

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Dectano	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	18
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08km101-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-5: PIC24FV16KM204 FAMILY PINOUT DESCRIPTION (CONTINUED)

			F					FV						
		F	Pin Numb	er			I	Pin Numb	er					
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	I/O	Buffer	Description	
MCLR	1	1	26	18	19	1	1	26	18	19	Ι	ST	Master Clear (Device Reset) Input (active-low)	
OA1INA	_	5	2	22	24		5	2	22	24	Ι	ANA	Op Amp 1 Input A	
OA1INB	_	6	3	23	25	_	6	3	23	25	Ι	ANA	Op Amp 1 Input B	
OA1INC	_	24	21	11	12	_	24	21	11	12	Ι	ANA	Op Amp 1 Input C	
OA1IND	_	25	22	14	15	_	25	22	14	15	Ι	ANA	Op Amp 1 Input D	
OA1OUT	_	7	4	24	26	_	7	4	24	26	0	ANA	Op Amp 1 Analog Output	
OA2INA	_	5	2	22	24	_	5	2	22	24	Ι	ANA	Op Amp 2 Input A	
OA2INB	_	6	3	23	25	_	6	3	23	25	Ι	ANA	Op Amp 2 Input B	
OA2INC	_	24	21	11	12	_	24	21	11	12	Ι	ANA	Op Amp 2 Input C	
OA2IND	_	25	22	14	15	_	25	22	14	15	I	ANA	Op Amp 2 Input D	
OA2OUT	_	26	23	15	16	_	26	23	15	16	0	ANA	Op Amp 2 Analog Output	
OC1A	14	20	17	7	7	11	16	13	43	47	0	_	MCCP1 Output Compare A	
OC1B	12	17	14	44	48	12	17	14	44	48	0	_	MCCP1 Output Compare B	
OC1C	15	21	18	8	9	15	21	18	8	9	0	_	MCCP1 Output Compare C	
OC1D	16	24	21	11	12	16	24	21	11	12	0		MCCP1 Output Compare D	
OC1E	_	14	11	41	45	_	14	11	41	45	0	_	MCCP1 Output Compare E	
OC1F	_	15	12	42	46	_	15	12	42	46	0	_	MCCP1 Output Compare F	
OC2A	4	22	19	9	10	4	22	19	9	10	0		MCCP2 Output Compare A	
OC2B	_	23	20	10	11		23	20	10	11	0	_	MCCP2 Output Compare B	
OC2C	_		_	2	2				2	2	0		MCCP2 Output Compare C	
OC2D	_		_	3	3				3	3	0		MCCP2 Output Compare D	
OC2E	_		_	4	4				4	4	0		MCCP2 Output Compare E	
OC2F	_		_	5	5				5	5	0		MCCP2 Output Compare F	
OC3A	_	21	18	12	13		21	18	12	13	0	—	MCCP3 Output Compare A	
OC3B	_	24	21	13	14	_	24	21	13	14	0	_	MCCP3 Output Compare B	
OC4	_	18	15	1	1	_	18	15	1	1	0	_	SCCP4 Output Compare	
OC5	_	19	16	6	6	_	19	16	6	6	0	_	SCCP5 Output Compare	
OCFA	17	25	22	14	15	17	25	22	14	15	Ι	ST	MCCP/SCCP Output Compare Fault Input A	
OCFB	16	24	21	32	35	16	24	21	32	35	Ι	ST	MCCP/SCCP Output Compare Fault Input B	

Legend: ANA = Analog level input/output, ST = Schmitt Trigger input buffer, I²C[™] = I²C/SMBus input buffer

DS30003030B-page 24

EXAMPLE 5-5: INITIATING A PROGRAMMING SEQUENCE – ASSEMBLY LANGUAGE CODE

DISI	#5	;	Block all interrupts for next 5 instructions
MOV	#0x55, W0		
MOV	W0, NVMKEY	;	Write the 55 key
MOV	#0xAA, W1	;	
MOV	W1, NVMKEY	;	Write the AA key
BSET	NVMCON, #WR	;	Start the erase sequence
NOP		;	2 NOPs required after setting WR
NOP		;	
BTSC	NVMCON, #15	;	Wait for the sequence to be completed
BRA	\$-2	;	

EXAMPLE 5-6: INITIATING A PROGRAMMING SEQUENCE – 'C' LANGUAGE CODE

// C example using MPLAB C30	
asm("DISI #5");	// Block all interrupts for next 5 instructions
builtin_write_NVM();	// Perform unlock sequence and set WR

REGISTER 8-14: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0		
_	—	—	—	—	—	CCT5IE	—		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	—	—	—	—	_		—		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown						
bit 15-10	Unimplemen	ted: Read as '	כי						
hit 9	CCT5IE: Capture/Compare 5 Timer Interrupt Enable bit								

bit 9	CCT5IE: Capture/Compare 5 Timer Interrupt Enable bit
	1 = Interrupt request is enabled
	0 = Interrupt request is not enabled

bit 8-0 Unimplemented: Read as '0'

REGISTER 8-15: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3

U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
—	RTCIE	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0
—	—	—	—	—	BCL2IE	SSP2IE	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14	RTCIE: Real-Time Clock and Calendar Interrupt Enable bit
	1 = Interrupt request is enabled0 = Interrupt request is not enabled
bit 13-3	Unimplemented: Read as '0'
bit 2	BCL2IE: MSSP2 I ² C [™] Bus Collision Interrupt Enable bit
	1 = Interrupt request is enabled0 = Interrupt request is not enabled
bit 1	SSP2IE: MSSP2 SPI/I ² C Event Interrupt Enable bit
	1 = Interrupt request is enabled0 = Interrupt request is not enabled
bit 0	Unimplemented: Read as '0'

