# E·XF Renesas Electronics America Inc - UPD78F9177AGB-8ES-A Datasheet



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

## Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Obsolete                                                                             |
|----------------------------|--------------------------------------------------------------------------------------|
| Core Processor             | -                                                                                    |
| Core Size                  | -                                                                                    |
| Speed                      | -                                                                                    |
| Connectivity               | -                                                                                    |
| Peripherals                | -                                                                                    |
| Number of I/O              | -                                                                                    |
| Program Memory Size        | ·                                                                                    |
| Program Memory Type        | -                                                                                    |
| EEPROM Size                | -                                                                                    |
| RAM Size                   | •                                                                                    |
| Voltage - Supply (Vcc/Vdd) | ·                                                                                    |
| Data Converters            |                                                                                      |
| Oscillator Type            | ·                                                                                    |
| Operating Temperature      | ·                                                                                    |
| Mounting Type              | ·                                                                                    |
| Package / Case             | ·                                                                                    |
| Supplier Device Package    |                                                                                      |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f9177agb-8es-a |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## Organization

The  $\mu$ PD789167, 789177, 789167Y, 789177Y Subseries manual is divided into two parts: this manual and the instruction manual (common to the 78K/0S Series).

| μPD789167, 789177, 789167Υ, |  |
|-----------------------------|--|
| 789177Y Subseries           |  |
| User's Manual               |  |
| (This manual)               |  |

- Pin functions
- Internal block functions
- Interrupts
- · Other internal peripheral functions
- Electrical specifications

#### How to Read This Manual

It is assumed that the readers of this manual have general knowledge of electric engineering, logic circuits, and microcontrollers.

- ◊ For users who use this document as the manual for the μPD789166(A), 789167(A), 789176(A), 789177(A), 789166Y(A), 789167Y(A), 789176Y(A), 789177Y(A), 789166(A1), 789167(A1), 789176(A1), 789177(A1), 789166(A2), 789167(A2), 789177(A2), 789177A(A), 789177AY(A), and 78F9177A(A1)
  - → The only differences between standard products and (A) products, (A1) products, and (A2) products are quality grades, power supply voltage, operating ambient temperature, minimum instruction execution time, and electrical specifications. (Refer to 1.10 Differences Between Standard Quality Grade Products and (A) Products, (A1) Products, and (A2) Products, and 2.10 Differences Between Standard Quality Grade Products and (A) Products, and (A2) Products.) For (A) products, (A1) products, and (A2) products, read the part numbers indicated in Chapters 3 to 22 in the following manner.

| <i>u</i> PD789166   | $\rightarrow$ | μPD789166(A), 789166(A1), 789166(A2) |
|---------------------|---------------|--------------------------------------|
| <i>u</i> PD789167   | $\rightarrow$ | μPD789167(A), 789167(A1), 789167(A2) |
| <i>u</i> PD789176   | $\rightarrow$ | μPD789176(A), 789176(A1), 789176(A2) |
| <i>u</i> PD789177   | $\rightarrow$ | µPD789177(A), 789177(A1), 789177(A2) |
| <i>u</i> PD789166Y  | $\rightarrow$ | μPD789166Y(A)                        |
| <i>u</i> PD789167Y  | $\rightarrow$ | μPD789167Y(A)                        |
| <i>u</i> PD789176Y  | $\rightarrow$ | μPD789176Y(A)                        |
| <i>u</i> PD789177Y  | $\rightarrow$ | μPD789177Y(A)                        |
| <i>u</i> PD78F9177A | $\rightarrow$ | μPD789177A(A), 78F9177A(A1)          |
| uPD78F9177AY        | $\rightarrow$ | μPD78F9177AY(A)                      |

- $\diamond$  To understand the overall functions of the  $\mu PD789167,$  789177, 789167Y, and 789177Y Subseries
  - $\rightarrow$  Read this manual in the order of the **CONTENTS**.
- One of the test of test
  - → The name of a bit whose number is enclosed with < > is reserved in the assembler and is defined as an sfr variable by the #pragma sfr directive in the C compiler.
- O To learn the detailed functions of a register whose register name is known
  - $\rightarrow$  See APPENDIX C REGISTER INDEX.

- CPU function
- Instruction set
- Instruction description

| СНАРТЕ | R 17   | INTERRUPT FUNCTIONS                                                                      | 293 |
|--------|--------|------------------------------------------------------------------------------------------|-----|
| 17.1   | Interr | upt Function Types                                                                       | 293 |
| 17.2   | Interr | upt Sources and Configuration                                                            | 293 |
| 17.3   | Interr | upt Function Control Registers                                                           | 296 |
| 17.4   | Interr | upt Processing Operation                                                                 | 301 |
|        | 17.4.1 | Non-maskable interrupt request acknowledgment operation                                  | 301 |
|        | 17.4.2 | Maskable interrupt request acknowledgment operation                                      | 303 |
|        | 17.4.3 | Multiple interrupt processing                                                            | 305 |
|        | 17.4.4 | Interrupt request hold                                                                   | 307 |
| СНАРТЕ | ER 18  | STANDBY FUNCTION                                                                         | 308 |
| 18.1   | Stand  | by Function and Configuration                                                            | 308 |
|        | 18.1.1 | Standby function                                                                         | 308 |
|        | 18.1.2 | Standby function control register                                                        | 309 |
| 18.2   | Opera  | ation of Standby Function                                                                | 310 |
|        | 18.2.1 | HALT mode                                                                                | 310 |
|        | 18.2.2 | STOP mode                                                                                | 313 |
| СНАРТЕ | R 19   | RESET FUNCTION                                                                           | 316 |
| СНАРТЕ | ER 20  | FLASH MEMORY VERSION                                                                     | 320 |
| 20.1   | Flash  | Memory Characteristics                                                                   | 321 |
|        | 20.1.1 | Programming environment                                                                  | 321 |
|        | 20.1.2 | Communication mode                                                                       | 322 |
|        | 20.1.3 | On-board pin processing                                                                  | 326 |
|        | 20.1.4 | Connection of adapter for flash writing                                                  | 329 |
| СНАРТЕ | R 21   | MASK OPTION                                                                              | 337 |
| СНАРТЕ | R 22   | INSTRUCTION SET                                                                          | 338 |
| 22.1   | Opera  | ation                                                                                    | 338 |
|        | 22.1.1 | Operand identifiers and description methods                                              | 338 |
|        | 22.1.2 | Description of "Operation" column                                                        | 339 |
|        | 22.1.3 | Description of "Flag" column                                                             | 339 |
| 22.2   | Opera  | ation List                                                                               | 340 |
| 22.3   | Instru | ctions Listed by Addressing Type                                                         | 345 |
| СНАРТЕ | ER 23  | ELECTRICAL SPECIFICATIONS (µPD78916x, 17x, 16xY, 17xY, 16x(A), 17x(A), 16xY(A), 17xY(A)) | 348 |
| СНАРТЕ | ER 24  | CHARACTERISTICS CURVES (µPD78916x, 17x, 16xY, 17xY, 16x(A), 17x(A), 16xY(A), 17xY(A))    | 367 |
|        |        |                                                                                          |     |

## 4.2 Description of Pin Functions

## 4.2.1 P00 to P05 (Port 0)

These pins constitute a 6-bit I/O port and can be set to input or output port mode in 1-bit units by using port mode register 0 (PM0). When these pins are used as an input port, an on-chip pull-up resistor can be used by setting pull-up resistor option register 0 (PU0).

