

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	17
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f2m122adsp-w4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1.3 Specifications

Tables 1.3 and 1.4 outline the Specifications.

Item	Function	Description
CPU	Central processing	R8C CPU core
	unit	Number of fundamental instructions: 89
		Minimum instruction execution time:
		50 ns (f(XIN) = 20 MHz, VCC = 2.7 V to 5.5 V)
		200 ns (f(XIN) = 5 MHz, VCC = 1.8 V to 5.5 V)
		• Multiplier: 16 bits \times 16 bits \rightarrow 32 bits
		• Multiply-accumulate instruction: 16 bits \times 16 bits $+$ 32 bits \rightarrow 32 bits
		Operating mode: Single-chip mode (address space: 1 Mbyte)
Memory	ROM, RAM,	See Table 1.5 Product List.
wennory	data flash	
Reset source		Hardware reset by RESET
		Power-on reset
		Watchdog timer reset
		Software reset
		Reset by voltage detection 0
Voltaga	Voltage detection	
Voltage	Voltage detection	Voltage detection with two check points: Voltage detection 0, voltage detection 1 (detection levels selectable)
detection	circuit	
Watchdog tir	mer	• 14 bits × 1 (with prescaler)
		Reset start function selectable
		Count source protection function selectable
		Periodic timer function selectable
Clock	Clock generation	3 circuits: XIN clock oscillation circuit,
	circuits	high-speed on-chip oscillator (with frequency adjustment function),
		low-speed on-chip oscillator
		Oscillation stop detection: XIN clock oscillation stop detection function
		Clock frequency divider circuit integrated
Power control	ol	Standard operating mode
		Wait mode (CPU stopped, peripheral functions in operation)
		 Stop mode (CPU and peripheral functions stopped)
Interrupts		Number of interrupt vectors: 69
·		• External interrupt inputs: 8 (INT × 4, key input × 4)
		Priority levels: 2
I/O ports	Programmable I/O	CMOS I/O: 17 (pull-up resistor selectable)
	ports	High-current drive ports: 8
Timer	Timer RJ2	16 bits x 1
		Timer mode, pulse output mode (output level inverted every period),
		event counter mode, pulse width measurement mode, pulse period
		measurement mode
	Timer RB2	8 bits x 1 (with 8-bit prescaler) or 16 bits x 1 (selectable)
		Timer mode, programmable waveform generation mode (PWM output),
		programmable one-shot generation mode, programmable wait one-shot
		generation mode
	Timer RC	16 bits × 1 (with 4 capture/compare registers)
		Timer mode (output compare function, input capture function),
		PWM mode (3 outputs), PWM2 mode (1 PWM output)
0 a mi a l		
Serial	UART0	Clock synchronous serial I/O. Also used for asynchronous serial I/O.
interface		
A/D converte	er	Resolution: 10 bits × 6 channels
		Sample and hold function, sweep mode
Comparator	B	2 circuits

 Table 1.3
 Specifications (1)

1.4 **Pin Assignment**

Figures 1.3 and 1.4 show Pin Assignment (Top View). Table 1.6 lists the Pin Name Information by Pin Number.

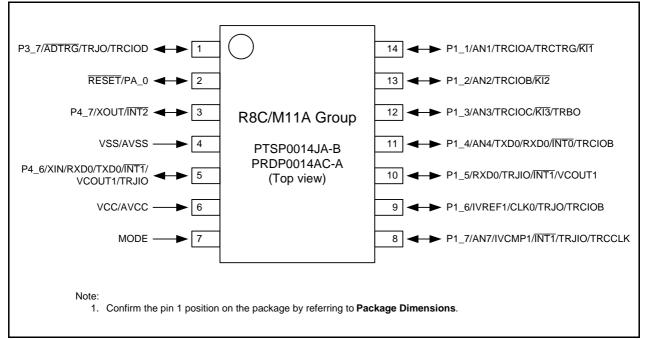
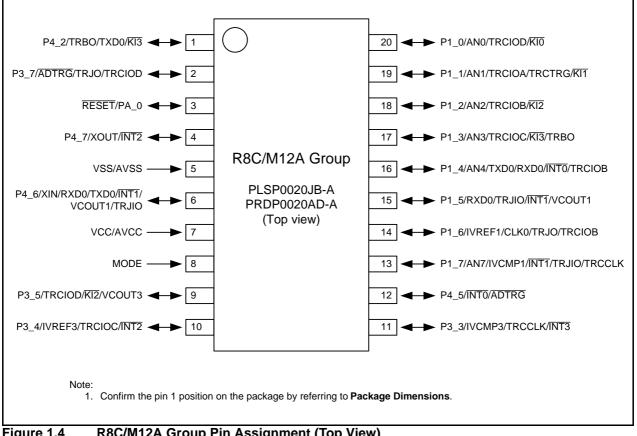



Figure 1.3 R8C/M11A Group Pin Assignment (Top View)

