

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	DMA, WDT
Number of I/O	20
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 5x16b, 4x24b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFLGA Exposed Pad
Supplier Device Package	44-MAPLGA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mkm14z128achh5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

reminology and guidelines

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	0.9	1.1	V

3.2 Definition: Operating behavior

Unless otherwise specified, an *operating behavior* is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions.

3.2.1 Example

This is an example of an operating behavior:

Symbol	Description	Min.	Max.	Unit
I _{WP}	Digital I/O weak pullup/ pulldown current	10	130	μΑ

3.3 Definition: Attribute

An *attribute* is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.

3.3.1 Example

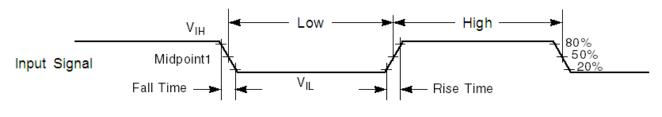
This is an example of an attribute:

Symbol	Description	Min.	Max.	Unit
CIN_D	Input capacitance: digital pins		7	pF

3.4 Definition: Rating

A *rating* is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:

4.4 Voltage and current operating ratings


Symbol	Description	Min.	Max.	Unit
V _{DD}	Digital supply voltage	-0.3	3.6	V
V _{DIO}	Digital input voltage (except RESET, EXTAL, and XTAL)	-0.3	V _{DD} + 0.3	V
V _{DTamper}	Tamper input voltage	-0.3	V _{BAT} + 0.3	V
V _{AIO}	Analog ¹ , RESET, EXTAL, and XTAL input voltage	-0.3	V _{DD} + 0.3	V
Ι _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V _{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V
V _{BAT}	RTC battery supply voltage	-0.3	3.6	V

1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.

5 General

5.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

The midpoint is V_{IL} + $(V_{IH} - V_{IL})/2$.

Figure 1. Input signal measurement reference

5.2 Nonswitching electrical specifications

General

5.2.1 Voltage and current operating requirements

Table 1. Voltage and current operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
V _{DD}	Supply voltage when AFE is operational	2.7	3.6	V	
	Supply voltage when AFE is NOT operational	1.71	3.6	V	
V _{DDA}	Analog supply voltage	2.7	3.6	V	
V _{DD} – V _{DDA}	V _{DD} -to-V _{DDA} differential voltage	-0.1	0.1	V	
$V_{SS} - V_{SSA}$	V _{SS} -to-V _{SSA} differential voltage	-0.1	0.1	V	
V _{BAT}	RTC battery supply voltage	1.71	3.6	V	1
V _{IH}	Input high voltage				
	• 2.7 V \leq V _{DD} \leq 3.6 V	$0.7 \times V_{DD}$	_	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	$0.75 \times V_{DD}$	_	V	
V _{IL}	Input low voltage				
	• $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	—	$0.35 \times V_{DD}$	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	—	$0.3 \times V_{DD}$	V	
V _{HYS}	Input hysteresis	$0.06 \times V_{DD}$	_	V	
I _{ICDIO}	Digital pin negative DC injection current — single pin				
	• V _{IN} < V _{SS} -0.3V	-5	_	mA	
I _{ICAIO}	Analog ² , EXTAL, and XTAL pin DC injection current — single pin				
	 V_{IN} < V_{SS}-0.3V (Negative current injection) 	-3	_	mA	
	• $V_{IN} > V_{DD}$ +0.3V (Positive current injection)	—	+3		
I _{ICcont}	Contiguous pin DC injection current —regional limit, includes sum of negative injection currents or sum of positive injection currents of 16 contiguous pins				
	Negative current injection	-25	_	mA	
	Positive current injection	—	+25		
V _{RFVBAT}	V _{BAT} voltage required to retain the VBAT register file	V _{POR_VBAT}		V	

1. V_{BAT} always needs to be there for the chip to be operational.

2. Analog pins are defined as pins that do not have an associated general purpose I/O port function.

5.2.2 LVD and POR operating requirements

Table 2. V_{DD} supply LVD and POR operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR}	Falling VDD POR detect voltage	0.8	1.1	1.5	V	
V _{LVDH}	Falling low-voltage detect threshold — high range (LVDV=01)	2.48	2.56	2.64	V	

Table continues on the next page ...