## 4.2.2 P10, P11 (Port 1)

These pins constitute a 2-bit I/O port and can be set to input or output port mode in 1-bit units by using port mode register 1 (PM1). When these pins are used as an input port, an on-chip pull-up resistor can be used by setting pull-up resistor option register 0 (PU0).

## 4.2.3 P20 to P26 (Port 2)

These pins constitute a 7-bit I/O port. In addition, these pins provide a function to perform I/O to/from the timer and to I/O the data and clock of the serial interface.

Port 2 can be set to the following operation modes in 1-bit units.

## (1) Port mode

In port mode, P20 to P26 function as a 7-bit I/O port. Port 2 can be set to input or output mode in 1-bit units by using port mode register 2 (PM2). For P20 to P22, P25, and P26, whether to use on-chip pull-up resistors can be specified in 1-bit units by using pull-up resistor option register B2 (PUB2), regardless of the setting of port mode register 2 (PM2). P23 and P24 are N-ch open-drain I/O ports.

#### (2) Control mode

In this mode, P20 to P26 function as the timer I/O, the data I/O and the clock I/O of the serial interface.

#### (a) TI80

This is the external clock input pin for 8-bit timer/event counter 80.

#### (b) TO80

This is the timer output pin of 8-bit timer/event counter 80.

## (c) SI20, SO20

These are the serial data I/O pins of the serial interface.

## (d) SCK20

This is the serial clock I/O pin of the serial interface.

#### (e) SS20

This is the chip select input pin of the serial interface.

## (f) RxD20, TxD20

These are the serial data I/O pins of the asynchronous serial interface.

## 4.2.6 P60 to P67 (Port 6)

These pins constitute an 8-bit input-only port. They can function as A/D converter input pins as well as a generalpurpose input port.

## (1) Port mode

In port mode, P60 to P67 function as an 8-bit input-only port.

## (2) Control mode

In control mode, P60 to P67 function as A/D converter analog inputs (ANI0 to ANI7).

## 4.2.7 **RESET**

A low-level active system reset signal is input to this pin.

# 4.2.8 X1, X2

These pins are used to connect a crystal resonator for main system clock oscillation. To supply an external clock, input the clock to X1 and input the inverted signal to X2.

## 4.2.9 XT1, XT2

These pins are used to connect a crystal resonator for subsystem clock oscillation. To supply an external clock, input the clock to XT1 and input the inverted signal to XT2.

## 4.2.10 AVDD

Analog power supply pin of the A/D converter. Always use the same potential as that of the  $V_{DD0}$  pin even when the A/D converter is not used.

## 4.2.11 AVss

This is a ground potential pin of the A/D converter. Always use the same potential as that of the Vsso pin even when the A/D converter is not used.

### 4.2.12 AVREF

This is the A/D converter reference voltage input pin. When the A/D converter is not used, connect this pin to  $V_{DD0}$  or  $V_{SS0}$ .

## 4.2.13 VDD0, VDD1

VDD0 is a positive power supply pin for ports.

 $V_{\mbox{\scriptsize DD1}}$  is a positive power supply pin for other than ports.

## 4.2.14 Vsso, Vss1

V<sub>SS0</sub> is a ground potential pin for ports. V<sub>SS1</sub> is a ground potential pin for other than ports.

# 4.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The I/O circuit type of each pin and recommended connection of unused pins are shown in Table 4-1. For the I/O circuit configuration of each type, refer to **Figure 4-1**.

| Pin Name                          | I/O Circuit Type | I/O   | Recommended Connection of Unused Pins                        |
|-----------------------------------|------------------|-------|--------------------------------------------------------------|
| P00 to P05                        | 5-H              | I/O   | Input: Independently connect to VDD0, VDD1, VSS0, or VSS1    |
| P10, P11                          |                  |       | via a resistor.                                              |
| P20/SCK20/ASCK20                  | 8-C              |       | Output: Leave open.                                          |
| P21/SO20/TxD20                    |                  |       |                                                              |
| P22/SI20/RxD20                    |                  |       |                                                              |
| P23/SCL0                          | 13-X             |       | Input: Independently connect to VDD0 or VDD1 via a resistor. |
| P24/SDA0                          |                  |       | Output: Leave open.                                          |
| P25/TI80/SS20                     | 8-C              |       | Input: Independently connect to VDD0, VDD1, VSS0, or VSS1    |
| P26/TO80                          |                  |       | via a resistor.                                              |
|                                   |                  |       | Input: Independently connect to Voca or Voca via a resistor  |
| P31/INTP1/TO81                    |                  |       | Output: Leave open.                                          |
| P32/INTP2/TO90                    |                  |       |                                                              |
| P33/INTP3/T082/B7090              |                  |       |                                                              |
| P50 to P53 (mask BOM version)     | 13-11            |       | Input: Connect to Vssa or Vssa                               |
| P50 to P53 (flash memory version) | 10 0<br>13-T     |       | Output: Leave open.                                          |
|                                   | 9-0              | Innut | Connect directly to Vood Vood Vsea or Vest                   |
| XT1                               |                  | Input | Connect directly to Veed or Vest                             |
| XT2                               |                  | input |                                                              |
| BESET                             | 2                | Innut |                                                              |
| IC0 (mask BOM version)            |                  |       | Connect directly to Vssa or Vssa                             |
|                                   |                  |       |                                                              |
| Vpp (flash memory version)        |                  |       | Independently connect via a 10 kO null-down resistor, or     |
|                                   |                  |       | connect directly to Vsso or Vsst.                            |

Table 4-1. Types of I/O Circuits for Each Pin and Recommended Connection of Unused Pins