Pin N	umber				I/O Pins for	Peripheral Fur	nctions
R8C/M11A Group	R8C/M12A Group	Control Pin	Port	Interrupt	Timer	Serial Interface	A/D Converter, Comparator B
	1		P4_2	KI3	TRBO	TXD0	
1	2		P3_7		TRJO/TRCIOD		ADTRG
2	3	RESET	PA_0				
3	4	XOUT	P4_7	INT2			
4	5	VSS/AVSS					
5	6	XIN	P4_6	INT1	TRJIO	RXD0/TXD0	VCOUT1
6	7	VCC/AVCC					
7	8	MODE					
	9		P3_5	KI2	TRCIOD		VCOUT3
	10		P3_4	INT2	TRCIOC		IVREF3
	11		P3_3	INT3	TRCCLK		IVCMP3
	12		P4_5	INT0			ADTRG
8	13		P1_7	INT1	TRJIO/TRCCLK		AN7/IVCMP1
9	14		P1_6		TRJO/TRCIOB	CLK0	IVREF1
10	15		P1_5	INT1	TRJIO	RXD0	VCOUT1
11	16		P1_4	INT0	TRCIOB	RXD0/TXD0	AN4
12	17		P1_3	KI3	TRBO/TRCIOC		AN3
13	18		P1_2	KI2	TRCIOB		AN2
14	19		P1_1	KI1	TRCIOA/TRCTRG		AN1
	20		P1_0	KI0	TRCIOD		AN0

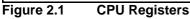
 Table 1.6
 Pin Name Information by Pin Number

1.5 Pin Functions

Table 1.7 lists the Pin Functions.

Item	Pin Name	I/O	Description
Power supply input	VCC, VSS	_	Apply 1.8 V through 5.5 V to the VCC pin. Apply 0 V to the VSS pin.
Analog power supply input	AVCC, AVSS		Power supply input for the A/D converter. Connect a capacitor between pins AVCC and AVSS.
Reset input	RESET	I	Applying a low level to this pin resets the MCU.
MODE	MODE		Connect this pin to the VCC pin via a resistor.
XIN clock input	XIN	_	I/O for the XIN clock generation circuit.
XIN clock output	XOUT	0	Connect a ceramic resonator or a crystal oscillator between pins XIN and XOUT. ⁽¹⁾ To use an external clock, input it to the XIN pin. P4_7 can be used as an I/O port at this time.
INT interrupt input	INT0 to INT3		INT interrupt input.
Key input interrupt	KI0 to KI3	I	Key input interrupt input.
I/O ports	P1_0 to P1_7, P3_0 to P3_5, P3_7, P4_2, P4_5 to P4_7, PA_0	I/O	CMOS I/O ports. Each port has an I/O select direction register, enabling switching input and output for each port. For input ports other than PA_0, the presence or absence of a pull-up resistor can be selected by a program. P1_2 to P1_5, P3_3 to P3_5, and P3_7 can be used as LED drive ports.
Timer RJ2	TRJIO	I/O	Timer RJ2 I/O.
	TRJO	0	Timer RJ2 output.
Timer RB2	TRBO	0	Timer RB2 output.
Timer RC	TRCCLK	Ι	External clock input.
	TRCTRG	Ι	External trigger input.
	TRCIOA, TRCIOB, TRCIOC, TRCIOD	I/O	Timer RC I/O.
Serial interface	CLK0	I/O	Transfer clock I/O.
	RXD0	I	Serial data input.
	TXD0	0	Serial data output.
A/D converter	AN0 to AN4, AN7		Analog input for the A/D converter.
	ADTRG	-	External trigger input for the A/D converter.
Comparator B	IVCMP1, IVCMP3	Ι	Analog voltage input for comparator B.
	IVREF1, IVREF3		Reference voltage input for comparator B.
	VCOUT1, VCOUT3	0	Comparison result output for comparator B.

Note:


1. Contact the oscillator manufacturer for oscillation characteristics.

2. Central Processing Unit (CPU)

Figure 2.1 shows the 13 CPU Registers. The registers, R0, R1, R2, R3, A0, A1, and FB form a single register bank. The CPU has two register banks.

2.1 Data Registers (R0, R1, R2, and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 through R3. R0 can be split into high-order (R0H) and low-order (R0L) registers to be used separately as 8-bit data registers. The same applies to R1H and R1L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). In the same way as with R0 and R2, R3 and R1 can be used as a 32-bit data register (R3R1).

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer, arithmetic, and logic operations. A1 functions in the same manner as A0. A1 can be combined with A0 and used as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register used for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the start address of a relocatable interrupt vector table.

2.5 Program Counter (PC)

PC is a 20-bit register that indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP and ISP, are each 16 bits wide. The U flag of the FLG register is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register used for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register that indicates the CPU state.

2.8.1 Carry Flag (C)

The C flag retains carry, borrow, or shift-out bits that have been generated in the arithmetic and logic unit.

2.8.2 Debug Flag (D)

The D flag is for debugging only. It must only be set to 0.

2.8.3 Zero Flag (Z)

The Z flag is set to 1 when an arithmetic operation results in 0. Otherwise it is set to 0.