REGISTER 8-29: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0		
	—	_	—		RTCIP2	RTCIP1	RTCIP0		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	—	—	—	—	—	—	—		
bit 7						-	bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown			
bit 15-11	Unimplemen	ted: Read as ')'						
bit 10-8	RTCIP<2:0>:	Real-Time Clo	ck and Calend	ar Interrupt Pric	ority bits				
	111 = Interru	pt is Priority 7 (highest priority	interrupt)					
	•								
	•								
	•								
		pt is Priority 1							
	000 = Interru	pt source is dis	abled						
bit 7-0	Unimplemen	ted: Read as ')'						

U-0 U-0 U-0 U-0 U-0 U-0 U-0 - <t< th=""><th>REGISTER</th><th>9-2: CLKL</th><th>DIV: CLOCK L</th><th></th><th>6151EK</th><th></th><th></th><th></th></t<>	REGISTER	9-2: CLKL	DIV: CLOCK L		6151EK			
bit 15 bit 1 U-0 U-0 U-0 U-0 U-0 U-0 - - - - - - bit 7 bit 10 U-0 U-0 U-0 U-0 Egend: R Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 RO: Recover on Interrupt bit 1 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 0 = Interrupts have no effect on the DOZEN bit bit 14-12 DOZE DOZE 2:0: CPU and Peripheral Clock Ratio Select bits 111 = 1:28 110 = 1:4 101 = 1:28 100 = 1:16 112 100 = 1:16 011 = 1:1 DOZE 2:0: CPU and peripheral clock ratio are set to 1:1 111 = 13:25 kHz (divide-by-26) 110 = 125 kHz (divide-by-32) 100 = 2:0: CPU and peripheral clock ratio are set to 1:1 111 = 31:25 kHz (divide-by-32) 110 = 125 kHz (divide-by-4) 001 = 2:0: CPU and peripheral clock ratio are set to 1:1 101 = 250 kHz (divide-by-32) 111 = 31:25 kHz (divide-by-4) 001 = 1:1 101 = 250 kHz (divide-by-32) 111 = 1	R/W-0	R/W-0	R/W-1	R/W-1		R/W-0	R/W-0	R/W-1
U-0 U-0 U-0 U-0 U-0 U-0 U-0 -	ROI	DOZE2	DOZE1	DOZE0	DOZEN ⁽¹⁾	RCDIV2	RCDIV1	RCDIV0
- -	bit 15							bit 8
- -	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 ROI: Recover on Interrupt bit 1 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 0 = Interrupts have no effect on the DOZEN bit bit 14-12 DOZE-2:0-: CPU and Peripheral Clock Ratio Select bits 111 = 1:128 110 = 1:64 110 = 1:132 100 = 1:16 011 = 1:3 100 = 1:16 011 = 1:2 000 = 1:1 bit 11 DOZEN: Doze Enable bit ⁽¹⁾ 1 = DOZE-2:0-> bits specify the CPU and peripheral clock ratio 0 = CPU and peripheral clock ratio are set to 1:1 bit 10-8 RCDIV-2:0->: FRC Postscaler Select bits When COSC-2:0-> (OSCCON<14:12>) = 111: 111 = 31.25 kHz (divide-by-256) 110 = 125 kHz (divide-by-2) 100 = 500 kHz (divide-by-2) 100 = 2 MHz (divide-by-2) - default 001 = 4 MHz (divide-by-2) - default 001 = 4 MHz (divide-by-2) 100 = 8 MHz (divide-by-2) 100 = 15 kHz (divide-by-2) 100 = 15 kHz (divide-by-2) 100 = 125 kHz (divide-by-	0-0	0-0	0-0	0-0	0-0	0-0	0-0	0-0
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 ROI: Recover on Interrupt bit 1 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 0 = Interrupts have no effect on the DOZEN bit bit 14-12 DOZE-2:0>: CPU and Peripheral Clock Ratio Select bits 111 = 1:128 101 = 1:64 101 = 1:32 100 = 1:16 001 = 1:1 000 = 1:11 DOZEN: Doze Enable bit ⁽¹⁾ 1 = DOZE<2:0>: Dits specify the CPU and peripheral clock ratio 0 = CPU and peripheral clock ratio are set to 1:1 bit 10 DOZEN: Doze Enable bit ⁽¹⁾ 1 = DOZE 1 = 1:2 000 = 1:1 111 = 31.25 kHz (divide-by-256) 1 = 250 kHz (divide-by-256) 111 = 31.25 kHz (divide-by-256) 1 = 255 kHz (divide-by-32) 100 = 500 kHz (divide-by-32) 1 = 1 = 255 kHz (divide-by-32) 100 = 2 MHz (divide-by-41) 1 = 1 = 152 kHz (divide-by-32) 100 = 2 MHz (divide-by-32) 1 = 1 = 15 kHz (divide-by-32) 110 = 15.62 kHz (divide-by-256) 1 = 1 = 12 111 = 1.18 1 = 1 = 111 = 1.12 111 = 1.15 kHz (divide-by-32) 1 = 1 = 250 kHz (divide-by-32)	bit 7							bit 0
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 ROI: Recover on Interrupt bit 1 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 0 = Interrupts have no effect on the DOZEN bit bit 14-12 DOZE-2:0>: CPU and Peripheral Clock Ratio Select bits 111 = 1:128 101 = 1:64 101 = 1:32 100 = 1:16 001 = 1:1 000 = 1:11 DOZEN: Doze Enable bit ⁽¹⁾ 1 = DOZE<2:0>: Dits specify the CPU and peripheral clock ratio 0 = CPU and peripheral clock ratio are set to 1:1 bit 10 DOZEN: Doze Enable bit ⁽¹⁾ 1 = DOZE 1 = 1:2 000 = 1:1 111 = 31.25 kHz (divide-by-256) 1 = 250 kHz (divide-by-256) 111 = 31.25 kHz (divide-by-256) 1 = 255 kHz (divide-by-32) 100 = 500 kHz (divide-by-32) 1 = 1 = 255 kHz (divide-by-32) 100 = 2 MHz (divide-by-41) 1 = 1 = 152 kHz (divide-by-32) 100 = 2 MHz (divide-by-32) 1 = 1 = 15 kHz (divide-by-32) 110 = 15.62 kHz (divide-by-256) 1 = 1 = 12 111 = 1.18 1 = 1 = 111 = 1.12 111 = 1.15 kHz (divide-by-32) 1 = 1 = 250 kHz (divide-by-32)	Logondu							
