E·XFL

NXP USA Inc. - MKM33Z128ACLL5 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	DMA, LCD, WDT
Number of I/O	68
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 12x16b, 4x24b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mkm33z128acll5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Communication interfaces
 - One SPI module with FIFO support (supports 5V AMR operation)
 - One SPI module without FIFO (no AMR operation)
 - Two I2C modules with SMBus support
 - Two UART modules with ISO7816 support and Two UART without ISO 7816 support
 - Any one SCI can be used for IrDA operation. 5V AMR support on one SCI.

1 Ordering parts

1.1 Determining valid order-able parts

Valid order-able part numbers are provided on the web. To determine the order-able part numbers for this device, go to freescale.com and perform a part number search for the following device numbers:

- MKM14Z64ACHH5
- MKM14Z128ACHH5
- MKM33Z64ACLH5
- MKM33Z128ACLH5
- MKM33Z64ACLL5
- MKM33Z128ACLL5
- MKM34Z128ACLL5

NOTE

It is recommended to order the RevA part numbers for the KM parts.

2 Part identification

2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

2.2 Format

Part numbers for this device have the following format:

Q K M S A FFF R T PP CC N

2.3 Fields

Following table lists the possible values for each field in the part number (not all combinations are valid):

Terminology and guidelines

Field	Description	Values
Q	Qualification status	 M = Fully qualified, general market flow P = Pre-qualification (Proto)
К	Main family	• K = Kinetis
М	Sub family	 M1 = Metering only (No LCD support) M3 = Metering with LCD support
S	Number of Sigma Delta (SD) ADC	 3 = 2 SD ADC with PGA and 1 SD ADC 4 = 2 SD ADC with PGA and 2 SD ADC
A	Key attribute	• Z = Cortex-M0+
FFF	Program flash memory size	 64 = 64 KB 128 = 128 KB
R	Silicon revision	 Z = Initial (Blank) = Main A = Second revision
Т	Temperature range (°C)	• C = -40 to 85
PP	Package identifier	 HH = 44 LGA (5 mm x 5 mm) LH = 64 LQFP (10 mm x 10 mm) LL = 100 LQFP (14 mm x 14 mm)
CC	Maximum CPU frequency (MHz)	• 5 = 50 MHz
N	Packaging type	 R = Tape and reel (Blank) = Trays

2.4 Example

This is an example part number:

• MKM34Z128CLL5

3 Terminology and guidelines

3.1 Definition: Operating requirement

An *operating requirement* is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip.

3.1.1 Example

This is an example of an operating requirement:

reminology and guidelines

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	0.9	1.1	V

3.2 Definition: Operating behavior

Unless otherwise specified, an *operating behavior* is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions.

3.2.1 Example

This is an example of an operating behavior:

Symbol	Description	Min.	Max.	Unit
I _{WP}	Digital I/O weak pullup/ pulldown current	10	130	μA

3.3 Definition: Attribute

An *attribute* is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.

3.3.1 Example

This is an example of an attribute:

Symbol	Description	Min.	Max.	Unit
CIN_D	Input capacitance: digital pins		7	pF

3.4 Definition: Rating

A *rating* is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:

4.4 Voltage and current operating ratings

Symbol	Description	Min.	Max.	Unit
V _{DD}	Digital supply voltage	-0.3	3.6	V
V _{DIO}	Digital input voltage (except RESET, EXTAL, and XTAL)	-0.3	V _{DD} + 0.3	V
V _{DTamper}	Tamper input voltage	-0.3	V _{BAT} + 0.3	V
V _{AIO}	Analog ¹ , RESET, EXTAL, and XTAL input voltage	-0.3	V _{DD} + 0.3	V
Ι _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V _{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V
V _{BAT}	RTC battery supply voltage	-0.3	3.6	V

1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.

5 General

5.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

The midpoint is V_{IL} + $(V_{IH} - V_{IL})/2$.

Figure 1. Input signal measurement reference

5.2 Nonswitching electrical specifications

General

5.2.1 Voltage and current operating requirements

Table 1. Voltage and current operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
V _{DD}	Supply voltage when AFE is operational	2.7	3.6	V	
	Supply voltage when AFE is NOT operational	1.71	3.6	V	
V _{DDA}	Analog supply voltage	2.7	3.6	V	
$V_{DD} - V_{DDA}$	V _{DD} -to-V _{DDA} differential voltage	-0.1	0.1	V	
$V_{SS} - V_{SSA}$	V _{SS} -to-V _{SSA} differential voltage	-0.1	0.1	V	
V _{BAT}	RTC battery supply voltage	1.71	3.6	V	1
V _{IH}	Input high voltage				
	• $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	$0.7 \times V_{DD}$	_	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	$0.75 \times V_{DD}$	_	V	
VIL	Input low voltage				
	• 2.7 V \leq V _{DD} \leq 3.6 V	_	$0.35 \times V_{DD}$	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	_	$0.3 \times V_{DD}$	V	
V _{HYS}	Input hysteresis	$0.06 \times V_{DD}$	_	V	
I _{ICDIO}	Digital pin negative DC injection current — single pin				
	• V _{IN} < V _{SS} -0.3V	-5	_	mA	
I _{ICAIO}	Analog ² , EXTAL, and XTAL pin DC injection current —				
		0		mA	
	• $V_{IN} < V_{SS}$ -0.3V (Negative current injection)	-3	_		
	 V_{IN} > V_{DD}+0.3V (Positive current injection) 		+3		
I _{ICcont}	Contiguous pin DC injection current —regional limit,				
	Includes sum of negative injection currents or sum of positive injection currents of 16 contiguous pins				
	Negative current injection	-25	_	mA	
	Desitive current injection	—	+25		
V _{RFVBAT}	V_{BAT} voltage required to retain the VBAT register file	V _{POR_VBAT}	—	V	

1. V_{BAT} always needs to be there for the chip to be operational.

2. Analog pins are defined as pins that do not have an associated general purpose I/O port function.

5.2.2 LVD and POR operating requirements

Table 2. V_{DD} supply LVD and POR operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR}	Falling VDD POR detect voltage	0.8	1.1	1.5	V	
V _{LVDH}	Falling low-voltage detect threshold — high range (LVDV=01)	2.48	2.56	2.64	V	

Table continues on the next page ...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	Low-voltage warning thresholds — high range					1
V _{LVW1H}	Level 1 falling (LVWV=00)	2.62	2.70	2.78	V	
V _{LVW2H}	Level 2 falling (LVWV=01)	2.72	2.80	2.88	V	
V _{LVW3H}	Level 3 falling (LVWV=10)	2.82	2.90	2.98	V	
V _{LVW4H}	Level 4 falling (LVWV=11)	2.92	3.00	3.08	v	
V _{HYSH}	Low-voltage inhibit reset/recover hysteresis — high range	_	80	_	mV	
V _{LVDL}	Falling low-voltage detect threshold — low range (LVDV=00)	1.54	1.60	1.66	V	
	Low-voltage warning thresholds — low range					1
V _{LVW1L}	Level 1 falling (LVWV=00)	1.74	1.80	1.86	V	
V _{LVW2L}	Level 2 falling (LVWV=01)	1.84	1.90	1.96	V	
V _{LVW3L}	Level 3 falling (LVWV=10)	1.94	2.00	2.06	v	
V _{LVW4L}	Level 4 falling (LVWV=11)	2.04	2.10	2.16	v	
V _{HYSL}	Low-voltage inhibit reset/recover hysteresis — low range	_	60		mV	
V _{BG}	Bandgap voltage reference	0.97	1.00	1.03	V	
t _{LPO}	Internal low power oscillator period — factory trimmed	900	1000	1100	μs	

Table 2. V_{DD} supply LVD and POR operating requirements (continued)

1. Rising threshold is the sum of falling threshold and hysteresis voltage

Table 3. VBAT power operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR_VBAT}	Falling VBAT supply POR detect voltage	0.8	1.1	1.5	V	

5.2.3 Voltage and current operating behaviors Table 4. Voltage and current operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{OH}	Output high voltage — high-drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = 20 mA	V _{DD} – 0.5	_	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = 10 \text{ mA}$	V _{DD} – 0.5	_	V	
	Output high voltage — low-drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = 5 mA	V _{DD} – 0.5	_	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = 2.5 \text{ mA}$	V _{DD} – 0.5	_	V	
I _{OHT}	Output high current total for all ports		100	mA	

Table continues on the next page...

General

5.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.freescale.com.
- 2. Perform a keyword search for "EMC design."

5.2.8 Capacitance attributes

Table 8. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN_A}	Input capacitance: analog pins	—	7	pF
C _{IN_D}	Input capacitance: digital pins		7	pF
C _{IN_D_io60}	Input capacitance: fast digital pins		9	pF

5.3 Switching specifications

5.3.1 Device clock specifications

Table 9. Device clock specifications

Symbol	Description	Min.	Max.	Unit	Notes
	Normal run mode	9	-	-	-
f _{SYS}	System and core clock		50	MHz	
f _{BUS}	Bus clock		25	MHz	
f _{FLASH}	Flash clock		25	MHz	
f _{AFE}	AFE Modulator clock		6.5	MHz	
	VLPR mode ¹		•		
f _{SYS}	System and core clock		2	MHz	
f _{BUS}	Bus clock		1	MHz	
f _{FLASH}	Flash clock		1	MHz	
f _{AFE}	AFE Modulator clock ²		1.6	MHz	

1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module.

2. AFE working in low-power mode.

6.1 Core modules

6.1.1 Single Wire Debug (SWD)

Table 12. SWD switching characteristics at 2.7 V (2.7-3.6 V)

Symbol	Description	Value	Unit	Notes
SWD CLK	Frequency of SWD operation	20	MHz	1
Inputs, tSUI	Data setup time	5	ns	1
inputs,tHI	Data hold time	0	ns	1
after clock edge, tDVO	Data valid Time	32	ns	1
tHO	Data Valid Hold	0	ns	1

1. Input transition assumed =1 ns. Output transition assumed = 50 pf.

Table 13. Switching characteristics at 1.7 V (1.7-3.6 V)

Symbol	Description	Value	Unit	Notes
SWD CLK	Frequency of SWD operation	18	MHz	
Inputs, tSUI	Data setup time	4.7	ns	
inputs,tHI	Data hold time	0	ns	
after clock edge, tDVO	Data valid Time	49.4	ns	2
tHO	Data Valid Hold	0	ns	

1. Frequency of SWD clock (18 Mhz) is applicable only in case the input setup time of the device outside is not more than 6.15 ns, else the frequency of SWD clock would need to be lowered.

6.1.2 Analog Front End (AFE)

AFE switching characteristics at (2.7 V-3.6 V)

Case1: Clock is coming In and Data is also coming In (XBAR ports timed with respect to the XBAR ports timed with respect to AFE clock defined at pad ptb[7] and pte[3])

Table 14. AFE switching characteristics (2.7 V-3.6 V)

Symbol	Description	Value	Unit	Notes
AFE CLK	Frequency of operation	10	MHz	1
Inputs, tSUI	Data setup time	5	ns	1
inputs,tHI	Data hold time	0	ns	1

1. Input Transition: 1ns. Output Load: 50 pf.

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
∆f _{ints_t}	Total deviation of frequency (slow of temperature	internal reference clock) over voltage and	—	+0.5/-0.7	_	%	
∆f _{ints_t}	Total deviation of frequency (slow of full operating tem	internal reference clock) over fixed voltage and perature range	-2	_	+2	%	
f _{ints_t}	Internal reference user trimmed	e frequency (slow clock) —	31.25	_	39.0625	kHz	
$\Delta_{fdco_res_t}$	Resolution of trim frequency at fixed using SCTRIM ar	_	± 0.3	± 0.6	%f _{dco}	1	
∆f _{dco_t}	Total deviation of output frequency temperature	Total deviation of trimmed average DCO output frequency over voltage and temperature		+0.5/-0.7		%f _{dco}	1
∆f _{dco_t}	Total deviation of output frequency temperature rang	_	± 0.4	_	%f _{dco}	1	
f _{intf_ft}	Internal reference factory trimmed a	_	4	_	MHz		
Δf_{intf_t}	Total deviation of internal reference frequency (fast clock) over voltage and temperature — factory trimmed at nominal VDD and 25°C		_	+1/-2		%	
f _{intf_t}	Internal reference user trimmed at r	e frequency (fast clock) — nominal VDD and 25 °C	3	—	5	MHz	
f _{loc_low}	Loss of external of RANGE = 00	clock minimum frequency —	(3/5) x f _{ints_t}	_	—	kHz	
f _{loc_high}	Loss of external of RANGE = 01, 10	clock minimum frequency — , or 11	(16/5) x f _{ints_t}	_	—	kHz	
			FLL				
f _{dco}	DCO output	Low-range (DRS=00)	20	20.97	22	MHz	2, 3
	frequency range	$640 \times f_{ints_t}$					
		Mid-range (DRS=01)	40	41.94	45	MHz	
		$1280 \times f_{ints_t}$					
		Mid-high range (DRS=10)	60	62.91	67	MHz	
		$1920 \times f_{ints_t}$					
		High-range (DRS=11)	80	83.89	90	MHz	
		$2560 \times f_{ints_t}$					

Table 18. MCG specifications (continued)

Table continues on the next page...

rempheral operating requirements and behaviors

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
f _{dco_t_DMX32}	DCO output	Low-range (DRS=00)	—	23.99	—	MHz	4, 5, 6
	frequency	$732 \times f_{ints_t}$					
		Mid-range (DRS=01)	—	47.97	_	MHz	
		$1464 \times f_{ints_t}$					
		Mid-high range (DRS=10)	_	71.99	—	MHz	
		$2197 \times f_{ints_t}$					
		High-range (DRS=11)	—	95.98	—	MHz	
		$2929 \times f_{ints_t}$					
J _{cyc_fll}	FLL period jitter		—	70	140	ps	7
t _{fll_acquire}	e FLL target frequency acquisition time		—	_	1	ms	8
			PLL				
f _{vco}	VCO operating fr	equency	11.71875	12.288	14.6484375	MHz	
I _{pll}	PLL operating cu	rrent	_	300	_	μA	9
	 Max core v 	roltage current		100			
f _{pll_ref}	PLL reference fre	equency range	31.25	32.768	39.0625	kHz	
J _{cyc_pll}	PLL period jitter ((RMS)					10
	• f _{vco} = 12 MHz				700	ps	
D _{lock}	Lock entry frequency tolerance		± 1.49	_	± 2.98	%	11
D _{unl}	Lock exit frequency tolerance		± 4.47		± 5.97	%	
t _{pll_lock}	Lock detector de	tection time	_	_	150 × 10 ⁻⁶ + 1075(1/ f _{pll_ref})	S	12

Table 18. MCG specifications (continued)

1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).

- 2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.
- 3. Chip max freq is 5075 MHz, so Mid-range with DRS = 10 and High-range of DCO cannot be used and should not be configured.
- 4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.
- 5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
- 6. Chip max freq is 5075 MHz, so Mid-range with DRS = 10 and High-range of DCO cannot be used and should not be configured.
- 7. This specification is based on standard deviation (RMS) of period or frequency.
- 8. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 9. Excludes any oscillator currents that are also consuming power while PLL is in operation.
- 10. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.
- 11. Will be updated later
- This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

Symbol	bol Description		Тур.	Max.	Unit	Notes
R _F	Feedback resistor — low-frequency, low-power mode (HGO=0)	_	_	_	MΩ	2, 4
	Feedback resistor — low-frequency, high-gain mode (HGO=1)	_	10		MΩ	
	Feedback resistor — high-frequency, low-power mode (HGO=0)	_	_		MΩ	
	Feedback resistor — high-frequency, high-gain mode (HGO=1)	_	1		MΩ	
R _S	Series resistor — low-frequency, low-power mode (HGO=0)		_		kΩ	
	Series resistor — low-frequency, high-gain mode (HGO=1)	_	200		kΩ	
	Series resistor — high-frequency, low-power mode (HGO=0)	_	—	_	kΩ	
	Series resistor — high-frequency, high-gain mode (HGO=1)					
	1 MHz resonator	_	6.6		kO	
	2 MHz resonator	_	3.3	_	kΩ	
	4 MHz resonator	_	0	_	kΩ	
	8 MHz resonator	_	0	_	kΩ	
	16 MHz resonator	_	0	_	kΩ	
	20 MHz resonator	_	0	_	kΩ	
	32 MHz resonator	_	0	_	kΩ	
V _{pp} ⁵	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1)	—	V _{DD}	—	V	

Table 19. Oscillator DC electrical specifications (continued)

- 1. V_{DD} =3.3 V, Temperature =25 °C
- 2. See crystal or resonator manufacturer's recommendation
- 3. C_x and C_y can be provided by using either integrated capacitors or external components.
- 4. When low-power mode is selected, R_F is integrated and must not be attached externally.
- 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other device.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{pgmchk}	Program Check execution time	—	—	45	μs	1
t _{rdrsrc}	Read Resource execution time	_	—	30	μs	1
t _{pgm4}	Program Longword execution time	_	65	145	μs	
t _{ersscr}	Erase Flash Sector execution time	_	14	114	ms	2
t _{rd1all}	Read 1s All Blocks execution time	_	—	1.8	ms	_
t _{rdonce}	Read Once execution time	_	—	25	μs	1
t _{pgmonce}	Program Once execution time	_	65	-	μs	—
t _{ersall}	Erase All Blocks execution time	_	88	650	ms	2
t _{vfykey}	Verify Backdoor Access Key execution time		_	30	μs	1

Table 24. Flash command timing specifications (continued)

1. Assumes 25 MHz flash clock frequency.

2. Maximum times for erase parameters based on expectations at cycling end-of-life.

6.3.1.3 Flash high voltage current behaviors Table 25. Flash high voltage current behaviors

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DD_PGM}	Average current adder during high voltage flash programming operation	—	2.5	6.0	mA
I _{DD_ERS}	Average current adder during high voltage flash erase operation		1.5	4.0	mA

6.3.1.4 Reliability specifications

Table 26. NVM reliability specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
	Progra	m Flash	-	_	-	
t _{nvmretp10k}	Data retention after up to 10 K cycles	5	50	_	years	—
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	100	_	years	—
n _{nvmcycp}	Cycling endurance	10 K	50 K	_	cycles	2

 Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.

2. Cycling endurance represents number of program/erase cycles at -40 °C \leq T_i \leq 125 °C.

6.4 Analog

rempheral operating requirements and behaviors

6.4.1 ADC electrical specifications

All ADC channels meet the 12-bit single-ended accuracy specifications.

6.4.1.1 16-bit ADC operating conditions Table 27. 16-bit ADC operating conditions

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V _{DDA}	Supply voltage	Absolute	1.71	_	3.6	V	_
ΔV_{DDA}	Supply voltage	Delta to V _{DD} (V _{DD} – V _{DDA})	-100	0	+100	mV	2
ΔV_{SSA}	Ground voltage	Delta to V _{SS} (V _{SS} – V _{SSA})	-100	0	+100	mV	2
V _{REFH}	ADC reference voltage high		1.13	V _{DDA}	V _{DDA}	V	
V _{REFL}	ADC reference voltage low		V _{SSA}	V _{SSA}	V _{SSA}	V	
V _{ADIN}	Input voltage		V _{REFL}	—	V _{REFH}	V	—
C _{ADIN}	Input capacitance	16-bit mode	_	8	10	pF	—
		 8-bit / 10-bit / 12-bit modes 	_	4	5		
R _{ADIN}	Input series resistance		_	2	5	kΩ	_
R _{AS}	Analog source resistance (external)	12-bit modes f _{ADCK} < 4 MHz	_		5	kΩ	3
f _{ADCK}	ADC conversion clock frequency	≤ 12-bit mode	1.0		18.0	MHz	4
f _{ADCK}	ADC conversion clock frequency	16-bit mode	2.0		12.0	MHz	4
C _{rate}	ADC conversion	≤ 12-bit modes					5
	rate	No ADC hardware averaging	20.000	_	818.330	Ksps	
		Continuous conversions enabled, subsequent conversion time					
C _{rate}	ADC conversion	16-bit mode					5
	rate	No ADC hardware averaging	37.037	—	461.467	Ksps	
		Continuous conversions enabled, subsequent conversion time					

1. Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production.

2. DC potential difference.

3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The R_{AS}/C_{AS} time constant should be kept to < 1 ns.

4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.

5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.

Peripheral operating requirements and behaviors

Figure 5. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)

6.4.3 Voltage reference electrical specifications

Table 30.	1.2 VREF	full-range	operating	requirements
-----------	----------	------------	-----------	--------------

Symbol	Description	Min.	Max.	Unit	Notes
V _{DDA}	Supply voltage	1.71 ¹	3.6	V	
T _A	Temperature	-40	85	°C	
CL	Output load capacitance	100		nF	2, 3

1. AFE is enabled.

- 2. C_L must be connected between VREFH and VREFL.
- The load capacitance should not exceed ±25% of the nominal specified C_L value over the operating temperature range of the device.

Table 31.	VREF full-range operating behaviors	
-----------	-------------------------------------	--

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
VREFH	Voltage reference output with factory trim at nominal V_{DDA} and temperature = 25 °C	1.1915	1.195	1.2027	V	

Table continues on the next page...

rempheral	operating	requirements	and	behaviors
-----------	-----------	--------------	-----	-----------

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
VREFH	Voltage reference output with — factory trim	1.1584	_	1.2376	V	
VREFH	Voltage reference output — user trim	1.178	_	1.202	V	
VREFL	Voltage reference output	0.38	0.4	0.42	V	
V _{step}	Voltage reference trim step	_	0.5	_	mV	
V _{tdrift}	Temperature drift when ICOMP = 0 across full temperature range	—	18	-	ppm/ºC	
	Temperature drift when ICOMP = 1 across full temperature range	_	10	_	ppm/°C	1
	Temperature drift when ICOMP = 1 across -40 °C to 70 °C	_	9	_	ppm/°C	1, 2
	Temperature drift when ICOMP = 1 across 0 $^{\circ}$ C to 50 $^{\circ}$ C	_	9	_	ppm/°C	1, 2
Ac	Aging coefficient	—	_	400	uV/yr	
I _{bg}	Bandgap only current	—	_	80	μA	2
l _{lp}	Low-power buffer current	—	_	0.19	μA	2
I _{hp}	High-power buffer current	_	_	0.5	mA	2
I _{LOAD}	VREF buffer current	—	_	1	mA	3
ΔV_{LOAD}	Load regulation				mV	2, 4
	• current = + 1.0 mA	_	2	_		
	• current = - 1.0 mA		5			
T _{stup}	Buffer startup time	—		20	ms	
V _{vdrift}	Voltage drift (VREFHmax -VREFHmin across the full voltage range)	—	0.5	_	mV	2

Table 31. VREF full-range operating behaviors (continued)

1. ICOMP=1 is recommended to get best temperature drift. CHOPEN bit = 1 is also recommended.

2. See the chip's Reference Manual for the appropriate settings of VREF Status and Control register.

3. See the chip's Reference Manual for the appropriate settings of SIM Miscellaneous Control Register.

4. Load regulation voltage is the difference between VREFH voltage with no load vs. voltage with defined load.

NOTE

Temperature drift per degree is ((VREFHmax-VREFHmin)/ (temperature range)/VREFHmin) in ppm/°C

Table 32. VREF limited-range operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
T _A	Temperature	0	50	°C	

Symbo I	Description	Conditions	Min	Typ ¹	Мах	Unit	Notes
E _{offset}	Offset Error	Gain=01, V _{pp} =1000 mV (full range diff.)			+/- 5	mV	
∆Offset _{Temp}	Offset Temperature Drift ³	Gain=01, V _{pp} =1000mV (full range diff.)			+/- 25	ppm/ºC	
∆Gain _{Te} ^{mp}	Gain Temperate Drift - Gain error caused by temperature drifts ⁴	 Gain=01, V_{pp}=500mV (differential ended) Gain=32, V_{pp}=15mV (differential ended) 			+/- 75	ppm/ºC	
PSRR _A c	AC Power Supply Rejection Ratio	Gain=01, VCC = 3V ± 100mV, f _{IN} = 50 Hz		60		dB	
ХТ	Crosstalk (with the input of the affected channel grounded)	Gain=01, V _{id} = 500 mV, f _{IN} = 50 Hz			-100	dB	
f _{MCLK}	Modulator Clock Frequency	Normal Mode	0.03		6.5	MHz	
	Range	Low-Power Mode	0.03		1.6		
I _{DDA_PG}	Current consumption by PGA (each channel)	Normal Mode (f _{MCLK} = 6.144 MHz, OSR= 2048)			2.6	mA	5
		Low-Power Mode (f _{MCLK} = 0.768MHz, OSR= 256)			0		
I _{DDA_AD} C	Current Consumption by ADC (each chanel)	Normal Mode (f _{MCLK} = 6.144 MHz, OSR= 2048)			1.4	mA	
		Low-Power Mode (f _{MCLK} = 0.768MHz, OSR= 256)			0.5		
R _{as}	Equivalent input impedance per single channel	PGA enabled		8		kΩ	

- Typical values assume VDDA = 3.0 V, Temp = 25°C, f_{MCLK} = 6.144 MHz, OSR = 2048 for Normal mode and f_{MCLK} = 768 kHz, OSR = 256 for Low-Power Mode unless otherwise stated. Typical values are for reference only and are not tested in production.
- 2. The full-scale input range in single-ended mode is 0.5Vpp
- 3. Represents combined offset temperature drift of the PGA, SD ADC and Internal 1.2 VREF blocks; Defined by shorting both differential inputs to ground.
- 4. Represents combined gain temperature drift of the PGA, SD ADC and Internal 1.2 VREF blocks.
- 5. PGA is disabled in low-power modes.

6.4.4.2 $\Sigma \triangle$ ADC Standalone specifications Table 35. $\Sigma \triangle$ ADC standalone specifications

Symbo I	Description	Conditions	Min	Typ ¹	Мах	Unit	Notes
f _{Nyq}	Input bandwidth	Normal Mode	1.5	1.5	1.5	kHz	
		Low-Power Mode	1.5	1.5	1.5		
V _{CM}	Input Common Mode Reference		0		0.8	V	

Table continues on the next page ...

100 QFP	64 QFP	44 LGA	DEFAULT	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
31	20	12	VDDA	VDDA							
32	21	13	VSSA	VSSA							
33	22	14	SDADPO	SDADP0							
34	23	15	SDADMO	SDADMO							
35	24	16	SDADP1	SDADP1							
36	25	17	SDADM1	SDADM1							
37	26	18	VREFH	VREFH							
38	27	19	VREFL	VREFL							
39	28	20	SDADP2/ CMP1P2	SDADP2/ CMP1P2							
40	29	21	SDADM2/ CMP1P3	SDADM2/ CMP1P3							
41	30	22	VREF	VREF							
42	-	24	SDADP3/ CMP1P4	SDADP3/ CMP1P4							
43	-	23	SDADM3/ CMP1P5	SDADM3/ CMP1P5							
44	_	-	Disabled	AD0	PTC5	SCI0_RTS	LLWU_P12				
45	_	-	Disabled	AD1	PTC6	SCI0_CTS	QT1				
46	_	-	Disabled	AD2	PTC7	SCI0_TxD	PXBAR_OUT2				
47	-	-	Disabled	CMP0P0	PTD0	SCI0_RxD	PXBAR_IN2	LLWU_P11			
48	31	-	Disabled		PTD1	SCI1_TxD	SPI0_SS_B	PXBAR_OUT3	QT3		
49	32	-	Disabled	CMP0P1	PTD2	SCI1_RxD	SPI0_SCK	PXBAR_IN3	LLWU_P10		
50	33	-	Disabled		PTD3	SCI1_CTS	SPI0_MOSI				
51	34	-	Disabled	AD3	PTD4	SCI1_RTS	SPI0_MISO	LLWU_P9			
52	Ι	Ι	Disabled	AD4	PTD5	LPTIM2	QT0	SCI3_CTS			
53	—	-	Disabled	AD5	PTD6	LPTIM1	CMP10UT	SCI3_RTS	LLWU_P8		
54	-	Ι	Disabled	CMP0P4	PTD7	I2C0_SCL	PXBAR_IN4	SCI3_RxD	LLWU_P7		
55	Ι	Ι	Disabled		PTE0	I2C0_SDA	PXBAR_OUT4	SCI3_TxD	CLKOUT		
56	35	25	RESET_B		PTE1						RESET_B
57	-	26	EXTAL1	EXTAL1	PTE2	EWM_IN	PXBAR_IN6	I2C1_SDA			
58	-	27	XTAL1	XTAL1	PTE3	EWM_OUT	AFE_CLK	I2C1_SCL			
59	36	28	VSS	VSS							
60	36	29	SAR_VSSA	SAR_VSSA							
61	37	30	SAR_VDDA	SAR_VDDA							
62	37	31	VDD	VDD							
63	-	-	Disabled		PTE4	LPTIM0	SCI2_CTS	EWM_IN			
64	-	-	Disabled		PTE5	QT3	SCI2_RTS	EWM_OUT	LLWU_P6		
65	38	32	SWD_IO	CMP0P2	PTE6	PXBAR_IN5	SCI2_RxD	LLWU_P5	I2C0_SCL		SWD_IO
66	39	33	SWD_CLK	AD6	PTE7	PXBAR_OUT5	SCI2_TxD		I2C0_SDA		SWD_CLK
67	40	-	Disabled	AD7	PTF0	RTCCLKOUT	QT2	CMP0OUT	LLWU_P4		

8.3.1 100-pin LQFP

Figure below shows the KM 100 LQFP pinouts.

8.3.2 64-pin LQFP

Figure below shows the 64-pin LQFP pinouts.