# Figure 5-2. Memory Map (*µ*PD789167, *µ*PD789177, *µ*PD789167Y, and *µ*PD789177Y)

| Address | Special-Function Register (SFR)       | Symbol       |      | Symbol |              | Symbol          |                     | R/W          | Bit Ur | nits for Manipul | ation | After Reset |
|---------|---------------------------------------|--------------|------|--------|--------------|-----------------|---------------------|--------------|--------|------------------|-------|-------------|
|         | Name                                  |              |      |        | 1 Bit        | 8 Bits          | 16 Bits             |              |        |                  |       |             |
| FF00H   | Port 0                                | P0           |      | P0     |              | R/W             |                     | $\checkmark$ | -      | 00H              |       |             |
| FF01H   | Port 1                                | P1           |      | P1     |              |                 |                     | $\checkmark$ | _      |                  |       |             |
| FF02H   | Port 2                                | P2           |      |        |              | $\checkmark$    | -                   |              |        |                  |       |             |
| FF03H   | Port 3                                | P3           |      |        | $\checkmark$ | $\checkmark$    | -                   |              |        |                  |       |             |
| FF05H   | Port 5                                | P5           |      |        | $\checkmark$ | $\checkmark$    | -                   |              |        |                  |       |             |
| FF06H   | Port 6                                | P6           |      | R      |              |                 | -                   |              |        |                  |       |             |
| FF10H   | 16-bit multiplication result storage  | MULOL        | MUL0 |        | -            | -               | $\sqrt{Notes 2, 3}$ | Undefined    |        |                  |       |             |
| FF11H   | register 0                            | MULOH        |      |        |              |                 |                     |              |        |                  |       |             |
| FF14H   | A/D conversion result register 0      | ADCRO        | )    |        | -            | $\sqrt{Note 1}$ | $\sqrt{Note 2}$     |              |        |                  |       |             |
| FF15H   |                                       |              |      |        |              |                 |                     |              |        |                  |       |             |
| FF16H   | 16-bit compare register 90            | CR90L        | CR90 | W      | -            | -               | $\sqrt{Notes 2, 3}$ | FFFFH        |        |                  |       |             |
| FF17H   |                                       | CR90H        |      |        |              |                 |                     |              |        |                  |       |             |
| FF18H   | 16-bit timer counter 90               | TM90L TM90   |      | R      | -            | -               | $\sqrt{Notes 2, 3}$ | 0000H        |        |                  |       |             |
| FF19H   |                                       | ТМ90Н        |      |        |              |                 |                     |              |        |                  |       |             |
| FF1AH   | 16-bit capture register 90            | TCP90L TCP90 |      |        | -            | -               | $\sqrt{Notes 2, 3}$ | Undefined    |        |                  |       |             |
| FF1BH   |                                       | TCP90H       |      |        |              |                 |                     |              |        |                  |       |             |
| FF20H   | Port mode register 0                  | PM0          |      | R/W    |              | $\checkmark$    | -                   | FFH          |        |                  |       |             |
| FF21H   | Port mode register 1                  | PM1          |      |        |              |                 | -                   |              |        |                  |       |             |
| FF22H   | Port mode register 2                  | PM2          |      |        |              |                 | -                   |              |        |                  |       |             |
| FF23H   | Port mode register 3                  | PM3          |      |        |              |                 | -                   |              |        |                  |       |             |
| FF25H   | Port mode register 5                  | PM5          |      |        |              |                 | -                   |              |        |                  |       |             |
| FF32H   | Pull-up resistor option register B2   | PUB2         |      |        | $\checkmark$ | $\checkmark$    | -                   | 00H          |        |                  |       |             |
| FF33H   | Pull-up resistor option register B3   | PUB3         |      |        | $\checkmark$ | $\checkmark$    | -                   |              |        |                  |       |             |
| FF42H   | Timer clock selection register 2      | TCL2         |      |        | -            | $\checkmark$    | -                   |              |        |                  |       |             |
| FF48H   | 16-bit timer mode control register 90 | TMC90        |      |        | $\checkmark$ | $\checkmark$    | -                   |              |        |                  |       |             |
| FF49H   | Buzzer output control register 90     | BZC90        |      |        | $\checkmark$ | $\checkmark$    | -                   |              |        |                  |       |             |
| FF4AH   | Watch timer mode control register     | WTM          |      |        |              |                 | -                   |              |        |                  |       |             |
| FF50H   | 8-bit compare register 80             | CR80         |      | W      | -            | $\checkmark$    | -                   | Undefined    |        |                  |       |             |
| FF51H   | 8-bit timer counter 80                | TM80         |      | R      | _            |                 | _                   | 00H          |        |                  |       |             |
| FF53H   | 8-bit timer mode control register 80  | TMC80        |      | TMC80  |              | R/W             |                     | $\checkmark$ | _      |                  |       |             |

Table 5-3. Special-Function Registers (1/2)

Notes 1. When using this register with an 8-bit A/D converter (μPD789167 or 789167Y Subseries), the register can be accessed in 8-bit units. At this time, the address is FF15H.
When using this register with a 10-bit A/D converter (μPD789177 or 789177Y Subseries), the register can be accessed only in 16-bit units. When the μPD78F9177 or μPD78F9177A, the flash memory counterpart of the μPD789166 or μPD789167, is used, the register can be accessed in 8-bit units. However, only an object file assembled with the μPD789166 or μPD789167 can be used. The same is

However, only an object file assembled with the  $\mu$ PD789166 or  $\mu$ PD789167 can be used. The same is also true for the  $\mu$ PD78F9177Y or  $\mu$ PD78F9177AY, the flash memory counterpart of the  $\mu$ PD789166Y or  $\mu$ PD789167Y. When the  $\mu$ PD78F9177Y or  $\mu$ PD78F9177AY is used, the register can be accessed in 8-bit units. However, only an object file assembled with the  $\mu$ PD789166Y and  $\mu$ PD789167Y can be used.

- 2. 16-bit access is allowed only with short direct addressing.
- **3.** MUL0, CR90, TM90, and TCP90 are designed only for 16-bit access. With direct addressing, however, they can also be accessed in 8-bit mode.

## 5.4.5 Register indirect addressing

## [Function]

The memory is addressed with the contents of the register pair specified as an operand. The register pair to be accessed is specified with the register pair specify code in the instruction code. This addressing can be carried out for all the memory spaces.

## [Operand format]

| Identifier | Description |
|------------|-------------|
| -          | [DE], [HL]  |

## [Description example]

MOV A, [DE]; When selecting register pair [DE]

Instruction code 0 0 1 0 1 0 1 1

## [Illustration]



## 8.4.2 Operation as timer output

16-bit timer 90 can invert the timer output repeatedly each time the free-running counter value reaches the value set to CR90. Since this counter is not cleared and holds the count even after the timer output is inverted, the interval time is equal to one cycle of the count clock set in TCL901 and TCL900.

To operate the 16-bit timer as a timer output, the following settings are required.

- Set P32 to output mode (PM32 = 0).
- Reset the output latch of P32 to 0.
- Set the count value in CR90.
- Set 16-bit timer mode control register 90 (TMC90) as shown in Figure 8-7.

## Figure 8-7. Settings of 16-Bit Timer Mode Control Register 90 for Timer Output Operation



## Caution If both the CPT901 flag and CPT900 flag are set to 0, the capture edge is disabled.

When the count value of 16-bit timer counter 90 (TM90) matches the value set in CR90, the output status of the TO90/P32/INTP2 pin is inverted. This enables timer output. At that time, the TM90 count is continued and an interrupt request signal (INTTM90) is generated.

Figure 8-8 shows the timing of timer output (see Table 8-3 for the interval time of the 16-bit timer).



## Figure 8-8. Timer Output Timing



**Remark** N = 0000H to FFFFH





Note See Figure 8-1 Block Diagram of 16-Bit Time 90.

## (1) 8-bit compare register 8n (CR8n)

A value specified in CR8n is compared with the count in 8-bit timer counter 8n (TM8n). If they match, an interrupt request (INTTM8n) is issued.

CR8n is set with an 8-bit memory manipulation instruction. Any value from 00H to FFH can be set. RESET input makes CR8n undefined.

