

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	17
Program Memory Size	2KB (2K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f2m120adsp-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1.2 Differences between Groups

Table 1.1 lists the Specification Comparison between R8C/M11A Group and R8C/M12A Group. The explanations in 1.1.3 and subsequent sections apply to the R8C/M12A Group specifications only, unless otherwise specified.

Item	Function	R8C/M11A Group	R8C/M12A Group
Interrupts	External interrupt inputs	6 (INT × 3, key input × 3)	8 ($\overline{INT} \times 4$, key input $\times 4$)
I/O ports	Number of pins	14 Non-provided pins: P1_0/AN0/TRCIOD/KI0 P3_3/IVCMP3/TRCCLK/INT3 P3_4/IVREF3/TRCIOC/INT2 P3_5/TRCIOD/KI2/VCOUT3 P4_2/TRB0/TXD0/KI3 P4_5/INT0/ADTRG	20
	Number of CMOS I/O ports	11 Non-provided ports: P1_0, P3_3, P3_4, P3_5, P4_2, P4_5	17
	Number of high-current drive ports	5 Non-provided ports: P3_3, P3_4, P3_5	8
A/D converter	Number of A/D channels	5 channels Non-provided port: AN0	6 channels
Comparator B	Number of channels	Comparator B1	Comparator B1, comparator B3

 Table 1.1
 Specification Comparison between R8C/M11A Group and R8C/M12A Group

Table 1.2 lists the R8C/M11A Group Register Settings. These settings correspond to the specification differences between the R8C/M11A Group and R8C/M12A Group.

Related Function	Register Name	Address	Bit	Setting Method for Access
INT3	INTEN	00038h	INT3EN	Reserved bit. Set to 0.
	INTF0	0003Ah	INT3F0, INT3F1	Reserved bits. Set to 0.
	ISCR0	0003Ch	INT3SA, INT3SB	Reserved bits. Set to 0.
	ILVLD	0004Dh	ILVLD0, ILVLD1	Reserved bits. Set to 0.
	IRR3	00053h	IRI3	Reserved bit. Set to 0.
KI0	KIEN	0003Eh	KI0EN, KI0PL	Reserved bits. Set to 0.
Comparator B3	ILVL2	00042h	ILVL24, ILVL25	Reserved bits. Set to 0.
interrupt	IRR2	00052h	IRCMP3	Reserved bit. Set to 0.
P1_0	PD1	000A9h	PD1_0	Reserved bit. Set to 0.
	P1	000AFh	P1_0	Reserved bit. Set to 0.
	PUR1	000B5h	PU1_0	Reserved bit. Set to 0.
	POD1	000C1h	POD1_0	Reserved bit. Set to 0.
	PML1	000C8h	P10SEL0, P10SEL1	Reserved bits. Set to 0.
P3_3, P3_4,	PD3	000ABh	PD3_3, PD3_4, PD3_5	Reserved bits. Set to 0.
P3_5	P3	000B1h	P3_3, P3_4, P3_5	Reserved bits. Set to 0.
	PUR3	000B7h	PU3_3, PU3_4, PU3_5	Reserved bits. Set to 0.
	DRR3	000BDh	DRR3_3, DRR3_4, DRR3_5	Reserved bits. Set to 0.
	POD3	000C3h	POD3_3, POD3_4, POD3_5	Reserved bits. Set to 0.
	PML3	000CCh	P33SEL0, P33SEL1	Reserved bits. Set to 0.
	PMH3	000CDh	P34SEL0, P34SEL1, P35SEL0, P35SEL1	Reserved bits. Set to 0.
P4_2, P4_5	PD4	000ACh	PD4_2, PD4_5	Reserved bits. Set to 0.
	P4	000B2h	P4_2, P4_5	Reserved bits. Set to 0.
	PUR4	000B8h	PU4_2, PU4_5	Reserved bits. Set to 0.
	POD4	000C4h	POD4_2, POD4_5	Reserved bits. Set to 0.
	PML4	000CEh	P42SEL0, P42SEL1	Reserved bits. Set to 0.
	PMH4	000CFh	P45SEL0, P45SEL1	Reserved bits. Set to 0.
AN0	ADINSEL	0009Dh	CH0, ADGSEL0, ADGSEL1	Do not set to 000.
Comparator B3	WCMPR	00180h	WCB3M0, WCB3OUT	Reserved bits. Set to 0.
	WCB3INTR	00182h	All bits	Reserved register. No access is allowed.