Table 6. Power consumption operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_VBAT}	Average current when VDD is OFF and LFSR and Tamper clocks set to 2 Hz.					8, 9
	• @ 3.0 V • 25 °C • -40 °C • 105 °C	_	1.3 ⁷	3 2.5 16	μΑ μΑ μΑ	

- 1. See AFE specification for IDDA.
- 50 MHz core and system clock, 25 MHz bus clock, and 25 MHz flash clock. MCG configured for FBE mode. All peripheral clocks disabled.
- 3. Should be reduced by 500 μ A.
- 4. 2 MHz core, system, bus clock, and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. Code executing while (1) loop from flash.
- 5. 2 MHz core, system and bus clock, and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks enabled but peripherals are not in active operation. Code executing while (1) loop from flash.
- 2 MHz core, system and bus clock, and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. No flash accesses; some activity on DMA & RAM assumed.
- 7. Current consumption will vary with number of CPU accesses done and is dependent on the frequency of the accesses and frequency of bus clock. Number of CPU accesses should be optimized to get optimal current value.
- 8. Includes 32 kHz oscillator current and RTC operation.
- 9. An external power switch for VBAT should be present on board to have better battery life and keep VBAT pin powered in all conditions. There is no internal power switch in RTC.

5.2.6 EMC radiated emissions operating behaviors Table 7. EMC radiated emissions operating behaviors

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	14	dBµV	1, 2
V _{RE2}	Radiated emissions voltage, band 2	50–150	16	dBµV	
V _{RE3}	Radiated emissions voltage, band 3	150–500	12	dBµV	
V _{RE4}	Radiated emissions voltage, band 4	500–1000	5	dBµV	
V_{RE_IEC}	IEC level	0.15–1000	М	—	2, 3

- Determined according to IEC Standard 61967-1, Integrated Circuits Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions – TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.
- 2. V_{DD} = 3.3 V, T_A = 25 °C, f_{OSC} = 10 MHz (crystal), f_{SYS} = 50 MHz, f_{BUS} = 25 MHz
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions TEM Cell and Wideband TEM Cell Method

5.3.2 General switching specifications

These general purpose specifications apply to all signals configured for GPIO, UART, and I²C signals.

Symbol	Description	Min.	Max.	Unit	Notes
	GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path	1.5	—	Bus clock cycles	1
	GPIO pin interrupt pulse width (digital glitch filter disabled) — Asynchronous path	16	_	ns	2
	External reset pulse width (digital glitch filter disabled)	100	—	ns	2
	Port rise and fall time—Low (All pins) and high drive (only PTC2) strength				3
	Slew disabled	_	8	ns	
	• $1.71 \le V_{DD} \le 2.7 \text{ V}$	_	5	ns	
	• $2.7 \le V_{DD} \le 3.6 \text{ V}$				
	Slew enabled	_	27	ns	
	• $1.71 \le V_{DD} \le 2.7 \text{ V}$	_	16	ns	
	• $2.7 \le V_{DD} \le 3.6 \text{ V}$			_	

Table 10. General switching specifications

1. The greater synchronous and asynchronous timing must be met.

2. This is the shortest pulse that is guaranteed to be recognized.

3. Only PTC2 has high drive capability and load is 75 pF, other pins load (low drive) is 25 pF.

5.4 Thermal specifications

5.4.1 Thermal operating requirements

Table 11. Thermal operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
TJ	Die junction temperature	-40	105	°C	
T _A	Ambient temperature	-40	85	°C	1

1. Maximum T_A can be exceeded only if the user ensures that T_J does not exceed the maximum. The simplest method to determine T_J is: $T_J = T_A + \theta_{JA} \times chip$ power dissipation