<pre>in = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 ROI: Recover on Interrupt bit 1 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 0 = Interrupts have no effect on the DOZEN bit bit 14-12 DOZE-2:0>: CPU and Peripheral Clock Ratio Select bits 111 = 1:128 110 = 1:64 101 = 1:32 100 = 1:1 001 = 1:4 001 = 1:2 000 = 1:1 bit 11 DOZEN: Doze Enable bit⁽¹⁾ 1 = DOZE-2:0> bits specify the CPU and peripheral clock ratio 0 = CPU and peripheral clock ratio are set to 1:1 bit 10-8 RCDIVe2:0>: FRC Postscaler Select bits When COSC<2:0> (OSCCON(14:12>) = 111: 111 = 31.25 kHz (divide-by-266) 110 = 125 kHz (divide-by-4) 011 = 150 kHz (divide-by-4) 011 = 150 kHz (divide-by-4) 011 = 15.8 kHz (divide-by-4) 011 = 15.8 kHz (divide-by-4) 101 = 15.62 kHz (divide-by-256) 110 = 7.81 kHz (divide-by-4) 011 = 62.5 kHz (divide-by-4) 011 = 25 kHz (divide-by-4) 011 = 15.62 kHz (divide-by-4) 011 = 25 kHz (divide-by-4) 011 = 25 kHz (divide-by-4) 011 = 15.62 kHz (divide-by-4) 011 = 15.62 kHz (divide-by-4) 011 = 02.5 kHz (divide-by-4) 011 = 15.62 kHz (divide-by-4) 011 = 15.62 kHz (divide-by-2) - default 011 = 02.5 kHz (divide-by-4) 011 = 1.5 kHz (divide-by-4) 011 = 0.5 kH</pre>	-	le bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
bit 15 ROI: Recover on Interrupt bit 1 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 0 = Interrupts have no effect on the DOZEN bit DOZE-2:00: CPU and Peripheral Clock Ratio Select bits 111 = 1:128 110 = 1:64 101 = 1:32 100 = 1:16 011 = 1:8 010 = 1:4 001 = 1:2 000 = 1:1 bit 11 DOZEN: Doze Enable bit ⁽¹⁾ 1 = DOZE-2:00: bits specify the CPU and peripheral clock ratio 0 = CPU and peripheral clock ratio are set to 1:1 bit 10-8 RCDV-2:00: FRC Postscaler Select bits When COSC-2:00: (OSCCON<14:12>) = 111: 111 = 31.25 kHz (divide-by-256) 110 = 125 kHz (divide-by-256) 110 = 125 kHz (divide-by-32) 100 = 500 kHz (divide-by-29) 011 = 1 MHz (divide-by-2) - default 000 = 8 MHz (divide-by-2) - default 101 = 25 kHz (divide-by-26) 110 = 7.81 kHz (divide-by-32) 100 = 7.81 kHz (divide-by-32) 100 = 125 kHz (divide-by-2) - default 001 = 125 kHz (divide-by-2) - default 001 = 125 kHz (divide-by-32) 100 = 125 kHz (divide-by-32) 100 = 125 kHz (divide-by-32) 100 = 125 kHz (divide-by-32) 100 = 7.81 kHz (divide-by-32) 100 = 125 kHz (divide-by-4) 011 = 62.5 kHz (divide-by-32) 100 = 125 kHz (divide-by-4) 011 = 62.5 kHz (divide-by-4) 011 = 50.5 kHz (divide-by-4) 011 = 62.5 kHz (divide-by-4) 011 = 6					-			nown
$\begin{array}{llllllllllllllllllllllllllllllllllll$		1 = Interrupts 0 = Interrupts	s clear the DOZ s have no effect	EN bit, and re t on the DOZE	N bit	d peripheral cl	ock ratio to 1:1	
1 = DOZE<2:0> bits specify the CPU and peripheral clock ratio 0 = CPU and peripheral clock ratio are set to 1:1 bit 10-8 $RCDIV<2:0>: FRC Postscaler Select bits When COSC<2:0> (OSCCON<14:12>) = 111: 111 = 31.25 kHz (divide-by-256) 110 = 125 kHz (divide-by-264) 101 = 250 kHz (divide-by-32) 100 = 500 kHz (divide-by-32) 100 = 500 kHz (divide-by-4) 011 = 1 MHz (divide-by-4) 010 = 2 MHz (divide-by-2) - default 000 = 8 MHz (divide-by-2) 100 = 8 MHz (divide-by-2) = 110: 111 = 1.95 kHz (divide-by-256) 110 = 7.81 kHz (divide-by-256) 110 = 7.81 kHz (divide-by-32) 100 = 31.25 kHz (divide-by-3) 100 = 31.25 kHz (divide-by-4) 011 = 125 kHz (divide-by-4) 010 = 125 kHz (divide-by-4) 010 = 125 kHz (divide-by-2) - default 000 = 500 kHz (divide-by-1)$		111 = 1:128 110 = 1:64 101 = 1:32 100 = 1:16 011 = 1:8 010 = 1:4 001 = 1:2						
bit 10-8 RCDIV-2:0>: FRC Postscaler Select bits When COSC<2:0> (OSCCON<14:12>) = 111: 111 = 31.25 kHz (divide-by-256) 110 = 125 kHz (divide-by-64) 101 = 250 kHz (divide-by-32) 100 = 500 kHz (divide-by-16) 011 = 1 MHz (divide-by-8) 010 = 2 MHz (divide-by-8) 010 = 2 MHz (divide-by-2) – default 000 = 8 MHz (divide-by-2) – default 000 = 8 MHz (divide-by-1) When COSC<2:0> (OSCCON<14:12>) = 110: 111 = 1.95 kHz (divide-by-26) 110 = 7.81 kHz (divide-by-32) 100 = 31.25 kHz (divide-by-32) 100 = 31.25 kHz (divide-by-8) 011 = 62.5 kHz (divide-by-8) 010 = 125 kHz (divide-by-4) 011 = 250 kHz (divide-by-2) – default 000 = 500 kHz (divide-by-1)	bit 11	1 = DOZE<2	:0> bits specify			ratio		
	bit 10-8	When COSC 111 = 31.25 K 110 = 125 K 101 = 250 K 100 = 500 K 011 = 1 MHz 010 = 2 MHz 001 = 4 MHz 000 = 8 MHz When COSC 111 = 1.95 K 100 = 7.81 K 101 = 15.62 K 100 = 31.25 K 011 = 62.5 K 010 = 125 K 001 = 250 K	<2:0> (OSCCO kHz (divide-by-2 dz (divide-by-2 dz (divide-by-32 dz (divide-by-32 dz (divide-by-32) (divide-by-4) (divide-by-4) (divide-by-2) - (divide-by-2) - (divide-by-2) - (divide-by-2) - (divide-by-2) - (divide-by-3) dz (divide-by-4) dz (divide-by-2) dz (divide-by-2)	<u>N<14:12>) = 1</u> 256))) default <u>N<14:12>) = 1</u> 56) 4) 32) 16)	-			
	bit 7-0)'				