 Table 1.2
 R8C/M11A Group Register Settings

Table 1.4	Specifications	(2)
-----------	----------------	-----

Item	Function	Description	
Flash memory		 Program/erase voltage for program ROM: VCC = 1.8 V to 5.5 V Program/erase voltage for data flash: VCC = 1.8 V to 5.5 V Program/erase endurance: 10,000 times (data flash) 10,000 times (program ROM) Program security: ID code check, protection enabled by lock bit Debug functions: On-chip debug, on-board flash rewrite function 	
Operating frequency/ Power supply voltage		f(XIN) = 20 MHz (VCC = 2.7 V to 5.5 V) f(XIN) = 5 MHz (VCC = 1.8 V to 5.5 V)	
Temperature range		-20 °C to 85 °C (N version) -40 °C to 85 °C (D version) ⁽¹⁾	
Package		14-pin TSSOP: [Package code] PTSP0014JA-B 14-pin DIP: [Package code] PRDP0014AC-A 20-pin LSSOP: [Package code] PLSP0020JB-A 20-pin DIP: [Package code] PRDP0020AD-A	

1. Specify the D version if it is to be used.

Pin N	umber				I/O Pins for	Peripheral Fu	nctions
R8C/M11A Group	R8C/M12A Group	Control Pin	Port	Interrupt	Timer	Serial Interface	A/D Converter, Comparator B
	1		P4_2	KI3	TRBO	TXD0	
1	2		P3_7		TRJO/TRCIOD		ADTRG
2	3	RESET	PA_0				
3	4	XOUT	P4_7	INT2			
4	5	VSS/AVSS					
5	6	XIN	P4_6	INT1	TRJIO	RXD0/TXD0	VCOUT1
6	7	VCC/AVCC					
7	8	MODE					
	9		P3_5	KI2	TRCIOD		VCOUT3
	10		P3_4	INT2	TRCIOC		IVREF3
	11		P3_3	INT3	TRCCLK		IVCMP3
	12		P4_5	INT 0			ADTRG
8	13		P1_7	INT1	TRJIO/TRCCLK		AN7/IVCMP1
9	14		P1_6		TRJO/TRCIOB	CLK0	IVREF1
10	15		P1_5	INT1	TRJIO	RXD0	VCOUT1
11	16		P1_4	INT0	TRCIOB	RXD0/TXD0	AN4
12	17		P1_3	KI3	TRBO/TRCIOC		AN3
13	18		P1_2	KI2	TRCIOB		AN2
14	19		P1_1	KI1	TRCIOA/TRCTRG		AN1
	20		P1_0	KI0	TRCIOD		ANO

 Table 1.6
 Pin Name Information by Pin Number

3.2 Special Function Registers (SFRs)

An SFR (special function register) is a control register for a peripheral function. Tables 3.1 to 3.8 list the SFR Information. Table 3.9 lists the ID Code Area and Option Function Select Area.

Address	Register Name	Symbol	After Reset
00000h		,	
00001h			
00002h			
00003h			
00004h			
00005h			
00006h			
00007h			
00008h			
00009h			
0000Ah			
0000Bh			
000000h			
0000Eh			
0000Eh			
00010h	Processor Mode Register 0	PM0	00h
00011h			
00012h	Module Standby Control Register	MSTCR	00h ⁽²⁾ 01110111h ⁽³⁾
00013h	Protect Register	PRCR	00h
00014h			
00015h			
00016h	Hardware Reset Protect Register	HRPR	00h
00017h			
00018h			
00019h			
0001Ah			
0001Bh			
0001Ch			
0001Dh			
0001Eh			
0001FI	External Clock Control Register	EXCKCB	00b
00020h	High-Speed/Low-Speed On-Chip Oscillator Control Register	OCOCR	00h
00022h	System Clock f Control Register	SCKCR	00h
00023h	System Clock f Select Register	PHISEL	00h
00024h	Clock Stop Control Register	CKSTPR	00h
00025h	Clock Control Register When Returning from Modes	CKRSCR	00h
00026h	Oscillation Stop Detection Register	BAKCR	00h
00027h			
00028h			
00029h			
0002Ah			
0002BN			
000201			
0002Dn			
0002Fh			
00030h	Watchdog Timer Function Register	RISR	10000000b ⁽⁴⁾
00031h	Watchdog Timer Reset Register	WDTR	XXh
00032h	Watchdog Timer Start Register	WDTS	XXh
00033h	Watchdog Timer Control Register	WDTC	01XXXXXXb
00034h	Count Source Protection Mode Register	CSPR	10000000b ⁽⁴⁾ 00h ⁽⁵⁾
00035h	Periodic Timer Interrupt Control Register	WDTIR	00h
00036h			
00037h			
00038h	External Input Enable Register	INTEN	00h
00039h			

Table 3.1SFR Information (1) (1)

Notes:

1. The blank areas are reserved. No access is allowed.

2. The MSTINI bit in the OFS2 register is 0.

3. The MSTINI bit in the OFS2 register is 1.

4. The CSPROINI bit in the OFS register is 0.

5. The CSPROINI bit in the OFS register is 1.

Address	Register Name	Symbol	After Reset
00140h			
00141h			
00142h			
0014211			
001430			
00144h			
00145h			
00146h			
00147h			
00148h			
00149h			
00140b			
0014An			
0014BN			
0014Ch			
0014Dh			
0014Eh			
0014Fh			
00150h			
00151h			
00152h			
00152h			
0015311			
00154h			
00155h			
00156h			
00157h			
00158h			
00159h			
0015Ah			
0015Bh			
0015Ch			
0015Dh			
0015Dh			
0015Eh			
0015Fh			
00160h			
00161h			
00162h			
00163h			
00164h			
00165h			
00166h			
00167h			
0010711			
00168h			
00169h			
0016Ah			
0016Bh			
0016Ch			
0016Dh			
0016Eh			
0016Fh			
001706			
0017011			
001710			
00172h			
00173h			
00174h			
00175h			
00176h			
00177h			
00178h			
00170h			
001750			
0017An			
0017Bh			
0017Ch			
0017Dh			
0017Eh			
0017Fh			

