test Condition	Min	Тур	Max	Unit	Notes
EEPROM current consump- tion	I _{EEW}	V _{cc}	V_{cc} = 5.0 V, t_{scl} = 2.5 μs (when writing)	—	—	2.0	mA	*
	I _{EER}	V _{cc}	V_{cc} = 5.0 V, t_{scl} = 2.5 μs (when reading)	—	_	0.3	mA	_
	I _{EESTBY}	V _{cc}	V_{cc} = 5.0 V, t_{scl} = 2.5 μs (at standby)	—	—	3.0	μA	_

Note: * The current consumption of the EEPROM chip is shown. For the current consumption of H8/3694N, add the above current values to the current consumption of H8/3694.

Table 21.12 DC Characteristics (3)

V _c	c = 2.7 to 5.5	V, V_{ss}	= 0.0 V, T	$f_{a} = -20 \text{ to}$	o +75°C,	unless	otherwise	indicated.
· C				a	,			

		Applicable Values					
Item	Symbol	Pins	Test Condition	Min	Тур	Max	Unit
Allowable output low current (per pin)	I _{ol}	Output pins except port V $_{cc}$ = 4.0 to 5.5 V 8, SCL, and SDA		_		2.0	mA
		Port 8	-	—		20.0	-
		Port 8		—		10.0	-
		SCL, and SDA	-	—	_	6.0	_
		Output pins except port 8, SCL, and SDA	-		_	0.5	_
Allowable output low current (total)	$\Sigma I_{\rm OL}$	Output pins except port 8, SCL, and SDA	V_{cc} = 4.0 to 5.5 V	—	_	40.0	mA
		Port 8, SCL, and SDA	-	_	_	80.0	_
		Output pins except port 8, SCL, and SDA		—	_	20.0	_
		Port 8, SCL, and SDA	-	_	_	40.0	_
Allowable output high	-I _{OH}	All output pins	$V_{\rm cc}$ = 4.0 to 5.5 V	_	_	2.0	mA
current (per pin)				_	_	0.2	-
Allowable output high	$ -\Sigma I_{OH} $	All output pins $V_{cc} = 4.0$ to 5.5 V		_	_	30.0	mA
current (total)				_	_	8.0	=

		Instruction Fetch	Branch Addr. Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	I	J	ĸ	L	Μ	N
MULXS	MULXS.B Rs, Rd	2					12
	MULXS.W Rs, ERd	2					20
MULXU	MULXU.B Rs, Rd	1					12
	MULXU.W Rs, ERd	1					20
NEG	NEG.B Rd	1					
	NEG.W Rd	1					
	NEG.L ERd	1					
NOP	NOP	1					
NOT	NOT.B Rd	1					
	NOT.W Rd	1					
	NOT.L ERd	1					
OR	OR.B #xx:8, Rd	1					
	OR.B Rs, Rd	1					
	OR.W #xx:16, Rd	2					
	OR.W Rs, Rd	1					
	OR.L #xx:32, ERd	3					
	OR.L ERs, ERd	2					
ORC	ORC #xx:8, CCR	1					
POP	POP.W Rn	1				1	2
	POP.L ERn	2				2	2
PUSH	PUSH.W Rn	1				1	2
	PUSH.L ERn	2				2	2
ROTL	ROTL.B Rd	1					
	ROTL.W Rd	1					
	ROTL.L ERd	1					
ROTR	ROTR.B Rd	1					
	ROTR.W Rd	1					
	ROTR.L ERd	1					
ROTXL	ROTXL.B Rd	1					
	ROTXL.W Rd	1					
	ROTXL.L ERd	1					