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
∆f _{ints_t}		internal reference clock) over voltage and	—	+0.5/-0.7	_	%	
Δf_{ints_t}		internal reference clock) over fixed voltage and perature range	-2	_	+2	%	
f _{ints_t}	Internal reference user trimmed	e frequency (slow clock) —	31.25	—	39.0625	kHz	
$\Delta_{fdco_res_t}$		nmed average DCO output d voltage and temperature — nd SCFTRIM	_	± 0.3	± 0.6	%f _{dco}	1
Δf_{dco_t}	Total deviation of trimmed average DCO output frequency over voltage and temperature		_	+0.5/-0.7		%f _{dco}	1
Δf_{dco_t}	Total deviation of trimmed average DCO output frequency over fixed voltage and temperature range of 0–70°C		_	± 0.4		%f _{dco}	1
f _{intf_ft}	Internal reference frequency (fast clock) — factory trimmed at nominal VDD and 25°C			4	—	MHz	
Δf_{intf_t}	Total deviation of internal reference frequency (fast clock) over voltage and temperature — factory trimmed at nominal VDD and 25°C		_	+1/-2	_	%	
f _{intf_t}		e frequency (fast clock) — nominal VDD and 25 °C	3	—	5	MHz	
f _{loc_low}	Loss of external of RANGE = 00	clock minimum frequency —	(3/5) x f _{ints_t}	—	_	kHz	
f _{loc_high}	Loss of external of RANGE = 01, 10	clock minimum frequency — , or 11	(16/5) x f _{ints_t}	—	—	kHz	
			FLL			ł	
f _{dco}	DCO output frequency range	Low-range (DRS=00) 640 × f _{ints_t}	20	20.97	22	MHz	2, 3
		Mid-range (DRS=01) 1280 × f _{ints_t}	40	41.94	45	MHz	
		Mid-high range (DRS=10) 1920 × f _{ints_t}	60	62.91	67	MHz	
		High-range (DRS=11) 2560 × f _{ints_t}	80	83.89	90	MHz	

Table 18. MCG specifications (continued)

Table continues on the next page...

rempheral operating requirements and behaviors

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
f _{dco_t_DMX32}	DCO output	Low-range (DRS=00)	—	23.99	—	MHz	4, 5, 6
	frequency	$732 \times f_{ints_t}$					
		Mid-range (DRS=01)	—	47.97	—	MHz	
		$1464 \times f_{ints_t}$					
		Mid-high range (DRS=10)	—	71.99	—	MHz	
		$2197 \times f_{ints_t}$					
		High-range (DRS=11)	—	95.98	—	MHz	
		$2929 \times f_{ints_t}$					
J _{cyc_fll}	FLL period jitter		—	70	140	ps	7
t _{fll_acquire}	FLL target freque	ency acquisition time	—	_	1	ms	8
			PLL				
f _{vco}	VCO operating fr	requency	11.71875	12.288	14.6484375	MHz	
I _{pll}	PLL operating cu		_	300	_	μA	9
	 IO 3.3 V ct Max core v 	oltage current		100		•	
f _{pll_ref}	PLL reference fre	equency range	31.25	32.768	39.0625	kHz	
J _{cyc_pll}	PLL period jitter	(RMS)					10
	• f _{vco} = 12 M	Hz			700	ps	
D _{lock}	Lock entry freque	ency tolerance	± 1.49	_	± 2.98	%	11
D _{unl}	Lock exit frequer	ncy tolerance	± 4.47		± 5.97	%	
t _{pll_lock}	Lock detector de	tection time	—	_	150 × 10 ⁻⁶ + 1075(1/ f _{pll_ref})	S	12

Table 18. MCG specifications (continued)

1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).

- 2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.
- 3. Chip max freq is 5075 MHz, so Mid-range with DRS = 10 and High-range of DCO cannot be used and should not be configured.
- 4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.
- 5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
- 6. Chip max freq is 5075 MHz, so Mid-range with DRS = 10 and High-range of DCO cannot be used and should not be configured.
- 7. This specification is based on standard deviation (RMS) of period or frequency.
- 8. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 9. Excludes any oscillator currents that are also consuming power while PLL is in operation.
- 10. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.
- 11. Will be updated later
- This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

6.2.2.2 Oscillator frequency specifications Table 20. Oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal or resonator frequency — low- frequency mode (MCG_C2[RANGE]=00)	32		40	kHz	
f _{osc_hi_1}	Oscillator crystal or resonator frequency — high- frequency mode (low range) (MCG_C2[RANGE]=01)	1	_	8	MHz	
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	8	_	32	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)	—	—	48	MHz	1, 2
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)	_		_	ms	3, 4
	Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)	_		_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0)	_	0.6	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1)	_	1	_	ms	

1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.

2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency.

3. Proper PC board layout procedures must be followed to achieve specifications.

4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set.