Table 3.6SFR Information (6) (1)

1. The blank areas are reserved. No access is allowed.

Address	Area Name	Symbol	After Reset
:			
0FFDBh	Option Function Select Register 2	OFS2	(Note 1)
:			
0FFDFh	ID1		(Note 2)
:			
0FFE3h	ID2		(Note 2)
:			
0FFEBh	ID3		(Note 2)
:			
0FFEFh	ID4		(Note 2)
:			
0FFF3h	ID5		(Note 2)
:			
0FFF7h	ID6		(Note 2)
:			
0FFFBh	ID7		(Note 2)
:			
0FFFFh	Option Function Select Register	OFS	(Note 1)

Table 3.9 ID Code Area and Option Function Select Area

 The option function select area is allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. Do not perform an additional write to the option function select area. Erasure of the block including the option function select area causes the option function select area to be set to FFh.

When blank products are shipped, the option function select area is set to FFh. It is set to the written value after written by the user. When factory-programming products are shipped, the value of the option function select area is the value programmed by the user.

2. The ID code area is allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. Do not perform an additional write to the ID code area. Erasure of the block including the ID code area causes the ID code area to be set to FFh. When blank products are shipped, the ID code areas are set to FFh. They are set to the written value after written by the user. When factory-programming products are shipped, the value of the ID code areas is the value programmed by the user.

Symbol	Parameter		Condition	Standard			Llnit
Symbol			Condition	Min.	Тур.	Max.	Unit
Vcc/AVcc	Power supply voltage			1.8	—	5.5	V
Vss/AVss	Power supply voltage				0	_	V
Viн	Input high voltage	Other than CMOS input		0.8 Vcc	—	Vcc	V
		CMOS input	$4.0~V \leq Vcc \leq 5.5~V$	0.65 Vcc	—	Vcc	V
			$2.7~V \leq Vcc < 4.0~V$	0.7 Vcc	—	Vcc	V
			$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	0.8 Vcc	—	Vcc	V
VIL	Input low voltage	Other than CMOS input		0	—	0.2 Vcc	V
		CMOS input	$4.0~V \leq Vcc \leq 5.5~V$	0	—	0.4 Vcc	V
			$2.7~V \leq Vcc < 4.0~V$	0	—	0.3 Vcc	V
			$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	0	—	0.2 Vcc	V
IOH(sum)	Peak sum output high current	Sum of all pins IOH(peak)		_		-160	mA
IOH(sum)	Average sum output high current	Sum of all pins IOH(avg)		_		-80	mA
IOH(peak)	Peak output high current		When drive capacity is low	_	—	-10	mA
			When drive capacity is high (5)	_	—	-40	mA
IOH(avg)	Average output high current		When drive capacity is low	_		-5	mA
			When drive capacity is high (5)	—	_	-20	mA
IOL(sum)	Peak sum output low current	Sum of all pins IOL(peak)		_		160	mA
IOL(sum)	Average sum output low current	Sum of all pins IOL(avg)		_	—	80	mA
IOL(peak)	Peak output low current		When drive capacity is low	_	—	10	mA
			When drive capacity is high (5)	_	—	40	mA
IOL(avg)	Average output low current		When drive capacity is low	_	_	5	mA
			When drive capacity is high (5)	_		20	mA
f(XIN)	XIN oscillation frequency		$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	2	—	20	MHz
			$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	2	—	5	MHz
	XIN clock input oscillation fr	requency	$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0	—	20	MHz
			$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	0	—	5	MHz
fHOCO	High-speed on-chip oscillat	or oscillation frequency (3)	$1.8 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	_	20	_	MHz
fLOCO	Low-speed on-chip oscillato	or oscillation frequency (4)	$1.8 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	_	125		kHz
—	System clock frequency	1 7	$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	_		20	MHz
			$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	_	—	5	MHz
fs	CPU clock frequency		$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0	—	20	MHz
			$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	0	—	5	MHz