2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation results in a negative value. Otherwise it is set to 0.

2.8.5 Register Bank Select Flag (B)

Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is 1.

2.8.6 Overflow Flag (O)

The O flag is set to 1 when an operation results in an overflow. Otherwise it is set to 0.

2.8.7 Interrupt Enable Flag (I)

The I flag enables maskable interrupts. Interrupts are disabled when the I flag is 0, and are enabled when the I flag is 1. The I flag is set to 0 when an interrupt request is acknowledged.

2.8.8 Stack Pointer Select Flag (U)

ISP is selected when the U flag is 0. USP is selected when the U flag is 1. The U flag is set to 0 when a hardware interrupt request is acknowledged or the INT instruction for a software interrupt numbered from 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

IPL is 3 bits wide and assigns eight processor interrupt priority levels from 0 to 7. If a requested interrupt has higher priority than IPL, the interrupt is enabled. If IPL is set to levels from 2 to 7, all maskable interrupt requests are disabled.

2.8.10 Reserved Bit

The write value must be 0. The read value is undefined.

3.2 Special Function Registers (SFRs)

An SFR (special function register) is a control register for a peripheral function. Tables 3.1 to 3.8 list the SFR Information. Table 3.9 lists the ID Code Area and Option Function Select Area.

Table 3.1	SFR Information (1) (1)		
Address	Register Name	Symbol	After Reset
00000h			
00001h			
00002h			
00003h			
00004h			
00005h			
00006h			
00007h			
00008h			
00009h			
0000Ah			
0000Bh			
0000Ch			
0000Dh			
0000Eh			
0000Fh			
00010h	Processor Mode Register 0	PM0	00h
00011h			
00012h	Module Standby Control Register	MSTCR	00h ⁽²⁾
			01110111b ⁽³⁾
00013h	Protect Register	PRCR	00h
00014h			
00015h			
00016h	Hardware Reset Protect Register	HRPR	00h
00017h			
00018h			
00019h			
0001Ah			
0001Bh			
0001Ch			
0001Dh			
0001Eh			
0001Fh			
00020h	External Clock Control Register	EXCKCR	00h
00021h	High-Speed/Low-Speed On-Chip Oscillator Control Register	OCOCR	00h
00022h	System Clock f Control Register	SCKCR	00h
00023h	System Clock f Select Register	PHISEL	00h
00024h	Clock Stop Control Register	CKSTPR	00h
00025h	Clock Control Register When Returning from Modes	CKRSCR	00h
00026h	Oscillation Stop Detection Register	BAKCR	00h
00027h			
00028h			
00029h			
0002Ah			
0002Bh			
0002Ch			
0002Dh			
0002Eh			
0002Fh			
00030h	Watchdog Timer Function Register	RISR	1000000b ⁽⁴⁾
			00h ⁽⁵⁾
00031h	Watchdog Timer Reset Register	WDTR	XXh
00032h	Watchdog Timer Start Register	WDTS	XXh
00033h	Watchdog Timer Control Register	WDTC	01XXXXXb
00034h	Count Source Protection Mode Register	CSPR	1000000b (4)
			00h (5)
00035h	Periodic Timer Interrupt Control Register	WDTIR	00h
00036h			
00037h			
00038h	External Input Enable Register	INTEN	00h
00039h	······································		
Notes:		l.	1

Table 3.1SFR Information (1) (1)

Notes:

1. The blank areas are reserved. No access is allowed.

2. The MSTINI bit in the OFS2 register is 0.

3. The MSTINI bit in the OFS2 register is 1.

4. The CSPROINI bit in the OFS register is 0.

5. The CSPROINI bit in the OFS register is 1.

0 male al	Dama		O a sultiture	S	Standard		11.2
Symbol	Paran	neter	Condition	Min.	Тур.	Max.	Unit
Vcc/AVcc	Power supply voltage			1.8	—	5.5	V
Vss/AVss	Power supply voltage			_	0	—	V
Vih	Input high voltage	Other than CMOS input		0.8 Vcc	_	Vcc	V
		CMOS input	$4.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0.65 Vcc	_	Vcc	V
			$2.7~V \leq Vcc < 4.0~V$	0.7 Vcc	_	Vcc	V
			$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	0.8 Vcc	_	Vcc	V
VIL	Input low voltage	Other than CMOS input		0	_	0.2 Vcc	V
		CMOS input	$4.0~V \leq Vcc \leq 5.5~V$	0	_	0.4 Vcc	V
			$2.7~V \leq Vcc < 4.0~V$	0		0.3 Vcc	V
			$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	0	_	0.2 Vcc	V
IOH(sum)	Peak sum output high current	Sum of all pins IOH(peak)		—		-160	mA
IOH(sum)	Average sum output high current	Sum of all pins IOH(avg)		—	_	-80	mA
IOH(peak)	Peak output high current		When drive capacity is low	_	_	-10	mA
			When drive capacity is high (5)	_	_	-40	mA
IOH(avg)	Average output high curren	t	When drive capacity is low	_	_	-5	mA
			When drive capacity is high (5)	_	_	-20	mA
IOL(sum)	Peak sum output low current	Sum of all pins IOL(peak)		_	—	160	mA
IOL(sum)	Average sum output low current	Sum of all pins IOL(avg)		—	—	80	mA
IOL(peak)	Peak output low current		When drive capacity is low	_	_	10	mA
			When drive capacity is high (5)	_	_	40	mA
IOL(avg)	Average output low current		When drive capacity is low	_	_	5	mA
			When drive capacity is high (5)	_	_	20	mA
f(XIN)	XIN oscillation frequency		$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	2	_	20	MHz
			$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	2	_	5	MHz
	XIN clock input oscillation f	requency	$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0	_	20	MHz
			$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	0	_	5	MHz
fHOCO	High-speed on-chip oscillat	or oscillation frequency (3)	$1.8 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	—	20	—	MHz
fLOCO	Low-speed on-chip oscillate		1.8 V ≤ Vcc ≤ 5.5 V	_	125	_	kHz
_	System clock frequency	. ,	2.7 V ≤ Vcc ≤ 5.5 V		_	20	MHz
			1.8 V ≤ Vcc < 2.7 V		_	5	MHz
fs	CPU clock frequency		$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0	—	20	MHz
			$1.8 V \le Vcc < 2.7 V$	0		5	MHz

Table 4.2 Recommended Operating Conditions

1. Vcc = 1.8 V to 5.5 V and Topr = -20 °C to 85 °C (N version)/-40 °C to 85 °C (D version), unless otherwise specified.

2. The average output current indicates the average value of current measured during 100 ms.

3. For details, see Table 4.10 High-Speed On-Chip Oscillator Circuit Electrical Characteristics.

4. For details, see Table 4.11 Low-Speed On-Chip Oscillator Circuit Electrical Characteristics.

5. The pins with high drive capacity are P1_2, P1_3, P1_4, P1_5, P3_3, P3_4, P3_5, and P3_7.

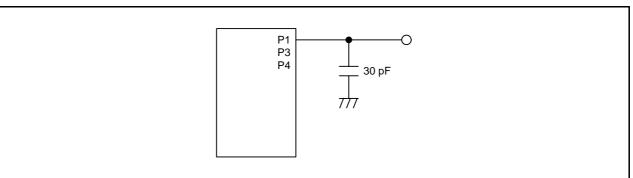


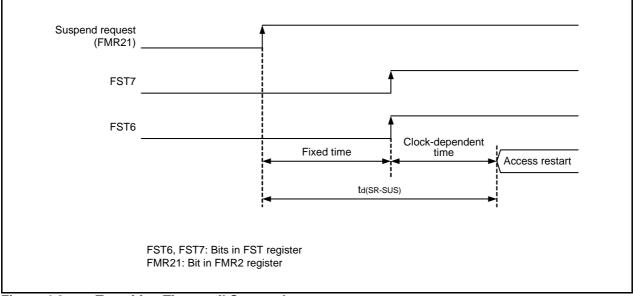
Figure 4.1 Ports P1, P3, and P4 Timing Measurement Circuit

Symbol	Parameter	Condition		Unit		
Symbol	Falameter	Condition	Min.	Тур.	Max.	Offic
_	Program/erase endurance (2)		10,000 (3)	—	—	times
_	Byte programming time		_	150	—	μS
_	Block erase time		—	0.05	1	s
td(SR-SUS)	Time delay from suspend request until suspend		—		0.25 + CPU clock × 3 cycles	ms
_	Time from suspend until erase restart		_	—	30 + CPU clock × 1 cycle	μS
td(CMDRST- READY)	Time from when command is forcibly stopped until reading is enabled		—		30 + CPU clock × 1 cycle	μS
_	Program/erase voltage		1.8	_	5.5	V
_	Read voltage		1.8	_	5.5	V
—	Program/erase temperature		-20 (N version)		85	°C
			-40 (D version)	_	85	°C
	Data hold time (7)	Ambient temperature = 85 °C	10	—	—	years

Table 4.6 Flash Memory (Blocks A and B of Data Flash) Electrical Characteristics

Notes:

1. Vcc = 2.7 V to 5.5 V and Topr = -20 °C to 85 °C (N version)/-40 °C to 85 °C (D version), unless otherwise specified.


2. Definition of program/erase endurance

The number of program/erase cycles is defined on a per-block basis.

If the number of cycles is 10,000, each block can be erased 10,000 times.

For example, if 1,024 cycles of 1-byte-write are performed to different addresses in 1 Kbyte of block A, and then the block is erased, the number of cycles is counted as one. Note, however, that the same address must not be programmed more than once before completion of an erase (overwriting prohibited).