6.2.3 32 kHz oscillator electrical characteristics

6.2.3.1 32 kHz oscillator DC electrical specifications Table 21. 32kHz oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{BAT}	Supply voltage	1.71	—	3.6	V
R _F	Internal feedback resistor	_	100	—	MΩ
C _{para}	Parasitical capacitance of EXTAL32 and XTAL32	_	5	7	pF
V _{pp} ¹	Peak-to-peak amplitude of oscillation	_	0.6	_	V

1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to required oscillator components and must not be connected to any other devices.

rempheral operating requirements and behaviors

6.4.1 ADC electrical specifications

All ADC channels meet the 12-bit single-ended accuracy specifications.

6.4.1.1 16-bit ADC operating conditions Table 27. 16-bit ADC operating conditions

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V _{DDA}	Supply voltage	Absolute	1.71		3.6	V	
ΔV_{DDA}	Supply voltage	Delta to V _{DD} (V _{DD} – V _{DDA})	-100	0	+100	mV	2
ΔV_{SSA}	Ground voltage	Delta to V _{SS} (V _{SS} – V _{SSA})	-100	0	+100	mV	2
V_{REFH}	ADC reference voltage high		1.13	V _{DDA}	V _{DDA}	V	
V _{REFL}	ADC reference voltage low		V _{SSA}	V _{SSA}	V _{SSA}	V	
V _{ADIN}	Input voltage		V _{REFL}	_	V _{REFH}	V	_
C _{ADIN}	Input capacitance	16-bit mode	_	8	10	pF	_
		 8-bit / 10-bit / 12-bit modes 	_	4	5		
R _{ADIN}	Input series resistance			2	5	kΩ	
R _{AS}	Analog source resistance (external)	12-bit modes f _{ADCK} < 4 MHz	_	_	5	kΩ	3
f _{ADCK}	ADC conversion clock frequency	≤ 12-bit mode	1.0		18.0	MHz	4
f _{ADCK}	ADC conversion clock frequency	16-bit mode	2.0	_	12.0	MHz	4
C _{rate}	ADC conversion rate	≤ 12-bit modes					5
	Tale	No ADC hardware averaging	20.000	—	818.330	Ksps	
		Continuous conversions enabled, subsequent conversion time					
C _{rate}	ADC conversion	16-bit mode					5
	rate	No ADC hardware averaging Continuous conversions enabled, subsequent conversion time	37.037	_	461.467	Ksps	

1. Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production.

2. DC potential difference.

3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The R_{AS}/C_{AS} time constant should be kept to < 1 ns.

4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.

5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.

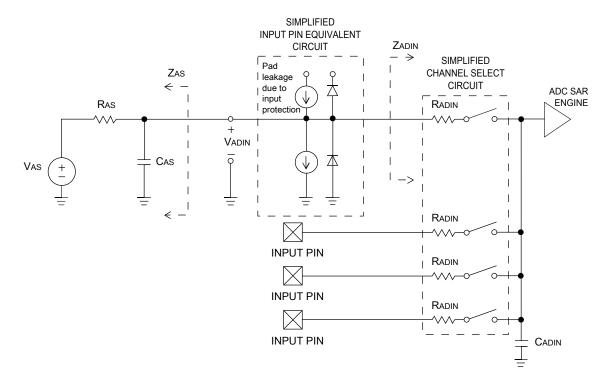


Figure 2. ADC input impedance equivalency diagram

6.4.1.2 16-bit ADC electrical characteristics

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
I _{DDA_ADC}	Supply current		0.215	_	1.7	mA	3
	ADC	• ADLPC = 1, ADHSC = 0	1.2	2.4	3.9	MHz	$t_{ADACK} = 1/$
	asynchronous clock source	• ADLPC = 1, ADHSC = 1	2.4	4.0	6.1	MHz	f _{ADACK}
† _{ADACK}		• ADLPC = 0, ADHSC = 0	3.0	5.2	7.3	MHz	
		• ADLPC = 0, ADHSC = 1	4.4	6.2	9.5	MHz	
	Sample Time	See Reference Manual chapter	for sample t	imes			1
TUE	Total unadjusted	12-bit modes	_	±4	±6.8	LSB ⁴	5
	error	 <12-bit modes 	—	±1.4	±2.1		
DNL	Differential non-	12-bit modes		±0.7	-1.1 to	LSB ⁴	5
linearity	 <12-bit modes 	—	±0.2	+1.9 -0.3 to 0.5			
INL	Integral non- linearity	12-bit modes		±1.0	-2.7 to +1.9	LSB ⁴	5
		• <12-bit modes	_	±0.5	–0.7 to +0.5		

Table continues on the next page...