Table 4.2 Recommended Operating Conditions

1. Vcc = 1.8 V to 5.5 V and Topr = -20 °C to 85 °C (N version)/-40 °C to 85 °C (D version), unless otherwise specified.

2. The average output current indicates the average value of current measured during 100 ms.

3. For details, see Table 4.10 High-Speed On-Chip Oscillator Circuit Electrical Characteristics.

4. For details, see Table 4.11 Low-Speed On-Chip Oscillator Circuit Electrical Characteristics.

5. The pins with high drive capacity are P1_2, P1_3, P1_4, P1_5, P3_3, P3_4, P3_5, and P3_7.

Figure 4.1 Ports P1, P3, and P4 Timing Measurement Circuit

Cumhal	Doromotor	Condition			Linit		
Symbol	Parameter		Min.	Тур.	Max.	Unit	
	Resolution				—	10	Bit
	Absolute accuracy	AVcc = 5.0 V	AN0 to AN4, AN7 input	_	—	±3	LSB
		AVcc = 3.0 V	AN0 to AN4, AN7 input	_	—	±5	LSB
		AVcc = 1.8 V	AN0 to AN4, AN7 input	_	—	±5	LSB
—	A/D conversion clock			2	—	20	MHz
				2	—	16	MHz
		$2.7 \text{ V} \leq \text{AVcc} \leq 3$	$2.7 \text{ V} \le \text{AVcc} \le 5.5 \text{ V}^{(2)}$ 1.8 \text{ V} \le \text{AVcc} \le 5.5 \text{ V}^{(2)}		—	10	MHz
		1.8 V \leq AVcc \leq			—	5	MHz
	Permissible signal source impedance				3		kΩ
tCONV	Conversion time	AVcc = 5.0 V, A/D conversion clock = 20 MHz		2.20	_	_	μs
t SAMP	Sampling time	A/D conversion clock = 20 MHz		0.80	—	—	μs
Via	Analog input voltage			0	—	AVcc	V

 Table 4.3
 A/D Converter Characteristics

1. Vcc/AVcc = 1.8 V to 5.5 V and Vss = 0 V and Topr = -20 °C to 85 °C (N version)/-40 °C to 85 °C (D version), unless otherwise specified.

2. The A/D conversion result will be undefined in stop mode, or when the flash memory is in low-current-consumption read mode or stopped. Do not perform A/D conversion in these states. Do not enter these states during A/D conversion.

Table 4.4 Comparator B Electrical Characteristics

Symbol	Parameter	Condition		Lloit		
Symbol	Falanetei	Condition	Min.	Тур.	Max.	Onit
Vref	IVREF1, IVREF3 input reference voltage		0	_	Vcc - 1.4	V
VI	IVCMP1, IVCMP3 input voltage		-0.3	_	Vcc + 0.3	V
—	Offset		_	5	100	mV
td	Comparator output delay time (2)	VI = Vref ± 100 mV	-	0.1	—	μS
ICMP	Comparator operating current	Vcc = 5.0 V	_	17.5	—	μA

Notes:

1. Vcc = 2.7 V to 5.5 V and Topr = -20 °C to 85 °C (N version)/-40 °C to 85 °C (D version), unless otherwise specified.

2. When the digital filter is disabled.

Symbol	Beremeter	Condition			Unit	
Symbol	Falameter	Condition	Min.	Тур.	Max.	Unit
Vdet0	Voltage detection level Vdet0_0 ⁽²⁾		1.80	1.90	2.05	V
	Voltage detection level Vdet0_1 ⁽²⁾		2.15	2.35	2.50	V
	Voltage detection level Vdet0_2 (2)		2.70	2.85	3.05	V
	Voltage detection level Vdet0_3 (2)		3.55	3.80	4.05	V
—	Voltage detection 0 circuit response time ⁽³⁾	When Vcc decreases from 5 V to (Vdet0_0 - 0.1) V	_	30	_	μS
—	Self power consumption in voltage detection circuit	VC0E = 1, Vcc = 5.0 V	_	1.5	_	μΑ
td(E-A)	Wait time until voltage detection circuit operation starts ⁽⁴⁾		_	—	100	μS

 Table 4.7
 Voltage Detection 0 Circuit Electrical Characteristics

1. The measurement condition is Vcc = 1.8 V to 5.5 V and Topr = -20 °C to 85 °C (N version)/-40 °C to 85 °C (D version).

2. Select the voltage detection level with bits VDSEL0 and VDSEL1 in the OFS register.

3. The response time is from when the voltage passes Vdet0 until the voltage monitor 0 reset is generated.

4. The wait time is necessary for the voltage detection circuit to operate when the VC0E bit in the VCA2 register is set to 0 and then 1.

Table 4.8	Voltage Detection	1 Circuit	Electrical	Characteristics
				•

Symbol	Parameter	Condition		Llnit		
Symbol	Faranielei	Condition	Min.	Тур.	Max.	Unit
Vdet1	Voltage detection level Vdet1_1 ⁽²⁾	When Vcc decreases	2.15	2.35	2.55	V
	Voltage detection level Vdet1_3 ⁽²⁾	When Vcc decreases	2.45	2.65	2.85	V
	Voltage detection level Vdet1_5 ⁽²⁾	When Vcc decreases	2.75	2.95	3.15	V
	Voltage detection level Vdet1_7 ⁽²⁾	When Vcc decreases	3.00	3.25	3.55	V
	Voltage detection level Vdet1_9 ⁽²⁾	When Vcc decreases	3.30	3.55	3.85	V
V	Voltage detection level Vdet1_B (2)	When Vcc decreases	3.60	3.85	4.15	V
	Voltage detection level Vdet1_D (2)	When Vcc decreases	3.90	4.15	4.45	V
	Voltage detection level Vdet1_F (2)	When Vcc decreases	4.20	4.45	4.75	V
—	Hysteresis width at the rising of Vcc in	Vdet1_1 to Vdet1_5 selected	_	0.07	—	V
	voltage detection 1 circuit	Vdet1_7 to Vdet1_F selected	_	0.10	_	V
—	Voltage detection 1 circuit response time ⁽³⁾	When Vcc decreases from 5 V to (Vdet1_0 - 0.1) V	_	60	150	μS
	Self power consumption in voltage detection circuit	VC1E = 1, Vcc = 5.0 V	_	1.7	—	μΑ
td(E-A)	Wait time until voltage detection circuit operation starts ⁽⁴⁾		_	_	100	μS