REGISTER 9-2: CLKDIV: CLOCK DIVIDER REGISTER

Note 1: This bit is automatically cleared when the ROI bit is set and an interrupt occurs.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	— TUN5 ⁽¹⁾ TUN4 ⁽¹⁾			TUN2 ⁽¹⁾	TUN1 ⁽¹⁾	TUN0 ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at l	-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unkn			nown
bit 15-6	Unimplement	ted: Read as 'd)'				
bit 5-0	TUN<5:0>: FI	RC Oscillator T	uning bits ⁽¹⁾				
		ximum frequen	cy deviation				
	011110						
	•						
	•						
	000001						
	000000 = Ce	nter frequency,	oscillator is ru	nning at factory	calibrated free	quency	
	111111						
	•						
	•						
	100001						
	100000 = Minimum frequency deviation						

Note 1: Increments or decrements of TUN<5:0> may not change the FRC frequency in equal steps over the FRC tuning range and may not be monotonic.

REGISTER 9-3: OSCTUN: FRC OSCILLATOR TUNE REGISTER

10.5 Doze Mode

Generally, changing clock speed and invoking one of the power-saving modes are the preferred strategies for reducing power consumption. There may be circumstances, however, where this is not practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed may introduce communication errors, while using a power-saving mode may stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default.

It is also possible to use Doze mode to selectively reduce power consumption in event driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption. Meanwhile, the CPU Idles, waiting for something to invoke an interrupt routine. Enabling the automatic return to full-speed CPU operation on interrupts is enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

10.6 Selective Peripheral Module Control

Idle and Doze modes allow users to substantially reduce power consumption by slowing or stopping the CPU clock. Even so, peripheral modules still remain clocked, and thus, consume power. There may be cases where the application needs what these modes do not provide: the allocation of power resources to CPU processing with minimal power consumption from the peripherals.

PIC24F devices address this requirement by allowing peripheral modules to be selectively disabled, reducing or eliminating their power consumption. This can be done with two control bits:

- The Peripheral Enable bit, generically named, "XXXEN", located in the module's main control SFR.
- The Peripheral Module Disable (PMD) bit, generically named, "XXXMD", located in one of the PMDx Control registers.

Both bits have similar functions in enabling or disabling its associated module. Setting the PMDx bits for a module, disables all clock sources to that module, reducing its power consumption to an absolute minimum. In this state, the control and status registers associated with the peripheral will also be disabled, so writes to those registers will have no effect, and read values will be invalid. Many peripheral modules have a corresponding PMDx bit.

In contrast, disabling a module by clearing its XXXEN bit, disables its functionality, but leaves its registers available to be read and written to. Power consumption is reduced, but not by as much as when the PMDx bits are used. Most peripheral modules have an enable bit; exceptions include capture, compare and RTCC.

To achieve more selective power savings, peripheral modules can also be selectively disabled when the device enters Idle mode. This is done through the control bit of the generic name format, "XXXIDL". By default, all modules that can operate during Idle mode will do so. Using the disable on Idle feature disables the module while in Idle mode, allowing further reduction of power consumption during Idle mode, enhancing power savings for extremely critical power applications.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—		—		_	
bit 15							bit 8
R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE ⁽¹⁾	D/Ā	Р	S	R/W	UA	BF
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimplem	ented bit. rea	d as '0'	
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown
bit 15-8	Unimplemen	ted: Read as '0)'				
bit 7	SMP: Sample	e bit					
	SPI Master m						
		is sampled at					
	•	•	the middle of o	data output time			
	SMP must be	de: cleared when \$	SPI is used in	Slave mode			
bit 6		ck Select bit ⁽¹⁾					
	1 = Transmit o	occurs on trans	ition from acti	ve to Idle clock s	state		
	0 = Transmit	occurs on trans	ition from Idle	to active clock s	state		
bit 5	D/A: Data/Ad						
	Used in I ² C™	mode only.					
bit 4	P: Stop bit						
		node only. This	bit is cleared v	when the MSSP:	x module is di	sabled; SSPEN	l bit is cleared
bit 3	S: Start bit						
	Used in I ² C m	•					
bit 2		rite Information	bit				
	Used in I ² C m						
bit 1	UA: Update Address bit						
	Used in I ² C m	,					
bit 0	BF: Buffer Fu						
		s complete, SS s not complete,		emntv			
		-					
	plarity of clock s	tata ia aat by th		DUCONIA (A)			