Symbo I	Description	Conditions	Min	Typ ¹	Мах	Unit	Notes
VIN _{diff}	Input range	Differential		+/- 500		mV	
		Single Ended		+/- 250		mV	
SNR	Signal to Noise Ratio	Normal Mode				dB	
		 f_{IN}=50Hz; common mode=0V, V_{pp}= 500mV (differential ended) f_{IN}=50Hz; common mode=0V, V_{pp}= 500mV (full range se.) 	88 76	90 78			
		Low-Power Mode • f_{IN} =50Hz; common mode=0V, V_{pp} =500mV (diff.) • f_{IN} =50Hz; common mode=0V, V_{pp} =500mV (full range se.)					
∆Gain _{Te} ^{mp}	Gain Temperate Drift - Gain error caused by temperature drifts ²	 Gain bypassed Vpp = 500 mV (differential) PGA bypassed Vpp = 500 mV (differential), VCM = 0 V 			55	ppm/ºC	
∆Offset _{Temp}	Offset Temperate Drift - Offset error caused by temperature drifts ³	 Gain bypassed Vpp = 500 mV (differential), VCM = 0 V 			30	ppm/ºC	
SINAD	Signal-to-Noise + Distortion	Normal Mode				dB	
	Ratio	 f_{IN}=50Hz; common mode=0V, V_{pp}= 500mV (diff.) f_{IN}=50Hz; common mode=0V, V_{pp}= 500mV (full range se.) 		80			
		Low-Power Mode • f_{IN} =50Hz; common mode=0V, V_{pp} =500mV (diff.) • f_{IN} =50Hz; common mode=0V, V_{pp} =500mV (full range se.)		74			
CMMR	Common Mode Rejection Ratio	 f_{IN}=50Hz; common mode=0V, V_{id}=100 mV 		90		dB	
PSRR _A c	AC Power Supply Rejection Ratio	Gain=01, VCC = 3V ± 100mV, f _{IN} = 50 Hz		60		dB	
XT	Crosstalk	Gain=01, V _{id} = 500 mV, f _{IN} = 50 Hz			-100	dB	
f _{MCLK}	Modulator Clock Frequency	Normal Mode	0.03		6.5	MHz	
	Range	Low-Power Mode	0.03		1.6		
I _{DDA_AD} C	Current Consumption by ADC (each channel)	Normal Mode (f _{MCLK} = 6.144 MHz, OSR= 2048)			1.4	mA	
		Low-Power Mode (f _{MCLK} = 0.768MHz, OSR= 256)			0.5		
R _{as}	Equivalent input impedance at normal operating mode (6.144 MHz)	PGA disabled		73		kΩ	
' 'as	at normal operating mode					N12	

Table 35. $\Sigma \Delta$ ADC standalone specifications (continued)

Peripheral operating requirements and behaviors

- Typical values assume VDDA = 3.0 V, Temp = 25°C, f_{MCLK} = 6.144 MHz, OSR = 2048 for Normal mode and f_{MCLK} = 768 kHz, OSR = 256 for Low-Power Mode unless otherwise stated. Typical values are for reference only and are not tested in production.
- 2. Represent combined gain temperature drift of the SD ADC, and Internal 1.2 VREF blocks.
- 3. Represent combined offset temperature drift of the SD ADC, and Internal 1.2 VREF blocks; Defined by shorting both differential inputs to ground.

6.4.4.3 External modulator interface

The external modulator interface on this device comprises of a Clock signal and 1-bit data signal. Depending on the modulator device being used the interface works as follows:

- Clock supplied to external modulator which drives data on rising edge and the KM device captures it on falling edge or next rising edge.
- Clock and data are supplied by external modulator and KM device can sample it on falling edge or next rising edge.

Depending on control bit in AFE, the sampling edge is changed.

6.5 Timers

See General switching specifications.

6.6 Communication interfaces

6.6.1 I2C switching specifications

See General switching specifications.

6.6.2 UART switching specifications

See General switching specifications.

rempheral operating requirements and behaviors

6.6.3 SPI switching specifications

The Serial Peripheral Interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following table provides some reference values to be met on SoC.