- Cautions 1. Before rewriting CR8n, stop the timer operation once. If CR8n is rewritten in the timer operation-enabled state, a match interrupt request signal may occur at the moment of rewrite.
  - Do not clear CR8n to 00H in PWM output mode (when PWME8n = 1: bit 6 of 8-bit timer mode control register 8n (TMC8n)); otherwise, PWM output may not be produced normally.

**Remark** n = 0 to 2

## (2) 8-bit timer counter 8n (TM8n)

TM8n is used to count the number of pulses. Its contents are read with an 8-bit memory manipulation instruction. RESET input clears TM8n to 00H.

**Remark** n = 0 to 2

# (b) Asynchronous serial interface mode register 20 (ASIM20)

ASIM20 is set with a 1-bit or 8-bit memory manipulation instruction. RESET input clears ASIM20 to 00H.

| Symbol | <7>   | <6>   | 5     | 4     | 3    | 2    | 1 | 0 | Address | After reset | R/W |
|--------|-------|-------|-------|-------|------|------|---|---|---------|-------------|-----|
| ASIM20 | TXE20 | RXE20 | PS201 | PS200 | CL20 | SL20 | 0 | 0 | FF70H   | 00H         | R/W |

| TXE20 | Transmit operation control |
|-------|----------------------------|
| 0     | Transmit operation stop    |
| 1     | Transmit operation enable  |

| RXE20 | Receive operation control |
|-------|---------------------------|
| 0     | Receive operation stop    |
| 1     | Receive operation enable  |

| PS201 | PS200 | Parity bit specification                                                                                           |
|-------|-------|--------------------------------------------------------------------------------------------------------------------|
| 0     | 0     | No parity                                                                                                          |
| 0     | 1     | Always add 0 parity at transmission.<br>Parity check is not performed at reception (no parity error is generated). |
| 1     | 0     | Odd parity                                                                                                         |
| 1     | 1     | Even parity                                                                                                        |

| CL20 | Character length specification |
|------|--------------------------------|
| 0    | 7 bits                         |
| 1    | 8 bits                         |

| SL20 | Transmit data stop bit length specification |
|------|---------------------------------------------|
| 0    | 1 bit                                       |
| 1    | 2 bits                                      |

Cautions 1. Bits 0 and 1 must be set to 0.

2. Switch operating modes after halting the serial transmit/receive operation.

## (2) Communication operation

## (a) Data format

The transmit/receive data format is as shown in Figure 14-7. One data frame consists of a start bit, character bits, parity bit, and stop bit(s).

The specification of character bit length in one data frame, parity selection, and specification of stop bit length is carried out with asynchronous serial interface mode register 20 (ASIM20).

## Figure 14-7. Asynchronous Serial Interface Transmit/Receive Data Format

| One data frame   |    |    |    |    |    |    |    |    |               |          |  |
|------------------|----|----|----|----|----|----|----|----|---------------|----------|--|
| <br>Start<br>bit | D0 | D1 | D2 | D3 | D4 | D5 | D6 | D7 | Parity<br>bit | Stop bit |  |

- Start bits ..... 1 bit
- Character bits.....7 bits/8 bits
- Parity bits ..... Even parity/odd parity/0 parity/no parity
- Stop bit(s) ..... 1 bit/2 bits

When 7 bits are selected as the number of character bits, only the lower 7 bits (bits 0 to 6) are valid; in transmission the most significant bit (bit 7) is ignored, and in reception the most significant bit (bit 7) is always "0".

The serial transfer rate is selected by baud rate generator control register 20 (BRGC20).

If a serial data receive error is generated, the receive error contents can be determined by reading the status of asynchronous serial interface status register 20 (ASIS20).

| Figure 15-4. | Format of SMB | <b>Clock Selection</b> | Register 0 (2/2) |
|--------------|---------------|------------------------|------------------|
|--------------|---------------|------------------------|------------------|

| Symbol | 7 | 6 | <5>  | <4>  | 3    | 2    | 1    | 0    | Address | After reset | R/W                 |
|--------|---|---|------|------|------|------|------|------|---------|-------------|---------------------|
| SMBCL0 | 0 | 0 | CLD0 | DAD0 | SMC0 | DFC0 | CL01 | CL00 | FF7AH   | 00H         | R/W <sup>Note</sup> |

| CL01 | CL00 | Communication clock              |                                |  |  |  |  |
|------|------|----------------------------------|--------------------------------|--|--|--|--|
|      |      | SMB/IIC standard mode (SMC0 = 0) | IIC high-speed mode (SMC0 = 1) |  |  |  |  |
| 0    | 0    | fx/44                            | fx/24                          |  |  |  |  |
| 0    | 1    | fx/86                            |                                |  |  |  |  |
| 1    | 0    | fx/172                           | fx/48                          |  |  |  |  |
| 1    | 1    | Setting prohibited               |                                |  |  |  |  |

**Note** Bits 4 and 5 are read-only.

Caution To change the communication clock, stop operations (SMBE0 = 0) first before rewriting SMBCL0.

**Remark** fx: Main system clock oscillation frequency

| SMC0             | CL01 | CL00 | Communic                    | ation Clock                 | Digital Filter Input Delay |  |
|------------------|------|------|-----------------------------|-----------------------------|----------------------------|--|
|                  |      |      | At fx = 10.0 MHz            | At fx = 5.0 MHz             |                            |  |
|                  |      |      | operation <sup>Note 1</sup> | operation                   |                            |  |
| 0                | 0    | 0    | 227.2 kHz <sup>Note 2</sup> | 113.6 kHz <sup>Note 2</sup> | 250 ns                     |  |
| 0                | 0    | 1    | 116.2 kHz <sup>Note 2</sup> | 58.13 kHz                   | 250 ns                     |  |
| 0                | 1    | 0    | 58.13 kHz                   | 29.06 kHz                   | 500 ns                     |  |
| 1                | 0    | 0    | 416.6 kHz <sup>Note 3</sup> | 208.3 kHz                   | 250 ns                     |  |
| 1                | 0    | 1    | 416.6 kHz <sup>Note 3</sup> | 208.3 kHz                   | 250 ns                     |  |
| 1                | 1    | 0    | 208.3 kHz                   | 104.1 kHz                   | 500 ns                     |  |
| Other than above |      |      | Setting prohibited          |                             |                            |  |

 Table 15-2.
 SMB0 Communication Clock

Notes 1. Expanded-specification products only.