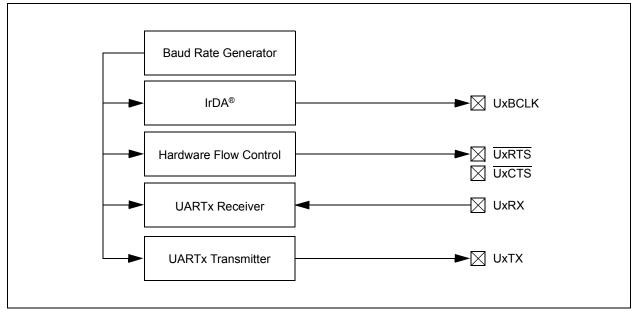
REGISTER 14-1: SSPxSTAT: MSSPx STATUS REGISTER (SPI MODE)

15.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note:	This data sheet summarizes the features of				
	this group of PIC24F devices. It is not				
	intended to be a comprehensive reference				
	source. For more information on the Univer-				
	sal Asynchronous Receiver Transmitter,				
	refer to the "PIC24F Family Reference				
	Manual", " UART" (DS39708).				

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in this PIC24F device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. This module also supports a hardware flow control option with the UxCTS and UxRTS pins, and also includes an IrDA[®] encoder and decoder.

The primary features of the UART module are:


- Full-Duplex, 8-Bit or 9-Bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- · One or Two Stop bits
- Hardware Flow Control Option with UxCTS and UxRTS Pins
- Fully Integrated Baud Rate Generator (IBRG) with 16-Bit Prescaler

- Baud Rates Ranging from 1 Mbps to 15 bps at 16 MIPS
- 4-Deep, First-In-First-Out (FIFO) Transmit Data Buffer
- · 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-Bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive Interrupts
- · Loopback mode for Diagnostic Support
- · Support for Sync and Break Characters
- · Supports Automatic Baud Rate Detection
- IrDA[®] Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA Support

A simplified block diagram of the UARTx module is shown in Figure 15-1. The UARTx module consists of these important hardware elements:

- Baud Rate Generator
- Asynchronous Transmitter
- · Asynchronous Receiver
- Note: Throughout this section, references to register and bit names that may be associated with a specific USART module are referred to generically by the use of 'x' in place of the specific module number. Thus, "UxSTA" might refer to the USART Status register for either USART1 or USART2.

FIGURE 15-1: UARTX MODULE SIMPLIFIED BLOCK DIAGRAM

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0
bit 7				-			bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	iown
bit 15		,	ed automatica	lly after an ala	arm event whe	never ARPT<7	:0> = 00h and
bit 14		ne Enable bit					
DIL 14	1 = Chime is	s enabled; ARP				to FFh	
bit 13-10		>: Alarm Mask					
	0011 = Even 0100 = Even 0101 = Even 0110 = Once 0111 = Once 1000 = Once 1001 = Once 101x = Rese 11xx = Rese	y 10 seconds y minute y 10 minutes y hour e a day e a week e a month e a year (except erved – do not u erved – do not u	se se			very 4 years)	
bit 9-8		1:0>: Alarm Val	-				
		11N VD 1NTH emented : <u>0>:</u> EC IR IR					
bit 7-0	•	Alarm Repeat	Counter Value I	oits			
		Alarm will rep					
	•						
		Alarm will not decrements on		nt; it is prevent	ted from rolling	over from 00h	to FFh unless

REGISTER 16-3: ALCFGRPT: ALARM CONFIGURATION REGISTER

REGISTER 17-5: CLCxGLSH: CLCx GATE LOGIC INPUT SELECT HIGH REGISTER

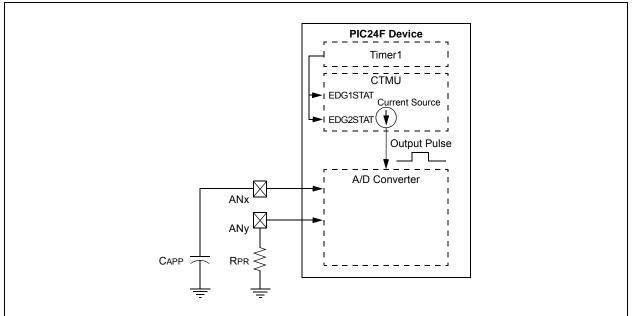
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N
bit 7							bit 0
Logondy							
Legend: R = Readable	, bit	W = Writable	oit	II – Unimplor	nented bit, read	d ac '0'	
-n = Value at		'1' = Bit is set	JIL	'0' = Bit is cle		x = Bit is unkr	
	FOR	i – Dit is set			areu		IOWIT
bit 15	G4D4T: Gate	4 Data Source	4 True Enable	e bit			
		Source 4 inver			e 4		
		Source 4 inver					
bit 14	G4D4N: Gate	e 4 Data Source	4 Negated Er	nable bit			
		Source 4 inver					
		Source 4 inver	•		e 4		
bit 13		4 Data Source					
		Source 3 inver Source 3 inver					
bit 12		e 4 Data Source	•				
		Source 3 inver	•		e 4		
	0 = The Data Source 3 inverted signal is disabled for Gate 4						
bit 11	G4D2T: Gate	4 Data Source	2 True Enable	e bit			
		Source 2 inver					
hit 10		Source 2 inver	-		94		
bit 10		e 4 Data Source Source 2 inver	-		. 1		
		Source 2 inver					
bit 9		4 Data Source	•				
	1 = The Data	Source 1 inver	ted signal is ei	nabled for Gate	e 4		
	0 = The Data	Source 1 inver	ted signal is di	sabled for Gate	e 4		
bit 8	G4D1N: Gate	e 4 Data Source	1 Negated Er	nable bit			
		Source 1 inver					
hit 7		Source 1 inver	-		9 4		
bit 7		3 Data Source			. 2		
		Source 4 inver Source 4 inver					
bit 6		e 3 Data Source	-				
		Source 4 inver	-		93		
	0 = The Data	Source 4 inver	ted signal is di	sabled for Gate	e 3		
bit 5	G3D3T: Gate	3 Data Source	3 True Enable	e bit			
		Source 3 inver					
1.11.4		Source 3 inver	-		93		
bit 4	G3D3N: Gate	e 3 Data Source	3 Negated Er	hable bit			
		Source 3 inver					