Description					
Description	Min.	Max.	Unit	Notes	
Frequency of operation (F _{sys})	_	50	MHz	1	
SCK frequency	2	12.5	MHz	3	
MasterSlave		12.5	Mhz		
SCK Duty Cycle	50%	—			
Data Setup Time (inputs, tSUI)	25		ns		
Master					
Slave	3				
Input Data Hold Time (inputs, tHI) Master 	0		ns		
Master Slave	1				
	•		n		
Data hold time (outputs, tHO) Master 	0		ns		
• Slave	0				
Data Valid Out Time (after SCK edge, tDVO)			ns		
Master	13		_		
Slave	28				
Rise time input	1		ns		
Master					
Slave	1				
Fall time input	1		ns		
Master	1				
Slave	I				
Rise time output	8.9		ns		
MasterSlave	8.9				
Fall time outputMaster	7.8		ns		
Slave	7.8				

Table 36. SPI switching characteristics at 2.7 V (2.7 - 3.6)

1. SPI modules will work on core clock.

2. F_{sys}/(Max Divider Value from registers)

3. $F_{SYS}/2$ in Master mode and $F_{SYS}/4$ in Slave mode. $F_{SYS}/4$ in Master as well as Slave Modes, where $F_{SYS}=50$ Mhz

NOTE

The values assumed for input transition and output load are: Input transition = 1 ns Output load = 50 pF

Table 37. SPI switching characteristics at 1.7 V (1.7 - 3.6)

Description	Min.	Max.	Unit	Notes
Frequency of operation (F _{sys})		50	MHz	

Table continues on the next page ...

Description	Min.	Max.	Unit	Notes
SCK frequency Master Slave 		9	MHz Mhz	
SCK Duty Cycle	50%			
Data Setup Time (inputs, tSUI) • Master • Slave	42 3.5		ns	
Input Data Hold Time (inputs, tHI) • Master • Slave	0		ns	
Data hold time (outputs, tHO) • Master • Slave	-3 0		ns	
Data Valid Out Time (tDVO) • Master • Slave	16 44		ns	1
Rise time input • Master • Slave	1		ns	
Fall time input • Master • Slave	1		ns	
Rise time output • Master • Slave	14.4		ns	
Fall time output • Master • Slave	12.4 12.4		ns	

Table 37. SPI switching characteristics at 1.7 V (1.7 - 3.6) (continued)

1. SCK frequency of 9 Mhz is applicable only in the case that the input setup time of the device outside is not more than 11.5 ns, else the frequency would need to be lowered.

The following table represents SPI Switching specification in OD cells

Table 38.	SPI switching chara	acteristics at 1.7 V	(1.7 - 3.6)
-----------	---------------------	----------------------	--------------

Description	Min.	Max.	Unit	Notes
Data Setup Time (inputs, tSUI) Master 	51		ns	
Slave	4			
Input Data Hold Time (inputs, tHI) Master 	0		ns	
Slave	1			
Data hold time (outputs, tHO) Master 	-15		ns	
Slave	0			
Data Valid Out Time (tDVO) Master 	61		ns	
Slave	93			

Table continues on the next page...

Description	Min.	Max.	Unit	Notes
Rise time input Master 	1		ns	
Slave	1			
Fall time input Master 	1		ns	
Slave	1			
Rise time output • Master	30.4		ns	
Slave	30.4			
Fall time output Master 	33.5		ns	
• Slave	29.0			

Table 38. SPI switching characteristics at 1.7 V (1.7 - 3.6) (continued)

Table 39. SPI switching characteristics at 2.7 V (2.7 - 3.6)

Description	Min.	Max.	Unit	Notes
Data Setup Time (inputs, tSUI) Master 	29		ns	
Slave	4			
Input Data Hold Time (inputs, tHI) Master 	0		ns	
Slave	1			
Data hold time (outputs, tHO) • Master	0		ns	
Slave	0			
Data Valid Out Time (after SCK edge, tDVO) • Master	49		ns	
Slave	49			
Rise time input Master 	1		ns	
• Slave	1			
Fall time input Master 	1		ns	
Slave	1			
Rise time output Master 	17.3		ns	
• Slave	17.3			
Fall time output Master 	16.6		ns	
Slave	16.0			

6.7 Human-Machine Interfaces (HMI)

6.7.1 LCD electrical characteristics

	I	able	40.	LCD	electricals
--	---	------	-----	-----	-------------

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{Frame}	LCD frame frequency	28	30	58	Hz	
C _{LCD}	LCD charge pump capacitance — nominal value	_	100	_	nF	1
C _{BYLCD}	LCD bypass capacitance — nominal value	—	100	_	nF	1
C _{Glass}	LCD glass capacitance	—	2000	8000	pF	2
VIREG	V _{IREG}					3
	HREFSEL=0, RVTRIM=1111	_	1.11	_	v	
	HREFSEL=0, RVTRIM=1000	_	1.01	_	v	
	HREFSEL=0, RVTRIM=0000	—	0.91	_	v	
Δ.				3.0	9/ M	
Δ_{RTRIM}	V _{IREG} TRIM resolution		_	3.0	% V _{IREG}	
IVIREG	V _{IREG} current adder — RVEN = 1	—	1	—	μA	4
I _{RBIAS}	RBIAS current adder	_	15	_	μA	
	 LADJ = 10 or 11 — High load (LCD glass capacitance ≤ 8000 pF) 	_	3	_	μA	
	 LADJ = 00 or 01 — Low load (LCD glass capacitance ≤ 2000 pF) 					
VLL2	VLL2 voltage					
	• HREFSEL = 0	2.0 – 5%	2.0	_	v	
VLL3	VLL3 voltage					
		3.0 – 5%	3.0	_	V	

1. The actual value used could vary with tolerance.

2. For highest glass capacitance values, LCD_GCR[LADJ] should be configured as specified in the LCD Controller chapter within the device's reference manual.

3. V_{IREG} maximum should never be externally driven to any level other than V_{DD} - 0.15 V.

4. 2000 pF load LCD, 32 Hz frame frequency.

NOTE

KM family devices have a 1/3 bias controller that works with a 1/3 bias LCD glass. To avoid ghosting, the LCD OFF threshold should be greater than VLL1 level. If the LCD glass has an OFF threshold less than VLL1 level, use the internal VREG mode and generate VLL1 internally using RVTRIM option. This can reduce VLL1 level to allow for a lower OFF threshold LCD glass.

7 Dimensions

7.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to freescale.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number			
44-pin LGA	98ASA00239D			
64-pin LQFP	98ASS23234W			
100-pin LQFP	98ASS23308W			

8 Pinout

NOTE

VSS also connects to flag on 44 LGA.

8.1 Package Types

KM family of devices shall support the following packages options:

- 100-pin LQFP (14 x 14 mm²)
- 64-pin LQFP (10 x 10 mm²)
- 44-pin LGA (5 x 5 mm²)

NOTE

Pin muxing selection between TAMPER0 and WKUP is done using control bit in RTC registers.

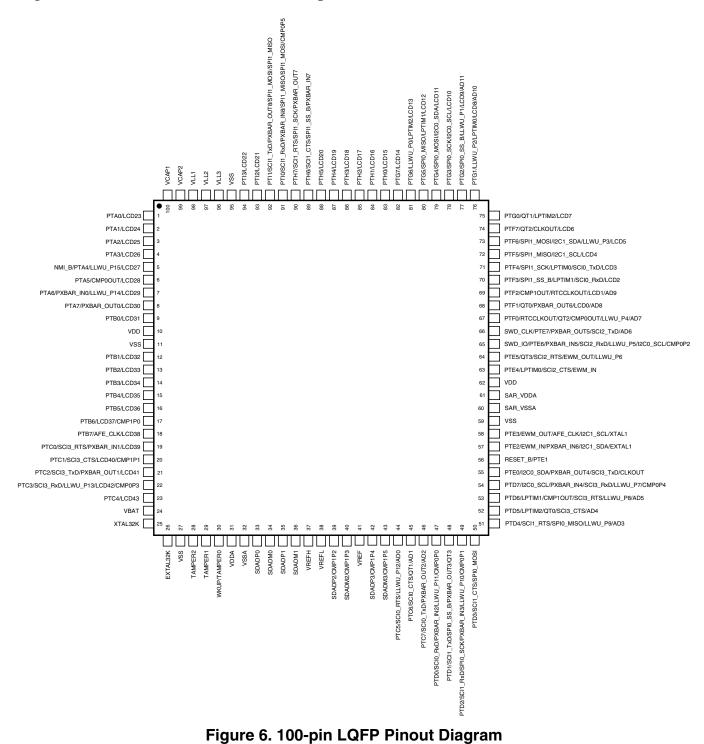
NOTE

All pin muxing configurations reset to default value on any reset assertion (reset asserts on VLLSx mode exit).

When RESET pin is used as GPIO and pulled low; an internal reset (e.g. VLLSx mode exit or WDOG reset, etc) will make this pin function as RESET (default function) and since it is pulled low, it will appear as if pin reset is asserted and will cause full chip reset.

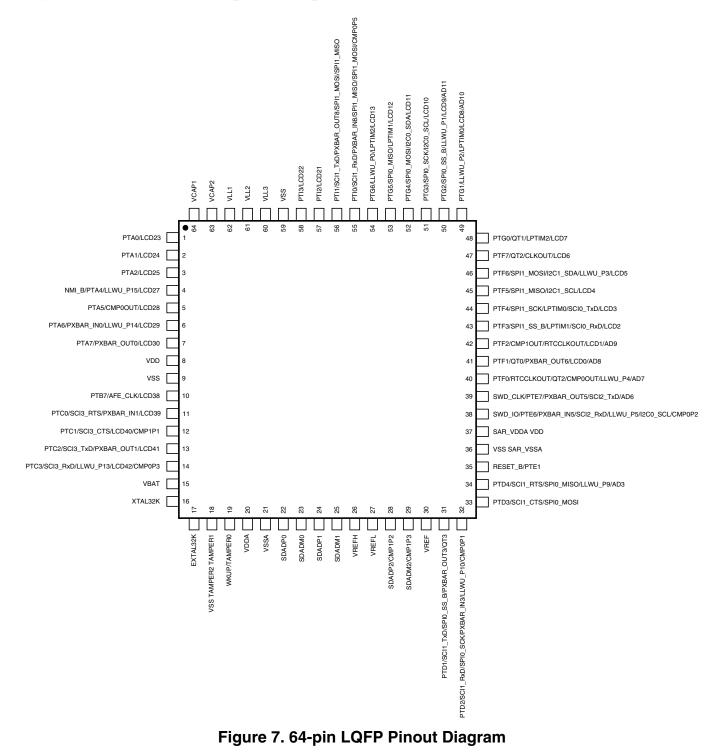
NOTE

- For devices other than MKMx4, the SDADP3 and SDADM3 functions on the corresponding pins are disabled.
- All input pins including TAMPER pins must be pulled up or down to avoid extra power consumption.


8.2 KM Signal Multiplexing and Pin Assignments

100 QFP	64 QFP	44 LGA	DEFAULT	ALTO	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
1	1	-	Disabled	LCD23	PTA0						
2	2	_	Disabled	LCD24	PTA1						
3	3	-	Disabled	LCD25	PTA2						
4	_	_	Disabled	LCD26	PTA3						
5	4	1	NMI_B	LCD27	PTA4	LLWU_P15					NMI_B
6	5	2	Disabled	LCD28	PTA5	CMP0OUT					
7	6	3	Disabled	LCD29	PTA6	PXBAR_IN0	LLWU_P14				
8	7	4	Disabled	LCD30	PTA7	PXBAR_OUT0					
9	_	-	Disabled	LCD31	PTB0						
10	8	5	VDD	VDD							
11	9	6	VSS	VSS							
12	_	-	Disabled	LCD32	PTB1						
13	_	_	Disabled	LCD33	PTB2						
14	_	_	Disabled	LCD34	PTB3						
15	_	_	Disabled	LCD35	PTB4						
16	_	-	Disabled	LCD36	PTB5						
17	-	-	Disabled	LCD37/ CMP1P0	PTB6						
18	10	-	Disabled	LCD38	PTB7	AFE_CLK					
19	11	_	Disabled	LCD39	PTC0	SCI3_RTS	PXBAR_IN1				
20	12	-	Disabled	LCD40/ CMP1P1	PTC1	SCI3_CTS					
21	13	-	Disabled	LCD41	PTC2	SCI3_TxD	PXBAR_OUT1				
22	14	-	Disabled	LCD42/ CMP0P3	PTC3	SCI3_RxD	LLWU_P13				
23	_	-	Disabled	LCD43	PTC4						
24	15	7	VBAT	VBAT							
25	16	8	XTAL32K	XTAL32K							
26	17	9	EXTAL32K	EXTAL32K							
27	18	10	VSS	VSS							
28	18	10	TAMPER2	TAMPER2							
29	18	10	TAMPER1	TAMPER1							
30	19	11	WKUP	TAMPER0							

8.3.1 100-pin LQFP


Figure below shows the KM 100 LQFP pinouts.

8.3.2 64-pin LQFP

Figure below shows the 64-pin LQFP pinouts.