- 3. This indicates the number of times up to which all electrical characteristics can be guaranteed after the last programming/ erase operation. Operation is guaranteed for any number of operations in the range of 1 to the specified minimum (Min).
- 4. In a system that executes multiple program operations, the actual erase count can be reduced by shifting the write addresses in sequence and programming so that as much of the flash memory as possible is used before performing an erase operation. For example, when programming in 16-byte units, the effective number of rewrites can be minimized by programming up to 128 units before erasing them all in one operation. It is also advisable to retain data on the number of erase operations for each block and establish a limit for the number of erase operations performed.
- 5. If an error occurs during a block erase, execute a clear status register command and then a block erase command at least three times until the erase error does not occur.
- 6. For information on the program/erase failure rate, contact a Renesas technical support representative.
- 7. The data hold time includes the time that the power supply is off and the time the clock is not supplied.

Symbol	Parameter	Condition		Unit		
Symbol	Farameter	Condition	Min.	Тур.	Max.	Unit
Vdet0	Voltage detection level Vdet0_0 ⁽²⁾		1.80	1.90	2.05	V
	Voltage detection level Vdet0_1 ⁽²⁾		2.15	2.35	2.50	V
	Voltage detection level Vdet0_2 ⁽²⁾		2.70	2.85	3.05	V
	Voltage detection level Vdet0_3 ⁽²⁾		3.55	3.80	4.05	V
	Voltage detection 0 circuit response time ⁽³⁾	When Vcc decreases from 5 V to (Vdet0_0 - 0.1) V	_	30	_	μS
—	Self power consumption in voltage detection circuit	VC0E = 1, Vcc = 5.0 V		1.5		μA
td(E-A)	Wait time until voltage detection circuit operation starts ⁽⁴⁾		_	—	100	μS

 Table 4.7
 Voltage Detection 0 Circuit Electrical Characteristics

1. The measurement condition is Vcc = 1.8 V to 5.5 V and Topr = -20 °C to 85 °C (N version)/-40 °C to 85 °C (D version).

2. Select the voltage detection level with bits VDSEL0 and VDSEL1 in the OFS register.

3. The response time is from when the voltage passes Vdet0 until the voltage monitor 0 reset is generated.

4. The wait time is necessary for the voltage detection circuit to operate when the VC0E bit in the VCA2 register is set to 0 and then 1.

Cumbal	Parameter	Condition		Standard		Unit
Symbol	i arameter	Condition	Min.	Тур.	Max.	Unit
Vdet1	Voltage detection level Vdet1_1 ⁽²⁾	When Vcc decreases	2.15	2.35	2.55	V
	Voltage detection level Vdet1_3 ⁽²⁾	When Vcc decreases	2.45	2.65	2.85	V
	Voltage detection level Vdet1_5 ⁽²⁾	When Vcc decreases	2.75	2.95	3.15	V
	Voltage detection level Vdet1_7 ⁽²⁾	When Vcc decreases	3.00	3.25	3.55	V
	Voltage detection level Vdet1_9 ⁽²⁾	When Vcc decreases	3.30	3.55	3.85	V
	Voltage detection level Vdet1_B (2)	When Vcc decreases	3.60	3.85	4.15	V
	Voltage detection level Vdet1_D (2)	When Vcc decreases	3.90	4.15	4.45	V
	Voltage detection level Vdet1_F (2)	When Vcc decreases	4.20	4.45	4.75	V
_	Hysteresis width at the rising of Vcc in	Vdet1_1 to Vdet1_5 selected	—	0.07	_	V
	voltage detection 1 circuit	Vdet1_7 to Vdet1_F selected	—	0.10	_	V
_	Voltage detection 1 circuit response time ⁽³⁾	When Vcc decreases from 5 V to (Vdet1_0 - 0.1) V	—	60	150	μS
—	Self power consumption in voltage detection circuit	VC1E = 1, Vcc = 5.0 V	—	1.7	_	μΑ
td(E-A)	Wait time until voltage detection circuit operation starts ⁽⁴⁾		—	—	100	μS

Notes:

1. The measurement condition is Vcc = 1.8 V to 5.5 V and Topr = -20 °C to 85 °C (N version)/-40 °C to 85 °C (D version).

2. Select the voltage detection level with bits VD1S1 to VD1S3 in the VD1LS register.

3. The response time is from when the voltage passes Vdet1 until the voltage monitor 1 interrupt request is generated.

4. The wait time is necessary for the voltage detection circuit to operate when the VC1E bit in the VCA2 register is set to 0 and then 1.

Table 4.9 Power-On Reset Circuit ⁽²⁾

Symbol Parameter	Parameter	Condition -		Unit		
Symbol	Falanielei		Min.	Тур.	Max.	Unit
trth	External power Vcc rise gradient		0	_	50,000	mV/msec

1. The measurement condition is Topr = -20 °C to 85 °C (N version)/-40 °C to 85 °C (D version), unless otherwise specified. 2. To use the power-on reset function, enable the voltage monitor 0 reset by setting the LVDAS bit in the OFS register to 0.