- **2.** Since the SMB/IIC standard mode standards specify a range of 10 to 100 kHz, this communication clock falls outside the specifications.
- **3.** Since the standards of the IIC high-speed mode specify a range of 0 to 400 kHz, this communication clock falls outside the specifications.

| Mnemonic | Operands            | Bytes | Clocks | Operation                                                                                                                                                                          |   | Flag | I  |
|----------|---------------------|-------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------|----|
|          |                     |       |        |                                                                                                                                                                                    | Z | AC   | CY |
| CALL     | !addr16             | 3     | 6      | $(SP - 1) \leftarrow (PC + 3)$ H, $(SP - 2) \leftarrow (PC + 3)$ L,<br>PC $\leftarrow$ addr16, SP $\leftarrow$ SP - 2                                                              |   |      |    |
| CALLT    | [addr5]             | 1     | 8      | $(SP - 1) \leftarrow (PC + 1)_{H}, (SP - 2) \leftarrow (PC + 1)_{L},$<br>$PC_{H} \leftarrow (00000000, addr5 + 1),$<br>$PC_{L} \leftarrow (00000000, addr5), SP \leftarrow SP - 2$ |   |      |    |
| RET      |                     | 1     | 6      | $PC_{H} \leftarrow (SP+1),PC_{L} \leftarrow (SP),SP \leftarrow SP+2$                                                                                                               |   |      |    |
| RETI     |                     | 1     | 8      | $\begin{array}{l} PC_{H} \leftarrow (SP+1),  PC_{L} \leftarrow (SP), \\ PSW \leftarrow (SP+2),  SP \leftarrow SP+3 \end{array}$                                                    | R | R    | R  |
| PUSH     | PSW                 | 1     | 2      | $(SP - 1) \leftarrow PSW, SP \leftarrow SP - 1$                                                                                                                                    |   |      |    |
|          | rp                  | 1     | 4      | $(SP-1) \gets rp_{H},(SP-2) \gets rp_{L},SP \gets SP-2$                                                                                                                            |   |      |    |
| POP      | PSW                 | 1     | 4      | $PSW \leftarrow (SP),  SP \leftarrow SP + 1$                                                                                                                                       | R | R    | R  |
|          | rp                  | 1     | 6      | $rp_{H} \leftarrow (SP + 1),  rp_{L} \leftarrow (SP),  SP \leftarrow SP + 2$                                                                                                       |   |      |    |
| MOVW     | SP, AX              | 2     | 8      | $SP \leftarrow AX$                                                                                                                                                                 |   |      |    |
|          | AX, SP              | 2     | 6      | $AX \leftarrow SP$                                                                                                                                                                 |   |      |    |
| BR       | !addr16             | 3     | 6      | PC ← addr16                                                                                                                                                                        |   |      |    |
|          | \$addr16            | 2     | 6      | $PC \leftarrow PC + 2 + jdisp8$                                                                                                                                                    |   |      |    |
|          | AX                  | 1     | 6      | $PC_{H} \leftarrow A,  PC_{L} \leftarrow X$                                                                                                                                        |   |      |    |
| BC       | \$saddr16           | 2     | 6      | $PC \leftarrow PC + 2 + jdisp8$ if $CY = 1$                                                                                                                                        |   |      |    |
| BNC      | \$saddr16           | 2     | 6      | $PC \leftarrow PC + 2 + jdisp8$ if $CY = 0$                                                                                                                                        |   |      |    |
| BZ       | \$saddr16           | 2     | 6      | $PC \leftarrow PC + 2 + jdisp8$ if Z = 1                                                                                                                                           |   |      |    |
| BNZ      | \$saddr16           | 2     | 6      | $PC \leftarrow PC + 2 + jdisp8$ if $Z = 0$                                                                                                                                         |   |      |    |
| BT       | saddr.bit, \$addr16 | 4     | 10     | $PC \leftarrow PC + 4 + jdisp8$ if (saddr.bit) = 1                                                                                                                                 |   |      |    |
|          | sfr.bit, \$addr16   | 4     | 10     | $PC \leftarrow PC + 4 + jdisp8$ if sfr.bit = 1                                                                                                                                     |   |      |    |
|          | A.bit, \$addr16     | 3     | 8      | $PC \leftarrow PC + 3 + jdisp8$ if A.bit = 1                                                                                                                                       |   |      |    |
|          | PSW.bit, \$addr16   | 4     | 10     | $PC \leftarrow PC + 4 + jdisp8$ if PSW.bit = 1                                                                                                                                     |   |      |    |
| BF       | saddr.bit, \$addr16 | 4     | 10     | $PC \leftarrow PC + 4 + jdisp8$ if (saddr.bit) = 0                                                                                                                                 |   |      |    |
|          | sfr.bit, \$addr16   | 4     | 10     | $PC \leftarrow PC + 4 + jdisp8$ if sfr.bit = 0                                                                                                                                     |   |      |    |
|          | A.bit, \$addr16     | 3     | 8      | $PC \leftarrow PC + 3 + jdisp8$ if A.bit = 0                                                                                                                                       |   |      |    |
|          | PSW.bit, \$addr16   | 4     | 10     | $PC \leftarrow PC + 4 + jdisp8$ if PSW.bit = 0                                                                                                                                     |   |      |    |
| DBNZ     | B, \$addr16         | 2     | 6      | $B \leftarrow B - 1$ , then PC $\leftarrow$ PC + 2 + jdisp8 if $B \neq 0$                                                                                                          |   |      |    |
|          | C, \$addr16         | 2     | 6      | $C \leftarrow C - 1$ , then $PC \leftarrow PC + 2 + jdisp8$ if $C \neq 0$                                                                                                          |   |      |    |
|          | saddr, \$addr16     | 3     | 8      | (saddr) ← (saddr) – 1, then<br>PC ← PC + 3 + jdisp8 if (saddr) $\neq$ 0                                                                                                            |   |      |    |
| NOP      |                     | 1     | 2      | No Operation                                                                                                                                                                       |   |      |    |
| EI       |                     | 3     | 6      | $IE \leftarrow 1$ (Enable Interrupt)                                                                                                                                               |   |      |    |
| DI       |                     | 3     | 6      | $IE \leftarrow 0$ (Disable Interrupt)                                                                                                                                              |   | _    |    |
| HALT     |                     | 1     | 2      | Set HALT Mode                                                                                                                                                                      |   |      |    |
| STOP     |                     | 1     | 2      | Set STOP Mode                                                                                                                                                                      |   |      |    |

**Remark** One instruction clock cycle is one CPU clock cycle (fcPu) selected by the processor clock control register (PCC).