Notes:

1. The measurement condition is Vcc = 1.8 V to 5.5 V and Topr = -20 °C to 85 °C (N version)/-40 °C to 85 °C (D version).

2. Select the voltage detection level with bits VD1S1 to VD1S3 in the VD1LS register.

3. The response time is from when the voltage passes Vdet1 until the voltage monitor 1 interrupt request is generated.

4. The wait time is necessary for the voltage detection circuit to operate when the VC1E bit in the VCA2 register is set to 0 and then 1.

Symbol	Parameter	Package	Condition		LInit		
Symbol	Farameter	гаскауе	Condition	Min.	Тур.	Max.	Unit
—	High-speed on-chip oscillator	14-pin TSSOP	Vcc = 1.8 V to 5.5 V,	19.2	20.0	20.8	MHz
	frequency after reset is	20-pin LSSOP	-20 °C ≤ Topr ≤ 85 °C				
	cleared	14-pin DIP		19.0	20.0	21.0	MHz
		20-pin DIP					
		14-pin TSSOP	Vcc = 1.8 V to 5.5 V,	19.0	20.0	21.0	MHz
		20-pin LSSOP	-40 °C \leq Topr \leq 85 °C				
	High-speed on-chip oscillator	14-pin TSSOP	Vcc = 1.8 V to 5.5 V,	17.694	18.432	19.169	MHz
	frequency when the FR18S0	20-pin LSSOP	-20 °C \leq Topr \leq 85 °C				
	register adjustment value is	14-pin DIP		17.510	18.432	19.353	MHz
	written into the FRV1 register	20-pin DIP					
	and the FR18S1 register	14-pin TSSOP	Vcc = 1.8 V to 5.5 V,	17.510	18.432	19.353	MHz
	adjustment value into the	20-pin LSSOP	-40 °C \leq Topr \leq 85 °C				
	FRV2 register (2)						
-	Oscillation stabilization time	—		_	_	30	μS
—	Self power consumption at oscillation	_	Vcc = 5.0 V, Topr = 25 °C	_	530		μĀ

Table 4.10	High-Speed On-Chi	o Oscillator Circu	it Electrical Characteris	stics

1. Vcc = 1.8 V to 5.5 V, Topr = -20 °C to 85 °C (N version)/-40 °C to 85 °C (D version), unless otherwise specified.

2. This enables the setting errors of bit rates such as 9600 bps and 38400 bps to be 0 % when the serial interface is used in UART mode.

Table 4.11 Low-Speed On-Chip Oscillator Circuit Electrical Characteristics

Symbol	Parameter	Condition		Lloit		
Symbol		Condition	Min.	Тур.	Max.	Onit
fLOCO	Low-speed on-chip oscillator frequency	60	125	250	kHz	
—	Oscillation stabilization time		—	—	35	μS
—	Self power consumption at oscillation	Vcc = 5.0 V, Topr = 25 $^{\circ}$ C	—	2		μΑ

Note:

1. Vcc = 1.8 V to 5.5 V, Topr = -20 °C to 85 °C (N version)/-40 °C to 85 °C (D version), unless otherwise specified.

Table 4.12 Power Supply Circuit Timing Characteristics

Symbol	Parameter	Condition		Linit		
		Condition	Min.	Тур.	Max.	Unit
td(P-R)	Time for internal power supply stabilization during power-on ⁽²⁾				2,000	μS

Notes:

1. The measurement condition is Vcc = 1.8 V to 5.5 V and Topr = 25 °C.

2. Wait time until the internal power supply generation circuit stabilizes during power-on.

Symbol	Parameter		Condi	tion	S	Unit		
Symbol			Cond		Min.	Тур.	Max.	Onit
Vон	Output high voltage	P1_2, P1_3, P1_4, P1_5, P3_3, P3_4, P3_5, P3_7 ⁽²⁾	When drive capacity is high	Iон = -20 mA	Vcc - 2.0	—	Vcc	V
			When drive capacity is low	Іон = -5 mA	Vcc - 2.0	—	Vcc	V
		P1_0, P1_1, P1_6, P1_7, P4_2, P4_5, P4_6, P4_7, PA_0		юн = -5 mA	Vcc - 2.0	_	Vcc	V
Vol	Output low voltage	P1_2, P1_3, P1_4, P1_5, P3_3, P3_4, P3_5, P3_7 ⁽²⁾	When drive capacity is high	IoL = 20 mA	_	_	2.0	V
			When drive capacity is low	IOL = 5 mA		—	2.0	V
		P1_0, P1_1, P1_6, P1_7, P4_2, P4_5, P4_6, P4_7, PA_0		Iol = 5 mA		_	2.0	V
VT+-VT-	Hysteresis	INT0, INT1, INT2, INT3, KI0, KI1, KI2, KI3, TRJIO, TRCIOA, TRCIOB, TRCIOC, TRCIOD, RXD0, CLK0	Vcc = 5 V		0.1	1.2	_	V
		RESET	Vcc = 5 V		0.1	1.2		V
Ін	Input high current		VI = 5 V, Vcc = 5	5.0 V	—	_	5.0	μA
lı∟	Input low current		VI = 0 V, $Vcc = 5$	5.0 V	—	—	-5.0	μA
RPULLUP	Pull-up resistance		VI = 0 V, $Vcc = 5$	5.0 V	25	50	100	kΩ
RfXIN	Feedback resistance	XIN			—	2.2	—	MΩ
VRAM	RAM hold voltage		In stop mode		1.8	—	—	V

Table 4.13 DC Characteristics (1) [4.0 V \leq Vcc \leq 5.5 V]

1. 4.0 V ≤ Vcc ≤ 5.5 V and Topr = -20 °C to 85 °C (N version)/-40 °C to 85 °C (D version), f(XIN) = 20 MHz, unless otherwise specified.

2. High drive capacity can also be used while the peripheral output function is used.

						Cond	dition				Condition										
Symbol	Parameter		Oscillation Circuit	On-Chip C	Oscillator	CPU	Low-Power-	Othor		Standard		Unit									
			XIN (2)	High- Speed	Low- Speed	Clock	Setting	Other	Min.	Тур. (3)	Max.										
lcc	Power supply	High-speed clock mode	20 MHz	Off	125 kHz	No division	—			3	7.0	mA									
	current (1)		16 MHz	Off	125 kHz	No division	—			2.5	6.0	mA									
			10 MHz	Off	125 kHz	No division	—		-	1.7	_	mA									
			20 MHz	Off	125 kHz	Division by 8	—			1.5	_	mA									
			16 MHz	Off	125 kHz	Division by 8	—		I	1.2	_	mA									
			10 MHz	Off	125 kHz	Division by 8	_		I	1.0	_	mA									
		High-speed on-chip	Off	20 MHz	125 kHz	No division				3.5	7.5	mA									
	oscillator mode	oscillator mode	Off	20 MHz	125 kHz	Division by 8				2.0		mA									
			Off	4 MHz ⁽⁴⁾	125 kHz	Division by 16	MSTTRC = 1			1.0	_	mA									
		Low-speed on-chip oscillator mode	Off	Off	125 kHz	Division by 8	FMR27 = 1 LPE = 0		_	60	270	μΑ									
		Wait mode	Off	Off	125 kHz	_	VC1E = 0 VC0E = 0 LPE = 1	Peripheral clock supplied during WAIT instruction execution		15	100	μΑ									
			Off	Off	125 kHz	_	VC1E = 0 VC0E = 0 LPE = 1 WCKSTP = 1	Peripheral clock stopped during WAIT instruction execution	_	4.0	90	μA									
		Stop mode	Off	Off	Off	_	VC1E = 0 VC0E = 0 STPM = 1	Topr = 25 °C Peripheral clock stopped	—	1.0	4.0	μΑ									
			Off	Off	Off	—	VC1E = 0 VC0E = 0 STPM = 1	Topr = 85 °C Peripheral clock stopped	_	1.5	-	μΑ									

Table 4.14DC Characteristics (2) [4.0 V \leq Vcc \leq 5.5 V]
(Topr = -20 °C to 85 °C (N version)/-40 °C to 85 °C (D version), unless otherwise specified)

Notes:

1. Vcc = 4.0 V to 5.5 V, single-chip mode, output pins are open, and other pins are connected to Vss.

2. When the XIN input is a square wave.

3. Vcc = 5.0 V

4. Set the system clock to 4 MHz with the PHISEL register.

Table 4.23Serial Interface

Symbol	Deromotor	Stan	dard	Lloit
Symbol	Falameter	Min.	Max.	Unit
tc(CK)	CLK0 input cycle time	300	_	ns
tw(CKH)	CLK0 input high width	150		ns
tw(CKL)	CLK0 input low width	150	—	ns
td(C-Q)	TXD0 output delay time	_	80	ns
th(C-Q)	TXD0 hold time	0		ns
tsu(D-C)	RXD0 input setup time	70		ns
th(C-D)	RXD0 input hold time	90	_	ns

Figure 4.10 Serial Interface Timing When Vcc = 3 V

Table 4.24 External Interrupt INTi Input, Key Input Interrupt Kli (i = 0 to 3)

Symbol	Parameter	Stan	Unit	
	Farameter			Max.
tw(INH)	INTi input high width, Kli input high width	380 (1)	_	ns
tw(INL)	INTi input low width, Kli input low width	380 (2)		ns

Notes:

1. When the digital filter is enabled by the INTi input filter select bit, the INTi input high width is (1/digital filter clock frequency × 3) or the minimum value of the standard, whichever is greater.