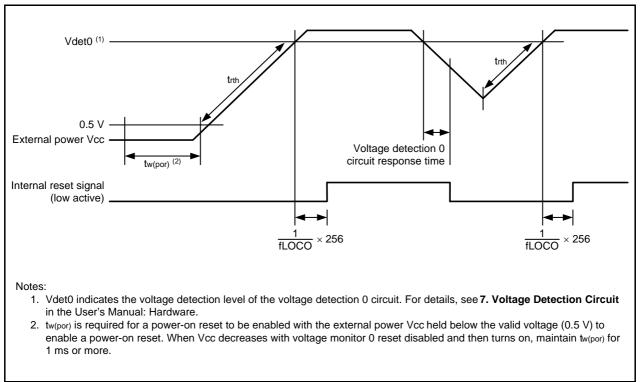


Figure 4.3 Power-On Reset Circuit Electrical Characteristics

Symbol	Parameter		Condition		St	tandard		Unit
Symbol		arameter	Condi	lion	Min.	Тур.	Max.	Onit
Vон	Output high voltage	P1_2, P1_3, P1_4, P1_5, P3_3, P3_4, P3_5, P3_7 ⁽²⁾	When drive capacity is high	Іон = -20 mA	Vcc - 2.0	_	Vcc	V
			When drive capacity is low	Іон = -5 mA	Vcc - 2.0	_	Vcc	V
		P1_0, P1_1, P1_6, P1_7, P4_2, P4_5, P4_6, P4_7, PA_0		юн = -5 mA	Vcc - 2.0	_	Vcc	V
Vol	Output low voltage	P1_2, P1_3, P1_4, P1_5, P3_3, P3_4, P3_5, P3_7 ⁽²⁾	When drive capacity is high	IoL = 20 mA	—	_	2.0	V
			When drive capacity is low	IOL = 5 mA	—	_	2.0	V
		P1_0, P1_1, P1_6, P1_7, P4_2, P4_5, P4_6, P4_7, PA_0		lo∟ = 5 mA	—	_	2.0	V
VT+-VT-	Hysteresis	INT0, INT1, INT2, INT3, KI0, KI1, KI2, KI3, TRJIO, TRCIOA, TRCIOB, TRCIOC, TRCIOD, RXD0, CLK0	Vcc = 5 V		0.1	1.2	_	V
		RESET	Vcc = 5 V		0.1	1.2	—	V
Ін	Input high current		VI = 5 V, Vcc = 5	5.0 V	—	_	5.0	μA
lı∟	Input low current		VI = 0 V, $Vcc = 5$	5.0 V	—	—	-5.0	μΑ
Rpullup	Pull-up resistance		VI = 0 V, $Vcc = 5$	5.0 V	25	50	100	kΩ
Rfxin	Feedback resistance XIN				—	2.2	—	MΩ
Vram	RAM hold voltage		In stop mode		1.8	—	_	V

Table 4.13 DC Characteristics (1) [4.0 V \leq Vcc \leq 5.5 V]

1. 4.0 V \leq Vcc \leq 5.5 V and Topr = -20 °C to 85 °C (N version)/-40 °C to 85 °C (D version), f(XIN) = 20 MHz, unless otherwise specified.

2. High drive capacity can also be used while the peripheral output function is used.

Table 4.17Serial Interface

Symbol	Parameter		Standard		
			Max.	Unit	
tc(CK)	CLK0 input cycle time	200	—	ns	
tw(CKH)	CLK0 input high width	100	—	ns	
tW(CKL)	CLK0 input low width	100	—	ns	
td(C-Q)	TXD0 output delay time		50	ns	
th(C-Q)	TXD0 hold time	0	—	ns	
tsu(D-C)	RXD0 input setup time	50	—	ns	
th(C-D)	RXD0 input hold time	90	—	ns	

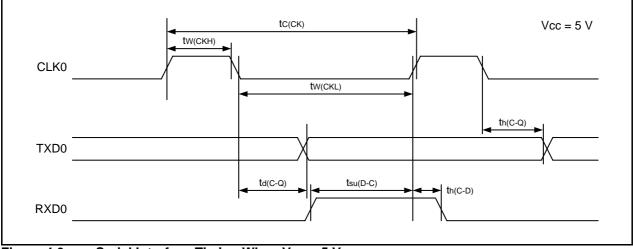


Figure 4.6 Serial Interface Timing When Vcc = 5 V

Table 4.18 External Interrupt INTi Input, Key Input Interrupt Kli (i = 0 to 3)

Symbol	Parameter		Standard		
Symbol			Max.	Unit	
tw(INH)	INTi input high width, Kli input high width	250 (1)	_	ns	
tw(INL)	INTi input low width, Kli input low width	250 (2)		ns	

Notes:

1. When the digital filter is enabled by the INTi input filter select bit, the INTi input high width is (1/digital filter clock frequency × 3) or the minimum value of the standard, whichever is greater.

2. When the digital filter is enabled by the INTi input filter select bit, the INTi input low width is (1/digital filter clock frequency × 3) or the minimum value of the standard, whichever is greater.