| Parameter                     | Symbol                    |                                                    | Conditions               | Ratings                       | Unit |
|-------------------------------|---------------------------|----------------------------------------------------|--------------------------|-------------------------------|------|
| Supply voltage                | VDD                       | $AV_{\text{DD}} - 0.3 \text{ V} \leq V_{\text{D}}$ | $d \leq AV_{DD} + 0.3 V$ | -0.3 to +6.5                  | V    |
|                               | AVDD                      | $AV_{REF} \le AV_{DD} + 0.$                        | 3 V                      |                               | V    |
|                               | AVREF                     | $AV_{REF} \leq V_{DD} + 0.3$                       | V                        |                               | V    |
| Input voltage                 | VI1                       | Pins other than P                                  | 50 to P53, P23, P24      | -0.3 to V <sub>DD</sub> + 0.3 | V    |
|                               | VI2                       | P23, P24                                           | P23, P24                 |                               | V    |
|                               | Vıз                       | P50 to P53                                         | N-ch open drain          | –0.3 to +13                   | V    |
|                               |                           |                                                    | On-chip pull-up resistor | -0.3 to V <sub>DD</sub> + 0.3 | V    |
| Output voltage                | Vo                        |                                                    |                          | -0.3 to V <sub>DD</sub> + 0.3 | V    |
| Output current, high          | Іон Per pin               |                                                    | μPD78916x(A1),           | -4                            | mA   |
|                               |                           | Total for all pins                                 | 78917x(A1)               | -14                           | mA   |
|                               |                           | Per pin                                            | μPD78916x(A2),           | -2                            | mA   |
|                               |                           | Total for all pins                                 | 78917x(A2)               | -6                            | mA   |
| Output current, low           | lo∟                       | Per pin                                            | μPD78916x(A1),           | 5                             | mA   |
|                               |                           | Total for all pins                                 | 78917x(A1)               | 80                            | mA   |
|                               |                           | Per pin                                            | μPD78916x(A2),           | 2                             | mA   |
|                               |                           | Total for all pins                                 | 78917x(A2)               | 40                            | mA   |
| Operating ambient temperature | TA                        | μPD78916x(A1), 78917x(A1)                          |                          | -40 to +110                   | °C   |
|                               | μPD78916x(A2), 78917x(A2) |                                                    | -40 to +125              | °C                            |      |
| Storage temperature           | Tstg                      |                                                    |                          | -65 to +150                   | °C   |

# Absolute Maximum Ratings (T<sub>A</sub> = 25°C)

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

**Remark** Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

# (2) Serial interface 20 (V<sub>DD</sub> = 4.5 to 5.5 V, T<sub>A</sub> = -40 to +110°C ( $\mu$ PD78916x(A1), 78917x(A1)), = -40 to +125°C ( $\mu$ PD78916x(A2), 78917x(A2)))

| Parameter                             | Symbol        | Conditions                                                        | MIN.         | TYP. | MAX. | Unit |
|---------------------------------------|---------------|-------------------------------------------------------------------|--------------|------|------|------|
| SCK20 cycle time                      | tkcy1         |                                                                   | 800          |      |      | ns   |
| SCK20 high-/low-<br>level width       | tĸнı, tĸ∟ı    |                                                                   | tксү1/2 – 50 |      |      | ns   |
| SI20 setup time<br>(to SCK20 ↑)       | tsıĸı         |                                                                   | 150          |      |      | ns   |
| SI20 hold time<br>(from SCK20 ↑)      | <b>t</b> KSI1 |                                                                   | 400          |      |      | ns   |
| SO20 output delay<br>time from SCK20↓ | tkso1         | $R = 1 \text{ k}\Omega,  C = 100 \text{ p}\text{F}^{\text{Note}}$ | 0            |      | 250  | ns   |

## (a) 3-wire serial I/O mode (SCK20...Internal clock)

**Note** R and C are the load resistance and load capacitance of the SO20 output line.

## (b) 3-wire serial I/O mode (SCK20...External clock)

| Parameter                                                                               | Symbol     | Conditions                                                               | MIN. | TYP. | MAX. | Unit |
|-----------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------|------|------|------|------|
| SCK20 cycle time                                                                        | tксү2      |                                                                          | 900  |      |      | ns   |
| SCK20 high-/low-<br>level width                                                         | tкн2, tкL2 |                                                                          | 400  |      |      | ns   |
| SI20 setup time<br>(to SCK20 ↑)                                                         | tsik2      |                                                                          | 100  |      |      | ns   |
| SI20 hold time<br>(from SCK20 ↑)                                                        | tksı₂      |                                                                          | 400  |      |      | ns   |
| SO20 output delay time from $\overline{\text{SCK20}}\downarrow$                         | tĸso2      | $R = 1 \text{ k}\Omega, \text{ C} = 100 \text{ p}\text{F}^{\text{Note}}$ | 0    |      | 300  | ns   |
| SO20 setup time<br>(when using $\overline{SS20}$ ,<br>to $\overline{SS20} \downarrow$ ) | tkas2      |                                                                          |      |      | 120  | ns   |
| SO20 disable time (when using SS20, from $\overline{SS20}$ )                            | tkds2      |                                                                          |      |      | 240  | ns   |

Note R and C are the load resistance and load capacitance of the SO20 output line.

#### (c) UART mode (dedicated baud rate generator output)

| Parameter     | Symbol | Conditions | MIN. | TYP. | MAX.  | Unit |
|---------------|--------|------------|------|------|-------|------|
| Transfer rate |        |            |      |      | 78125 | bps  |

# 8-Bit A/D Converter Characteristics (µPD78916x(A1), 78916x(A2))

 $(T_A = -40 \text{ to } +110^{\circ}C (\mu PD78916x(A1)), -40 \text{ to } +125^{\circ}C (\mu PD78916x(A2))$ 

# $\textbf{4.5} \leq \textbf{AV}_{\text{REF}} \leq \textbf{AV}_{\text{DD}} = \textbf{V}_{\text{DD}} \leq \textbf{5.5} \text{ V}, \text{ AV}_{\text{SS}} = \textbf{V}_{\text{SS}} = \textbf{0} \text{ V} \textbf{)}$

| Parameter                            | Symbol        | Conditions | MIN. | TYP. | MAX.  | Unit |
|--------------------------------------|---------------|------------|------|------|-------|------|
| Resolution                           |               |            | 8    | 8    | 8     | bit  |
| Overall error <sup>Note</sup>        |               |            |      | ±0.4 | ±1.0  | %FSR |
| Conversion time                      | <b>t</b> CONV |            | 14   |      | 28    | μs   |
| Analog input voltage                 | VIAN          |            | 0    |      | AVREF | V    |
| Reference voltage                    | AVREF         |            | 4.5  |      | AVDD  | V    |
| Resistance between<br>AVREF and AVSS | Radref        |            | 20   | 40   |       | kΩ   |

**Note** Excludes quantization error (±0.2%FSR).

**Remark** FSR: Full scale range

# 10-Bit A/D Converter Characteristics (µPD78917x(A1), 78917x(A2))

 $(T_A = -40 \text{ to } +110^{\circ}C (\mu PD78917x(A1)), -40 \text{ to } +125^{\circ}C (\mu PD78917x(A2))$ 

 $\textbf{4.5} \leq \textbf{AV}_{\text{REF}} \leq \textbf{AV}_{\text{DD}} = \textbf{V}_{\text{DD}} \leq \textbf{5.5 V, AV}_{\text{SS}} = \textbf{V}_{\text{SS}} = \textbf{0 V})$ 

| Parameter                                | Symbol        | Conditions | MIN. | TYP. | MAX.  | Unit |
|------------------------------------------|---------------|------------|------|------|-------|------|
| Resolution                               |               |            | 10   | 10   | 10    | bit  |
| Overall error <sup>Note</sup>            |               |            |      | ±0.2 | ±0.6  | %FSR |
| Conversion time                          | <b>t</b> CONV |            | 14   |      | 28    | μs   |
| Zero-scale error <sup>Note</sup>         |               |            |      |      | ±0.6  | %FSR |
| Full-scale error <sup>Note</sup>         |               |            |      |      | ±0.6  | %FSR |
| Integral linearity error <sup>Note</sup> | INL           |            |      |      | ±4.5  | LSB  |
| Differential linearity                   | DNL           |            |      |      | ±2.0  | LSB  |
| error <sup>Note</sup>                    |               |            |      |      |       |      |
| Analog input voltage                     | VIAN          |            | 0    |      | AVREF | V    |
| Reference voltage                        | AVREF         |            | 4.5  |      | AVDD  | V    |
| Resistance between<br>AVREF and AVSS     | Radref        |            | 20   | 40   |       | kΩ   |

**Note** Excludes quantization error (±0.05%FSR).

Remark FSR: Full scale range

| Parameter                                                         |                                       | Symbol       | SMB Mode |      | Standard Mode I <sup>2</sup> C<br>Bus |      | High-speed Mode I <sup>2</sup> C<br>Bus |                       | Unit |
|-------------------------------------------------------------------|---------------------------------------|--------------|----------|------|---------------------------------------|------|-----------------------------------------|-----------------------|------|
|                                                                   |                                       |              | MIN.     | MAX. | MIN.                                  | MAX. | MIN.                                    | MAX.                  |      |
| SCL0 clock                                                        | <pre>c frequency</pre>                | fclk         | 10       | 100  | 0                                     | 100  | 0                                       | 400                   | kHz  |
| Bus free tir                                                      | ne                                    | <b>t</b> BUF | 4.7      | _    | 4.7                                   | _    | 1.3                                     | _                     | μs   |
| (between s                                                        | stop and start condition)             |              |          |      |                                       |      |                                         |                       |      |
| Hold time <sup>N</sup>                                            | ote 1                                 | thd:sta      | 4.0      |      | 4.0                                   |      | 0.6                                     | -                     | μs   |
| Start/restar                                                      | rt condition setup time               | tsu:sta      | 4.7      | _    | 4.7                                   | _    | 0.6                                     | _                     | μs   |
| Stop condi                                                        | tion setup time                       | tsu:sto      | 4.0      | _    | 4.0                                   |      | 0.6                                     | _                     | μs   |
| Data hold<br>time                                                 | When using CBUS-<br>compatible master | thd:dat      | -        | -    | 5                                     | _    | _                                       | -                     | μs   |
| ume                                                               | When using SMB/IIC bus                |              | 300      | _    | 0 <sup>Note 2</sup>                   | _    | Note 2<br>0                             | 900 <sup>Note 3</sup> | ns   |
| Data setup                                                        | time                                  | tsu:dat      | 250      | -    | 250                                   | -    | Note 4<br>100                           | _                     | ns   |
| SCL0 clock                                                        | < low-level width                     | tLOW         | 4.7      |      | 4.7                                   |      | 1.3                                     |                       | μs   |
| SCL0 clock                                                        | < high-level width                    | tніgн        | 4.0      | 50   | 4.0                                   |      | 0.6                                     | _                     | μs   |
| SCL0 and SDA0 signal fall time                                    |                                       | t⊧           | _        | 300  | _                                     | 300  |                                         | 300                   | ns   |
| SCL0 and                                                          | SDA0 signal rise time                 | tR           | -        | 1000 | _                                     | 1000 | _                                       | 300                   | ns   |
| Spike pulse width controlled by input filter                      |                                       | tsp          | _        | _    | _                                     | _    | 0                                       | 50                    | ns   |
| Timeout                                                           |                                       | tтімеоит     | 25       | 35   | _                                     |      |                                         | _                     | ms   |
| Total extended time of SCL0 clock<br>low-level period (slave)     |                                       | tlow:sext    | _        | 25   | _                                     | -    | -                                       | -                     | ms   |
| Total extended time of cumulative clock low-level period (master) |                                       | tlow:mext    | -        | 10   | _                                     | -    | _                                       | -                     | ms   |
| Capacitive load per each bus line                                 |                                       | Cb           | -        | _    | _                                     | 400  | _                                       | 400                   | pF   |

## (c) AC characteristics

**Notes 1.** In the start condition, the first clock pulse is generated after this hold time.

2. To fill in the undefined area of the SCL0 falling edge, it is necessary for the device to internally provide at least 300 ns of hold time for the SDA0 signal (which is VIHmin. of the SCL0 signal).

- **3.** If the device does not extend the SCL0 signal low hold time (tLow), only maximum data hold time thd:DAT needs to be fulfilled.
- The high-speed mode l<sup>2</sup>C bus is available in the SMB mode and the standard mode l<sup>2</sup>C bus system. At this time, the conditions described below must be satisfied.
  - If the device extends the SCL0 signal low state hold time  $t_{\text{SU:DAT}} \geq 250 \text{ ns}$
  - If the device extends the SCL0 signal low state hold time
     Be sure to transmit the next data bit to the SDA0 line before the SCL0 line is released (t<sub>Rmax.+</sub> t<sub>SU:DAT</sub> = 1000 + 250 = 1250 ns by the SMB mode or the standard mode l<sup>2</sup>C bus specification).

| Parameter                       | Symbol           |                                     | MIN.                                                                     | TYP.                  | MAX. | Unit   |    |
|---------------------------------|------------------|-------------------------------------|--------------------------------------------------------------------------|-----------------------|------|--------|----|
| Output current,                 | Іон              | Per pin                             |                                                                          |                       | -1   | mA     |    |
| high                            |                  | Total for all pins                  |                                                                          |                       | -15  | mA     |    |
| Output current, low             | lo∟              | Per pin                             |                                                                          |                       | 10   | mA     |    |
|                                 |                  | Total for all pins                  |                                                                          |                       | 80   | mA     |    |
| Input voltage, high             | VIH1             | P00 to P05, P10,                    | V <sub>DD</sub> = 2.7 to 5.5 V                                           | 0.7Vdd                |      | VDD    | V  |
|                                 |                  | P11,P60 to P67                      | V <sub>DD</sub> = 1.8 to 5.5 V                                           | 0.9VDD                |      | VDD    | V  |
|                                 | V <sub>IH2</sub> | P50 to P53                          | V <sub>DD</sub> = 2.7 to 5.5 V                                           | 0.7VDD                |      | 12     | V  |
|                                 |                  |                                     | V <sub>DD</sub> = 1.8 to 5.5 V,                                          | 0.9VDD                |      | 12     | V  |
|                                 |                  |                                     | T <sub>A</sub> = 25 to +85°C                                             |                       |      |        |    |
|                                 | Vінз             | RESET,<br>P20 to P26, P30<br>to P33 | V <sub>DD</sub> = 2.7 to 5.5 V                                           | 0.8VDD                |      | VDD    | V  |
|                                 |                  |                                     | V <sub>DD</sub> = 1.8 to 5.5 V                                           | 0.9Vdd                |      | Vdd    | V  |
|                                 | VIH4             | X1, X2, XT1, XT2                    | V <sub>DD</sub> = 4.5 to 5.5 V                                           | $V_{\text{DD}}-0.5$   |      | Vdd    | V  |
|                                 |                  |                                     | V <sub>DD</sub> = 1.8 to 5.5 V                                           | $V_{\text{DD}} - 0.1$ |      | Vdd    | V  |
| Input voltage, low              | VIL1             | P00 to P05, P10,                    | V <sub>DD</sub> = 2.7 to 5.5 V                                           | 0                     |      | 0.3VDD | V  |
|                                 |                  | P11, P60 to P67                     | V <sub>DD</sub> = 1.8 to 5.5 V                                           | 0                     |      | 0.1VDD | V  |
|                                 | VIL2             | P50 to P53                          | V <sub>DD</sub> = 2.7 to 5.5 V                                           | 0                     |      | 0.3VDD | V  |
|                                 |                  |                                     | V <sub>DD</sub> = 1.8 to 5.5 V                                           | 0                     |      | 0.1VDD | V  |
|                                 | VIL3             | RESET,P20 to                        | V <sub>DD</sub> = 2.7 to 5.5 V                                           | 0                     |      | 0.2VDD | V  |
|                                 |                  | P26, P30 to P33                     | V <sub>DD</sub> = 1.8 to 5.5 V                                           | 0                     |      | 0.1VDD | V  |
|                                 | VIL4             | X1, X2, XT1, XT2                    | V <sub>DD</sub> = 4.5 to 5.5 V                                           | 0                     |      | 0.4    | V  |
|                                 |                  |                                     | V <sub>DD</sub> = 1.8 to 5.5 V                                           | 0                     |      | 0.1    | V  |
| Output voltage,                 | Vон              | Pins other than                     | $V_{DD} = 4.5$ to 5.5 V, IoH = $-1$ mA                                   | $V_{\text{DD}}-1.0$   |      |        | V  |
| high                            |                  | P23, P24, P50 to<br>P53             | $V_{DD}$ = 1.8 to 5.5 V, IoH = -100 $\mu$ A                              | $V_{\text{DD}}-0.5$   |      |        | V  |
| Output voltage, low             | Vol1             | Pins other than                     | $V_{DD} = 4.5$ to 5.5 V, IoL = 10 mA                                     |                       |      | 1.0    | V  |
|                                 |                  | P50 to P53                          | $V_{DD}$ = 1.8 to 5.5 V, IoL = 400 $\mu$ A                               |                       |      | 0.5    | V  |
|                                 | Vol2             | P50 to P53                          | $V_{DD} = 4.5$ to 5.5 V, $I_{OL} = 10$ mA                                |                       |      | 1.0    | V  |
|                                 |                  |                                     | V <sub>DD</sub> = 1.8 to 5.5 V, I <sub>OL</sub> = 1.6 mA                 |                       |      | 0.4    | V  |
| Input leakage<br>current, high  | Ілні             | $V_{I} = V_{DD}$                    | Pins other than P50 to P53 (N-ch<br>open drain), X1, X2, XT1, and<br>XT2 |                       |      | 3      | μA |
|                                 | ILIH2            |                                     | X1, X2, XT1, XT2                                                         |                       |      | 20     | μA |
|                                 | Ілнз             | Vi = 12 V                           | P50 to P53 (N-ch open drain)                                             |                       |      | 20     | μA |
| Input leakage<br>current, low   | Ilil1            | V1 = 0 V                            | Pins other than P50 to P53 (N-ch<br>open drain), X1, X2, XT1, and<br>XT2 |                       |      | -3     | μA |
|                                 |                  |                                     | X1, X2, XT1, XT2                                                         |                       |      | -20    | μA |
|                                 | ILIL3            |                                     | P50 to P53 (N-ch open drain)                                             |                       |      | Note   | μA |
| Output leakage<br>current, high | Ігон             | Vo = VDD                            |                                                                          |                       |      | 3      | μA |
| Output leakage current, low     | Ilol             | Vo = 0 V                            |                                                                          |                       |      | -3     | μA |
| Software pull-up resistor       | R₁               | $V_1 = 0 V$ , for pins of P53       | 50                                                                       | 100                   | 200  | kΩ     |    |

**Note** A low-level input leakage current of  $-60 \ \mu$ A (MAX.) flows only during the 1-cycle time after a read instruction is executed to P50 to P53 and P50 to P53 are set to input mode. At times other than this, a  $-3 \ \mu$ A (MAX.) current flows.

**Remark** Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

| Parameter            | Symbol                 | Condition                                                                                                       | MIN.                                                     | TYP. | MAX. | Unit |    |
|----------------------|------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------|------|------|----|
| Power supply current | DD1 <sup>Note 1</sup>  | 5.0 MHz crystal oscillation<br>operating mode<br>(C1 = C2 = 22 pF)                                              | $V_{\text{DD}} = 5.0 \text{ V} \pm 10\%^{\text{Note 4}}$ |      | 7.5  | 20.0 | mA |
|                      | DD2 <sup>Note 1</sup>  | 5.0 MHz crystal oscillation<br>HALT mode<br>(C1 = C2 = 22 pF)                                                   | $V_{\text{DD}} = 5.0 \text{ V} \pm 10\%^{\text{Note 4}}$ |      | 3.0  | 6.0  | mA |
|                      | IDD3 <sup>Note 1</sup> | 32.768 kHz crystal oscillation<br>operating mode <sup>Note 3</sup><br>(C3 = C4 = 22 pF,<br>R = 220 k $\Omega$ ) | $V_{DD} = 5.0 \text{ V} \pm 10\%$                        |      | 30   | 3000 | μA |
|                      | DD4 <sup>Note 1</sup>  | 32.768 kHz crystal oscillation<br>HALT mode <sup>Note 3</sup><br>(C3 = C4 = 22 pF,<br>R = 220 k $\Omega$ )      | $V_{DD} = 5.0 \text{ V} \pm 10\%$                        |      | 25   | 2500 | μA |
|                      | DD5 <sup>Note 1</sup>  | 32.768 kHz crystal stop<br>STOP mode                                                                            | $V_{\text{DD}} = 5.0 \text{ V} \pm 10\%$                 |      | 1.0  | 1000 | μA |
|                      | DD6 <sup>Note 2</sup>  | 5.0 MHz crystal oscillation<br>A/D operating mode<br>(C1 = C2 = 22 pF)                                          | $V_{\text{DD}} = 5.0 \text{ V} \pm 10\%^{\text{Note 4}}$ |      | 8.7  | 22.3 | mA |

#### DC Characteristics (V<sub>DD</sub> = 4.5 to 5.5 V, T<sub>A</sub> = -40 to $+105^{\circ}$ C) (3/3)

**Notes 1.** The AVREFON (ADCS0 (bit 7 of ADM0; A/D converter mode register 0) = 1), AVDD, and port current (including the current flowing through the internal pull-up resistors) is not included.

- The AV<sub>REF</sub>ON (ADCS0 =1) and port current (including the current flowing through the internal pull-up resistors) is not included. Refer to the A/D converter characteristics for the current flowing through AV<sub>REF</sub>.
- 3. When the main system clock is stopped.
- 4. During high-speed mode operation (when the processor clock control register (PCC) is set to 00H.)
- **Remark** Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.