2. When the digital filter is enabled by the INTi input filter select bit, the INTi input low width is (1/digital filter clock frequency × 3) or the minimum value of the standard, whichever is greater.

Figure 4.11 Timing for External Interrupt INTi Input and Key Input Interrupt Kli When Vcc = 3 V

Symbol	Parameter		Condi	ition	S	Lloit		
Symbol		arameter	Cond	luon	Min.	Тур.	Max.	Unit
Vон	Output high voltage	P1_2, P1_3, P1_4, P1_5, P3_3, P3_4, P3_5, P3_7 ⁽²⁾	When drive capacity is high	Іон = -2 mA	Vcc - 0.5	_	Vcc	V
			When drive capacity is low	Iон = -1 mA	Vcc - 0.5	_	Vcc	V
		P1_0, P1_1, P1_6, P1_7, P4_2, P4_5, P4_6, P4_7, PA_0		Іон = -1 mA	Vcc - 0.5	_	Vcc	V
Vol	Output low voltage	P1_2, P1_3, P1_4, P1_5, P3_3, P3_4, P3_5, P3_7 ⁽²⁾	When drive capacity is high	IoL = 2 mA	—		0.5	V
			When drive capacity is low	IOL = 1 mA	_	—	0.5	V
		P1_0, P1_1, P1_6, P1_7, P4_2, P4_5, P4_6, P4_7, PA_0		IoL = 1 mA	_		0.5	V
VT+-VT-	Hysteresis	INT0, INT1, INT2, INT3, KI0, KI1, KI2, KI3, TRJIO, TRCIOA, TRCIOB, TRCIOC, TRCIOD, RXD0, CLK0	Vcc = 2.2 V		0.05	0.20	_	V
		RESET	Vcc = 2.2 V		0.05	0.20		V
Ін	Input high current		VI = 2.2 V, Vcc =	= 2.2 V	—	_	4.0	μA
lı∟	Input low current		VI = 0 V, $Vcc = 2$	2.2 V	—	_	-4.0	μA
RPULLUP	Pull-up resistance		VI = 0 V, $Vcc = 2$	2.2 V	70	140	300	kΩ
RfXIN	Feedback resistance	XIN			—	2.2		MΩ
Vram	RAM hold voltage		In stop mode		1.8	—		V

Table 4.25 DC Characteristics (5) [1.8 V \leq Vcc < 2.7 V]

1. 1.8 V \leq Vcc < 2.7 V and Topr = -20 °C to 85 °C (N version)/-40 °C to 85 °C (D version), f(XIN) = 5 MHz, unless otherwise specified.

2. High drive capacity can also be used while the peripheral output function is used.

Table 4.26 DC Characteristics (6) [1.8 V \leq Vcc < 2.7 V] (Topr = -20 °C to 85 °C (N version)/-40 °C to 85 °C (D version), unless otherwise specified)

			Condition									
Symbol	Parameter	ameter	Oscillation Circuit	On-Chip C	Scillator	CPU Low-Power-	Low-Power- Consumption Other Setting	Standard			Unit	
			XIN (2)	High- Speed	Low- Speed	Clock		Other	Min.	Тур. ⁽³⁾	Max.	
lcc	Power supply	High-speed clock mode	5 MHz	Off	125 kHz	No division	—		-	1.0	_	mA
	current ⁽¹⁾		5 MHz	Off	125 kHz	Division by 8	—		—	0.6	_	mA
		High-speed on-chip oscillator mode	Off	5 MHz ⁽⁴⁾	125 kHz	No division			—	1.6	6.5	mA
			Off	5 MHz ⁽⁴⁾	125 kHz	Division by 8			—	1.1	_	mA
			Off	4 MHz ⁽⁴⁾	125 kHz	Division by 16	MSTTRC = 1		—	1.0	_	mA
		Low-speed on-chip oscillator mode	Off	Off	125 kHz	Division by 8	FMR27 = 1 LPE = 0		_	60	200	μΑ
		Wait mode	Off	Off	125 kHz	_	VC1E = 0 VC0E = 0 LPE = 1	Peripheral clock supplied during WAIT instruction execution	—	15	90	μΑ
			Off	Off	125 kHz	_	VC1E = 0 VC0E = 0 LPE = 1 WCKSTP = 1	Peripheral clock stopped during WAIT instruction execution	—	4.0	80	μΑ
		Stop mode	Off	Off	Off	—	VC1E = 0 VC0E = 0 STPM = 1	Topr = 25 °C Peripheral clock stopped	—	1.0	4.0	μΑ
			Off	Off	Off	_	VC1E = 0 VC0E = 0 STPM = 1	Topr = 85 °C Peripheral clock stopped	—	1.5	—	μΑ