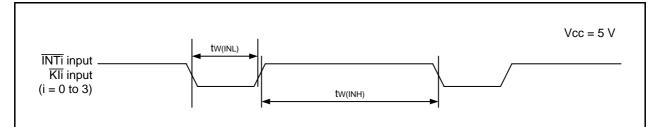
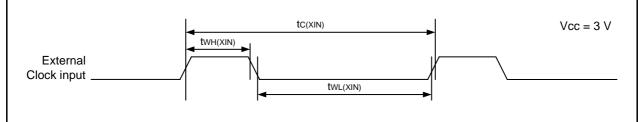



Figure 4.7 Timing for External Interrupt INTi Input and Key Input Interrupt Kli When Vcc = 5 V

Timing Requirements (Vcc = 3 V, Vss = 0 V at Topr = 25 °C, unless otherwise specified)

Table 4.21 External Clock Input (XIN)

Symbol	Parameter		Standard		
			Max.	Unit	
tc(XIN)	XIN input cycle time	50	—	ns	
twh(xin)	XIN input high width	24	—	ns	
twl(XIN)	XIN input low width	24	—	ns	

Figure 4.8 External Clock Input Timing When Vcc = 3 V

Table 4.22 TRJIO Input

Symbol	Parameter		Standard		
			Max.	Unit	
tc(TRJIO)	TRJIO input cycle time	300	—	ns	
twh(trjio)	TRJIO input high width 120 —				
twl(trjio)	TRJIO input low width	120	-	ns	

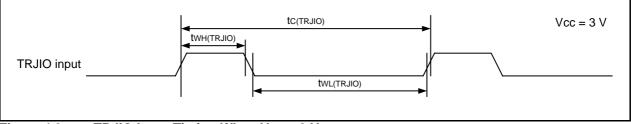


Figure 4.9 TRJIO Input Timing When Vcc = 3 V

Table 4.23Serial Interface

Symbol	Parameter		Standard		
			Max.	Unit	
tc(CK)	CLK0 input cycle time	300	—	ns	
tw(CKH)	CLK0 input high width	150	—	ns	
tW(CKL)	CLK0 input low width	150	—	ns	
td(C-Q)	TXD0 output delay time	—	80	ns	
th(C-Q)	TXD0 hold time	0	—	ns	
tsu(D-C)	RXD0 input setup time	70	—	ns	
th(C-D)	RXD0 input hold time	90	—	ns	

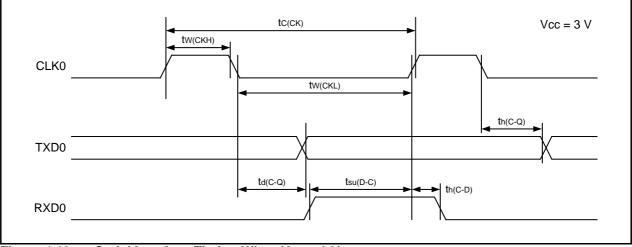


Figure 4.10 Serial Interface Timing When Vcc = 3 V

Table 4.24 External Interrupt INTi Input, Key Input Interrupt Kli (i = 0 to 3)

Svmbol	Parameter		Standard		
Symbol			Max.	Unit	
tw(INH)	INTi input high width, Kli input high width	380 (1)	_	ns	
tw(INL)	INTi input low width, Kli input low width	380 (2)		ns	

Notes:

1. When the digital filter is enabled by the INTi input filter select bit, the INTi input high width is (1/digital filter clock frequency × 3) or the minimum value of the standard, whichever is greater.

2. When the digital filter is enabled by the INTi input filter select bit, the INTi input low width is (1/digital filter clock frequency × 3) or the minimum value of the standard, whichever is greater.

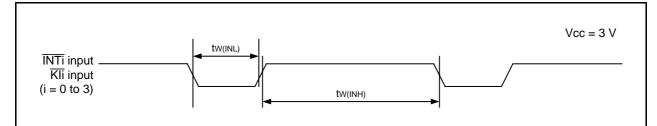
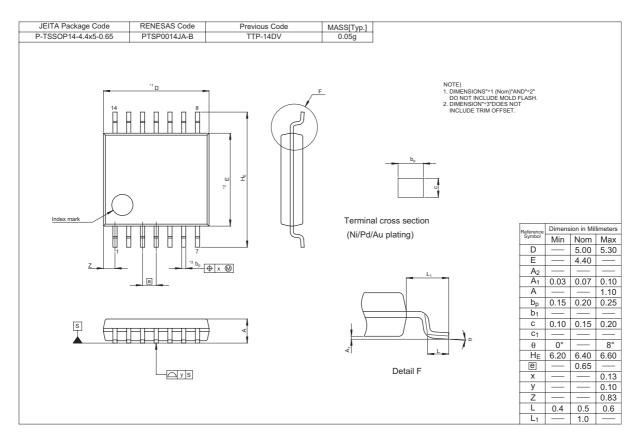
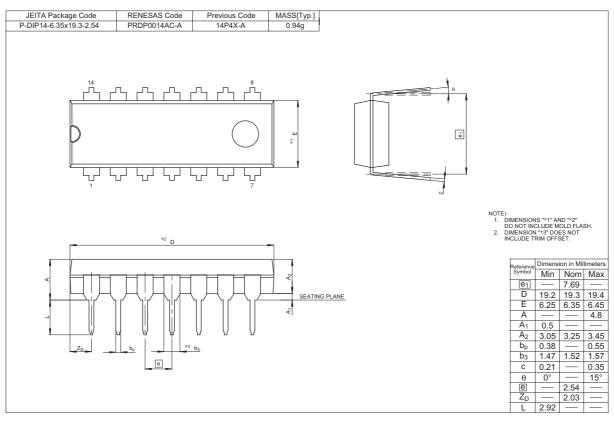