R/W-0	R/W-0	R/W-0	R/W-0	r-0	U-0	R/W-0	R/W-0		
ASEN ⁽¹⁾	LPEN	CTMREQ	BGREQ	r	_	ASINT1	ASINT0		
bit 15							bit 8		
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
	_	_	_	WM1	WM0	CM1	CM0		
bit 7							bit 0		
Legend:		r = Reserved b	it						
R = Reada	able bit	W = Writable b	it	U = Unimplem	nented bit, read	as '0'			
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own		
bit 15	ASEN. A/D A	Auto-Scan Enable	hit(1)						
	1 = Auto-sca								
	0 = Auto-sca	in is disabled							
bit 14	LPEN: A/D L	ow-Power Enabl	e bit						
		to Low-Power me in Full-Power m							
bit 13	CTMREQ: C	TMU Request bit							
	 1 = CTMU is enabled when the A/D is enabled and active 0 = CTMU is not enabled by the A/D 								
bit 12	BGREQ: Bar	BGREQ: Band Gap Request bit							
		p is enabled whe p is not enabled		nabled and acti	ve				
bit 11	Reserved: M	•							
bit 10	Unimplemen	ted: Read as '0'							
bit 9-8	-	: Auto-Scan (Thr	eshold Detect)	Interrupt Mode	bits				
		t after a Thresho			pleted and a val	lid compare has	occurred		
	•	t after a valid cor	•						
	01 = Interrup 00 = No inter	t after a Thresho	la Detect sequ	ience nas comp	Dieted				
bit 7-4		nted: Read as '0'							
bit 3-2	-	/D Write Mode bi	ts						
	11 = Reserve	ed							
		mpare only (cor				s are generate	d when a valid		
		as defined by the tand save (conve			,	mined by the rea	nister bits when		
		n, as defined by t							
	00 = Legacy	operation (conve	ersion data is s	aved to a locat	ion determined	by the buffer re	gister bits)		
bit 1-0		D Compare Mod							
		Window mode (N esponding buffer		curs if the conve	rsion result is o	utside of the win	dow defined by		
	10 = Inside V	Vindow mode (va	lid match occu	urs if the conver	sion result is in	side the window	defined by the		
		onding buffer pair Than mode (valio		if the result is g	reater than the v	alue in the corre	sponding buffer		
	register)			-					
Note 1		uto-scan with Th							
	Auto-Convert	mode (SSRC<3: ock source (SSR))> = 7). Any ot	her available S	SRC selection i				

REGISTER 19-4: AD1CON5: A/D CONTROL REGISTER 5

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CH0NB2	CH0NB1	CH0NB0	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0			
bit 15							bit			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CH0NA2	CH0NA1	CHONAO	CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0			
bit 7							bit			
Legend:										
R = Readabl	le bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown			
L: 45 40		· Comple D Ch	annal O Nagati	va Innut Calant	h:to					
bit 15-13	111 = AN6 ⁽¹⁾	•	annei 0 Negati	ve Input Select	DIIS					
	$111 = AN6^{(1)}$ $110 = AN5^{(2)}$									
	101 = AN3									
	101 - AN4 100 = AN3									
	011 = AN2									
	010 = AN1									
	001 = ANO									
	000 = AVss									
bit 12-8	CH0SB<4:0>: S/H Amplifier Positive Input Select for MUX B Multiplexer Setting bits									
	11111 = Unii	mplemented, d	o not use			-				
	11110 = AV C									
	$11101 = AVss^{(3)}$									
	11100 = Upper guardband rail (0.785 * VDD)									
		ver guardband i								
		rnal Band Gap								
		1 = Unimpleme								
				puts are floating						
				puts are floatin						
						/U temperature	sensor input			
				ng CTMEN22 (A	ADICIMENH<	0>) DIL)				
	10101 = Channel 0 positive input is AN21									
	10100 = Channel 0 positive input is AN20									
	10011 = Channel 0 positive input is AN19 10010 = Channel 0 positive input is AN18 ⁽²⁾									
	10010 = Channel 0 positive input is AN18 ⁽²⁾ 10001 = Channel 0 positive input is AN17 ⁽²⁾									
	•									
	•									
	•									
		annel 0 positive								
		annel 0 positive								
		annel 0 positive								
	00110 = Channel 0 positive input is AN6 ⁽¹⁾ 00101 = Channel 0 positive input is AN5 ⁽²⁾									
				,						
		annel 0 positive								
		annel 0 positive annel 0 positive								
		annel 0 positive								
		annel 0 positive								
Note 1: T	his is implement		•							
	-	-	-	es only						
Z . 1	his is implemented on 28-pin and 44-pin devices only.									