Notes:

1. Vcc = 1.8 V to 2.7 V, single-chip mode, output pins are open, and other pins are connected to Vss.

2. When the XIN input is a square wave.

3. Vcc = 2.2 V

4. Set the system clock to 5 MHz or 4 MHz with the PHISEL register.

Timing Requirements (Vcc = 2.2 V, Vss = 0 V at Topr = 25 °C, unless otherwise specified)

Table 4.27 External Clock Input (XIN)

Symbol	Parameter	Stan	Lloit	
		Min.	Max.	Unit
tc(XIN)	XIN input cycle time	200		ns
twh(xin)	XIN input high width	90	_	ns
twl(XIN)	XIN input low width	90	_	ns

Figure 4.12 External Clock Input Timing When Vcc = 2.2 V

Table 4.28 TRJIO Input

Symbol	Parameter	Stan	Linit	
		Min.	Max.	Unit
tc(TRJIO)	TRJIO input cycle time	500	_	ns
twh(trjio)	TRJIO input high width	200	_	ns
twl(trjio)	TRJIO input low width	200	_	ns

Figure 4.13 TRJIO Input Timing When Vcc = 2.2 V

Table 4.29Serial Interface

Symbol	Parameter		Standard		
			Max.	Onit	
tc(CK)	CLK0 input cycle time	800	_	ns	
tw(CKH)	CLK0 input high width	400	-	ns	
tw(CKL)	CLK0 input low width	400	-	ns	
td(C-Q)	TXD0 output delay time	_	200	ns	
th(C-Q)	TXD0 hold time	0	_	ns	
tsu(D-C)	RXD0 input setup time	150	_	ns	
th(C-D)	RXD0 input hold time	90		ns	

Figure 4.14 Serial Interface Timing When Vcc = 2.2 V

Table 4.30 External Interrupt INTi Input, Key Input Interrupt Kli (i = 0 to 3)

Symbol	Derometer		Standard		
	r al all'elei	Min.	Max.	Unit	
tw(INH)	INTi input high width, Kli input high width	1,000 (1)	_	ns	
tw(INL)	INTi input low width, Kli input low width	1,000 (2)	_	ns	

Notes:

1. When the digital filter is enabled by the INTi input filter select bit, the INTi input high width is (1/digital filter clock frequency × 3) or the minimum value of the standard, whichever is greater.

2. When the digital filter is enabled by the INTi input filter select bit, the INTi input low width is (1/digital filter clock frequency × 3) or the minimum value of the standard, whichever is greater.

Figure 4.15 Timing for External Interrupt INTi Input and Key Input Interrupt Kli When Vcc = 2.2 V

Package Dimensions

Diagrams showing the latest package dimensions and mounting information are available in the "Packages" section of the Renesas Electronics website.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infingement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or
- technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

Standard: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

High Quality: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for which it is not intended. Renesas Electronics being it incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by vou.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES

Refer to "http://www.renesas.com/" for the latest and detailed information

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 950-50-2554, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-9898-5441, Fax: +1-905-898-3220 Renesas Electronics Europe Limited Dukes Meadow, Millozard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1528-585-100, Fax: +444-1528-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Disseldorf, Germany Tel: +49-211-65030, Fax: +444-1128-585-900 Renesas Electronics Furope GmbH Arcadiastrasse 10, 40472 Disseldorf, Germany Tel: +49-211-65030, Fax: +449-11-6503-1327 Renesas Electronics (Shangha) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-21-557-1818, Fax: +862-10-8235-7679 Renesas Electronics (Shangha) Co., Ltd. Unit 204, 205, AZIA Center, No.1233 Luijazui Ring Rd., Pudong District, Shanghai 200120, China Tel: +862-7877-1818, Fax: +862-20887-7858 Renesas Electronics Hong Kong Limited Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2817-5810, Fax: +852-2866-90229044 Renesas Electronics Simagnore Pte. Ltd. 1 harbourfront Avenue, 470-10, keppel Bay Tower, Singapore 098632 Tel: +65-213-0220, Fax: +652-6785-9807 Renesas Electronics Singapore Pte. Ltd. 1 harbourfront Avenue, 470-10, keppel Bay Tower, Singapore 098632 Tel: +65-213-0220, Fax: +65-6278-9001 Renesas Electronics Singapore Pte. Ltd. 1 harbourfront Avenue, 470-10, keppel Bay Tower, Singapore 098632 Tel: +65-213-0220, Fax: +65-6278-901 Renesas Electronics Singapore Pte. Ltd. 1 harbourfront Avenue, 470-10, keppel Bay Tower, Singapore 098632 Tel: +65-2375-9300, Fax: +65-6278-901 Renesas Electronics Singapore Pte. Ltd. 1 harbourfront Avenue, 470-10, keppel Bay Tower, Singapore 098632 Tel: +60-3755-9390, Fax: +65-6278-901 Renesas Electronics Korea Co., Ltd. 1 F., Samik Lavied or Bldg., 720-2 Yeoksam-Dong,