Figure 4.11 Timing for External Interrupt INTi Input and Key Input Interrupt Kli When Vcc = 3 V

Symbol	Parameter		Condition		St	tandard		Unit
Symbol		arameter	Cond	lion	Min.	Тур.	Max.	Onit
Vон	Output high voltage	P1_2, P1_3, P1_4, P1_5, P3_3, P3_4, P3_5, P3_7 ⁽²⁾	When drive capacity is high	Іон = -2 mA	Vcc - 0.5	—	Vcc	V
			When drive capacity is low	Iон = -1 mA	Vcc - 0.5	_	Vcc	V
		P1_0, P1_1, P1_6, P1_7, P4_2, P4_5, P4_6, P4_7, PA_0		Іон = -1 mA	Vcc - 0.5	_	Vcc	V
Vol	Output low voltage	P1_2, P1_3, P1_4, P1_5, P3_3, P3_4, P3_5, P3_7 ⁽²⁾	When drive capacity is high	IOL = 2 mA	—	_	0.5	V
			When drive capacity is low	IOL = 1 mA	—	_	0.5	V
		P1_0, P1_1, P1_6, P1_7, P4_2, P4_5, P4_6, P4_7, PA_0		IoL = 1 mA	—	_	0.5	V
VT+-VT-	Hysteresis	INT0, INT1, INT2, INT3, Vcc = 2.2 V KI0, KI1, KI2, KI3, TRJIO, TRCIOA, TRCIOB, TRCIOC, TRCIOD, TRXD0, CLK0 RXD0, CLK0 RXD0, CLK0			0.05	0.20	_	V
		RESET	Vcc = 2.2 V		0.05	0.20		V
Ін	Input high current		VI = 2.2 V, Vcc =	= 2.2 V	—	_	4.0	μA
lı∟	Input low current		VI = 0 V, $Vcc = 2$	2.2 V		—	-4.0	μA
Rpullup	Pull-up resistance		VI = 0 V, $Vcc = 2$	2.2 V	70	140	300	kΩ
Rfxin	Feedback resistance XIN					2.2	—	MΩ
Vram	RAM hold voltage		In stop mode		1.8	—	_	V

Table 4.25 DC Characteristics (5) [1.8 V \leq Vcc < 2.7 V]


1. 1.8 V \leq Vcc < 2.7 V and Topr = -20 °C to 85 °C (N version)/-40 °C to 85 °C (D version), f(XIN) = 5 MHz, unless otherwise specified.


2. High drive capacity can also be used while the peripheral output function is used.

Package Dimensions

Diagrams showing the latest package dimensions and mounting information are available in the "Packages" section of the Renesas Electronics website.

REVISION HISTORY

R8C/M11A Group, R8C/M12A Group Datasheet

Davi	Data		Description
Rev.	Date	Page	Summary
0.01	Jan 14, 2010	_	First Edition issued
0.10	Aug 25, 2010		Document No. "REJ03B0308" → "R01DS0010EJ"
		2, 3	1.1.2 Differences between Groups added
		4	Table 1.3 "Reset by voltage detection 0" deleted
		5	Table 1.4 " ROM: VCC = 2.7 V to 5.5 V" → " ROM: VCC = 1.8 V to 5.5 V", "1,000 times (program ROM)" → "10,000 times (program ROM)", Note 1 added
		6	Table 1.5 revised
		8	Figures 1.3 and 1.4 revised
		9	Table 1.6 revised
		11 to 43	2. Central Processing Unit (CPU), 3. Address Space, 4. Electrical Characteristics added
1.00	May 31, 2012	All pages	"Preliminary" and "Under development" deleted
		1	1.1 revised
		3	Table 1.2 revised
		4	Table 1.3 revised
		5	Table 1.4 Note 1 revised
		6	Table 1.5 revised
		10	Table 1.7 revised
		15	Table 3.1 revised
		18	Table 3.4 revised
		23	Table 3.9 Notes 1 and 2 revised
		26	Table 4.3 revised
		31	Table 4.10 and 4.11 revised, Note3 deleted
		45	Package added
2.00	May 31, 2012	4	"Under development" deleted
		9	Table 1.6 "Voltage detection circuit" deleted
		26	Table 4.3 revised

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 - In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do
 not access these addresses; the correct operation of LSI is not guaranteed if they are
 accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.