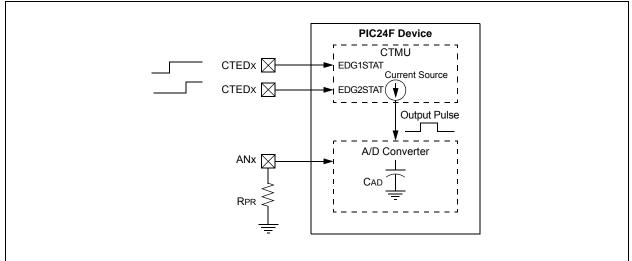
3: The band gap value used for this input is 2x or 4x the internal VBG, which is selected when PVCFG<1:0> = 1x.


REGISTER 19-5: AD1CHS: A/D SAMPLE SELECT REGISTER

DS30003030B-page 218

R/W-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0		
AMPEN		AMPSIDL	AMPSLP						
bit 15			•				bit 8		
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
SPDSEL	—	NINSEL2	NINSEL1	NINSEL0	PINSEL2	PINSEL1	PINSEL0		
bit 7							bit 0		
Legend:									
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown		
							-		
bit 15	AMPEN: Op	Amp x Control	Module Enable	e bit					
	1 = Module								
	0 = Module								
bit 14	-	nted: Read as '							
bit 13		Dp Amp x Periph							
		nues module op es module opera			le mode				
bit 12		p Amp x Periph			it				
		es module opera		-					
		nues module op			pinouo				
bit 11-8	Unimpleme	nted: Read as '	כי						
bit 7	SPDSEL: Op	p Amp x Power/	Speed Select b	bit					
	• •	ower and band	•	• •					
bit 6		ower and bandw	-	sponse (me)					
bit 5-3	-	nted: Read as '		oot hito					
DIL D-D		I>: Negative Op rved; do not use		eci biis					
		rved; do not use							
		np negative inpu		to the op amp	output (voltage	e follower)			
		rved; do not use							
		rved; do not use np negative inpu		to the OAVING	nin				
		np negative inpl							
		np negative inpu							
bit 2-0	PINSEL<2:0	>: Positive Op /	Amp Input Sele	ect bits					
	111 = Op amp positive input is connected to the output of the A/D input multiplexer								
	110 = Reserved; do not use								
	101 = Op amp positive input is connected to the DAC1 output for OA1 (DAC2 output for OA2) 100 = Reserved; do not use								
		rved; do not use							
		np positive inpu							
	•	np positive inpu			pin				
	000 = Op an	np positive inpu	i is connected	IU AVSS					
Note 1: The	nis register is a	vailable only on	PIC24F(V)16	KM2XX devices					

REGISTER 21-1: AMPxCON: OP AMP x CONTROL REGISTER⁽¹⁾


FIGURE 24-1: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR CAPACITANCE MEASUREMENT

24.2 Measuring Time

Time measurements on the pulse width can be similarly performed using the A/D module's Internal Capacitor (CAD) and a precision resistor for current calibration. Figure 24-2 displays the external connections used for time measurements, and how the CTMU and A/D modules are related in this application. This example also shows both edge events coming from the external CTEDx pins, but other configurations using internal edge sources are possible.

FIGURE 24-2: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR TIME MEASUREMENT

25.0 SPECIAL FEATURES

- **Note:** This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Watchdog Timer, High-Level Device Integration and Programming Diagnostics, refer to the individual sections of the *"PIC24F Family Reference Manual"* provided below:
 - "Watchdog Timer (WDT)" (DS39697)
 - "Programming and Diagnostics" (DS39716)

PIC24FXXXXX family devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation

25.1 Configuration Bits

The Configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped, starting at program memory location, F80000h. A complete list of Configuration register locations is provided in Table 25-1. A detailed explanation of the various bit functions is provided in Register 25-1 through Register 25-9.

The address, F80000h, is beyond the user program memory space. In fact, it belongs to the configuration memory space (800000h-FFFFFFh), which can only be accessed using Table Reads and Table Writes.

TABLE 25-1: CONFIGURATION REGISTERS LOCATIONS

Configuration Register	Address
FBS	F80000
FGS	F80004
FOSCSEL	F80006
FOSC	F80008
FWDT	F8000A
FPOR	F8000C
FICD	F8000E

REGISTER 25-1: FBS: BOOT SEGMENT CONFIGURATION REGISTER

U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	—	BSS2	BSS1	BSS0	BWRP
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4 Unimplemented: Read as '0'

- bit 3-1 BSS<2:0>: Boot Segment Program Flash Code Protection bits
 - 111 = No boot program Flash segment
 - 011 = Reserved
 - 110 = Standard security, boot program Flash segment starts at 200h, ends at 000AFEh
 - 010 = High-security, boot program Flash segment starts at 200h, ends at 000AFEh
 - 101 = Standard security, boot program Flash segment starts at 200h, ends at 0015FEh⁽¹⁾
 - 001 = High-security, boot program Flash segment starts at 200h, ends at 0015FEh⁽¹⁾
 - 100 = Reserved
 - 000 = Reserved

bit 0 BWRP: Boot Segment Program Flash Write Protection bit

- 1 = Boot Segment may be written
- 0 = Boot Segment is write-protected

Note 1: This selection should not be used in PIC24FV08KMXXX devices.

DC CHARACTERISTICS		Standard C			5: 1.8V to 3.6V (PIC 2.0V to 5.5V (PIC -40°C \leq TA \leq +85 -40°C \leq TA \leq +12	24FV16KM204)	
Parameter No.	Device	Typical ⁽¹⁾	Max	Units	Conditions		
Module Diff	erential Current (Alf	סי ⁽³⁾					
DC71	PIC24FV16KMXXX	0.50	_	μA	2.0V		
		0.70	1.5	μA	5.0V	Watchdog Timer Current:	
	PIC24F16KMXXX	0.50	—	μA	1.8V		
		0.70	1.5	μA	3.3V		
DC72	PIC24FV16KMXXX	0.80	—	μA	2.0V	32 kHz Crystal with RTCC,	
		1.50	2.0	μA	5.0V	DSWDT or Timer1:	
	PIC24F16KMXXX	0.70	—	μA	1.8V		
		1.0	1.5	μA	3.3V	(SOSCSEL = 0)	
DC75	PIC24FV16KMXXX	5.4	—	μA	2.0V		
		8.1	14.0	μA	5.0V		
	PIC24F16KMXXX	4.9	_	μA	1.8V		
		7.5	14.0	μA	3.3V		
DC76	PIC24FV16KMXXX	5.6	—	μA	2.0V		
		6.5	11.2	μA	5.0V	ΔBOR	
	PIC24F16KMXXX	5.6	—	μA	1.8V		
		6.0	11.2	μA	3.3V		
DC78	PIC24FV16KMXXX	0.03	_	μA	2.0V		
		0.05	0.3	μA	5.0V	Low-Power BOR:	
	PIC24F16KMXXX	0.03	—	μA	1.8V	∆LPBOR	
		0.05	0.3	μA	3.3V		

TABLE 27-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD) (CONTINUED)

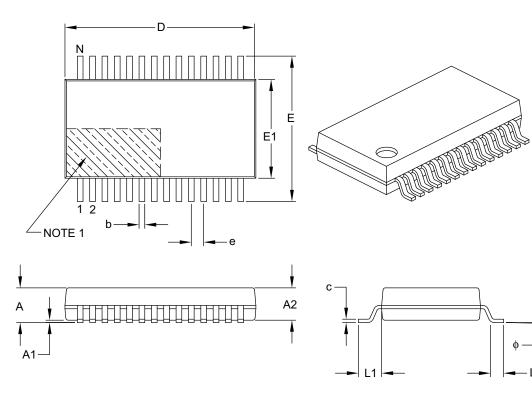
Legend: Unshaded rows represent PIC24F16KMXXX devices and shaded rows represent PIC24FV16KMXXX devices.

Note 1: Data in the Typical column is at 3.3V, +25°C (PIC24F16KMXXX) or 5.0V, +25°C (PIC24FV16KMXXX) unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as outputs and set low. PMSLP is set to '0' and WDT, etc., are all switched off.

3: The △ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

TABLE 27-37: A/D MODULE SPECIF AC CHARACTERISTICS			1		$\begin{array}{l} \text{ onditions: } 1.8V \ \text{to } 3.6V \ (PIC24F16KM204) \\ 2.0V \ \text{to } 5.5V \ (PIC24FV16KM204) \\ -40^\circ\text{C} \leq \text{TA} \leq +85^\circ\text{C} \ \text{for Industrial} \\ -40^\circ\text{C} \leq \text{TA} \leq +125^\circ\text{C} \ \text{for Extended} \end{array}$			
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions	
			Device S	Supply				
AD01	AVDD	Module VDD Supply	Greater of: VDD – 0.3 or 1.8		Lesser of: VDD + 0.3 or 3.6	V	PIC24FXXKMXXX devices	
			Greater of: VDD – 0.3 or 2.0		Lesser of: VDD + 0.3 or 5.5	V	PIC24FVXXKMXXX devices	
AD02	AVss	Module Vss Supply	Vss – 0.3	_	Vss + 0.3	V		
			Reference	e Input	s			
AD05	VREFH	Reference Voltage High	AVss + 1.7	_	AVDD	V		
AD06	VREFL	Reference Voltage Low	AVss		AVDD – 1.7	V		
AD07	Vref	Absolute Reference Voltage	AVss – 0.3	_	AVDD + 0.3	V		
AD08	IVREF	Reference Voltage Input Current	—	1.25	—	mA		
AD09	Zvref	Reference Input Impedance	—	10k	—	Ω		
	•		Analog	Input	•			
AD10	VINH-VINL	Full-Scale Input Span	VREFL	_	VREFH	V	(Note 2)	
AD11	VIN	Absolute Input Voltage	AVss – 0.3	_	AVDD + 0.3	V		
AD12	VINL	Absolute Vın∟ Input Voltage	AVss – 0.3	_	AVDD/2	V		
AD17	RIN	Recommended Impedance of Analog Voltage Source	—		1k	Ω	12-bit	
	-		A/D Acc	uracy				
AD20b	Nr	Resolution	_	12	—	bits		
AD21b	INL	Integral Nonlinearity		±1	±9	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V	
AD22b	DNL	Differential Nonlinearity		±1	±5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V	
AD23b	Gerr	Gain Error	_	±1	±9	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V	
AD24b	EOFF	Offset Error	—	±1	±5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V	
AD25b		Monotonicity ⁽¹⁾	_	_	_	_	Guaranteed	


TABLE 27-37: A/D MODULE SPECIFICATIONS

 $\label{eq:Note_1:} \textbf{Note_1:} \quad \text{The A/D conversion result never decreases with an increase in the input voltage.}$

2: Measurements are taken with external VREF+ and VREF- used as the A/D voltage reference.

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimens	MIN	NOM	MAX	
Number of Pins	Ν	28		
Pitch	е	0.65 BSC		
Overall Height	А	-	-	2.00
Molded Package Thickness	A2	1.65	1.75	1.85
Standoff	A1	0.05	-	_
Overall Width	E	7.40	7.80	8.20
Molded Package Width	E1	5.00	5.30	5.60
Overall Length	D	9.90	10.20	10.50
Foot Length	L	0.55	0.75	0.95
Footprint	L1	1.25 REF		
Lead Thickness	С	0.09	-	0.25
Foot Angle	φ	0°	4°	8°
Lead Width	b	0.22	-	0.38

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

NOTES: