E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Detuils	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	18
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08km101-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-5: PIC24FV16KM204 FAMILY PINOUT DESCRIPTION (CONTINUED)

			F					FV					
		I	Pin Numb	ber			I	Pin Numb	er				
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	I/O	Buffer	Description
SCL1	12	17	14	44	48	12	17	14	44	48	I/O	I2C	MSSP1 I ² C Clock
SDA1	13	18	15	1	1	13	18	15	1	1	I/O	I2C	MSSP1 I ² C Data
SCL2	_	7	4	24	26	_	7	4	24	26	I/O	I2C	MSSP2 I ² C Clock
SDA2	_	6	3	23	25	_	6	3	23	25	I/O	I2C	MSSP2 I ² C Data
SCLKI	10	12	9	34	37	10	12	9	34	37	Ι	ST	Secondary Clock Digital Input
SOSCI	9	11	8	33	36	9	11	8	33	36	Ι	ANA	Secondary Oscillator Input
SOSCO	10	12	9	34	37	10	12	9	34	37	Ι	ANA	Secondary Oscillator Output
T1CK	13	18	15	1	1	13	18	15	1	1	Ι	ST	Timer1 Digital Input Cock
TCKIA	18	26	23	15	16	18	26	23	15	16	Ι	ST	MCCP/SCCP Time Base Clock Input A
TCKIB	6	6	3	23	25	6	6	3	23	25	Ι	ST	MCCP/SCCP Time Base Clock Input B
U1CTS	12	17	14	44	48	12	17	14	44	48	Ι	ST	UART1 Clear-To-Send Input
U1RTS	13	18	15	1	1	13	18	15	1	1	0	_	UART1 Request-To-Send Output
U1BCLK	13	18	15	1	1	13	18	15	1	1	0	—	UART1 16x Baud Rate Clock Output
U1RX	6	6	3	2	2	6	6	3	2	2	Ι	ST	UART1 Receive
U1TX	11	16	13	3	3	11	16	13	3	3	0	_	UART1 Transmit
U2CTS	_	12	9	34	37	_	12	9	34	37	I	ST	UART2 Clear-To-Send Input
U2RTS	_	11	8	33	36	_	11	8	33	36	0	_	UART2 Request-To-Send Output
U2BCLK	13	18	15	1	1	13	18	15	1	1	0	—	UART2 16x Baud Rate Clock Output
U2RX	_	5	2	22	24	—	5	2	22	24	Ι	ST	UART2 Receive
U2TX	_	4	1	21	23	—	4	1	21	23	0	_	UART2 Transmit
ULPWU	4	4	1	21	23	4	4	1	21	23	Ι	ANA	Ultra Low-Power Wake-up Input
VCAP	_	_		—	_	14	20	17	7	7	Р	—	Regulator External Filter Capacitor Connection
Vdd	20	28	25	17,28,28	18,30,30	20	28	25	17,28,28	18,30,30	Р	—	Device Positive Supply Voltage
VDDCORE	_	_	_	—	_	14	20	17	7	7	Р	—	Microcontroller Core Supply Voltage
Vpp	1	1	26	18	19	1	1	26	18	19	Р	—	High-Voltage Programming Pin
VREF+	2	2	27	19	21	2	2	27	19	21	I	ANA	A/D Reference Voltage Positive Input
VREF-	3	3	28	20	22	3	3	28	20	22	Ι	ANA	A/D Reference Voltage Negative Input
Vss	19	27	24	16,29,29	17,31,31	19	27	24	16,29,29	17,31,31	Р	—	Device Ground Return Voltage

Legend: ANA = Analog level input/output, ST = Schmitt Trigger input buffer, I²C[™] = I²C/SMBus input buffer

3.3.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 1. 32-bit signed/16-bit signed divide
- 2. 32-bit unsigned/16-bit unsigned divide
- 3. 16-bit signed/16-bit signed divide
- 4. 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. Sixteen-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn), and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.3.3 MULTI-BIT SHIFT SUPPORT

The PIC24F ALU supports both single bit and single-cycle, multi-bit arithmetic and logic shifts. Multi-bit shifts are implemented using a shifter block, capable of performing up to a 15-bit arithmetic right shift, or up to a 15-bit left shift, in a single cycle. All multi-bit shift instructions only support Register Direct Addressing for both the operand source and result destination.

A full summary of instructions that use the shift operation is provided in Table 3-2.

TABLE 3-2: INSTRUCTIONS THAT USE THE SINGLE AND MULTI-BIT SHIFT OPERATION

Instruction	Description
ASR	Arithmetic shift right source register by one or more bits.
SL	Shift left source register by one or more bits.
LSR	Logical shift right source register by one or more bits.

TABLE 4-26: CTMU REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CTMUCON1L	35Ah	CTMUEN	_	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0	0000
CTMUCON1H	35Ch	EDG1MOD	EDG1POL	EDG1SEL3	EDG1SEL2	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT	EDG2MOD	EDG2POL	EDG2SEL3	EDG2SEL2	EDG2SEL1	EDG2SEL0	_	_	0000
CTMUCON2L	35Eh	—	_	—	_			—	-	-	-	_	IRSTEN		DISCHS2	DISCHS1	DISCHS0	0000

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition, r = reserved.

TABLE 4-27: ANSEL REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ANSA	4E0h	—	_	—	—	—	—	—	_	_	—	—	ANSA4 ⁽²⁾	ANSA3	ANSA2	ANSA1	ANSA0	001F ⁽¹⁾
ANSB	4E2h	ANSB15	ANSB14	ANSB13	ANSB12	_	_	ANSB9	ANSB8	ANSB7	ANSB6(2)	ANSB5 ⁽²⁾	ANSB4	ANSB3 ⁽²⁾	ANSB2	ANSB1	ANSB0	_{F3FF} (1)
ANSC	4E4h	_		—	_	—	—	_			_		_	_	ANSC2 ^(2,3)	ANSC1 ^(2,3)	ANSC0 ^(2,3)	0007 (1)

Legend: x = unknown, u = unchanged, --- = unimplemented, q = value depends on condition, r = reserved.

Note 1: Reset value depends on the device type; the PIC24F16KM204 value is shown.

2: These bits are not implemented in 20-pin devices.

3: These bits are not implemented in 28-pin devices.

TABLE 4-28: REAL-TIME CLOCK AND CALENDAR REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ALRMVAL	620h						Alarm Value I	High Register	Window Based	on APTR	<1:0>							XXXX
ALCFGRPT	622h	ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0	ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0	₀₀₀₀ (1)
RTCVAL	624h					R	TCC Value H	igh Register W	/indow Based o	n RTCPT	R<1:0>							xxxx
RCFGCAL	626h	RTCEN	_	RTCWREN	RTCSYNC	HALFSEC	RTCOE	RTCPTR1	RTCPTR0	CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	0000 (1)
RTCPWC	628h	PWCEN	PWCPOL	PWCCPRE	PWCSPRE	RTCCLK1	RTCCLK0	RTCOUT1	RTCOUT0	_	_	_	_	_	-	_	_	₀₀₀₀ (1)

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved.

Note 1: Values are reset only on a VDD POR event.

REGISTER 8-17: IEC5: INTERRUPT ENABLE CONTROL REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	ULPWUIE
bit 7							bit 0
Legend:							

Logena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	id as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-1 Unimplemented: Read as '0'

bit 0 ULPWUIE: Ultra Low-Power Wake-up Interrupt Enable bit

1 = Interrupt request is enabled

0 = Interrupt request is not enabled

REGISTER 8-18: IEC6: INTERRUPT ENABLE CONTROL REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

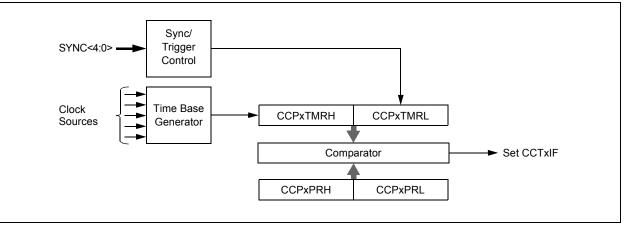
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	_	CLC2IE	CLC1IE
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-2 Unimplemented: Read as '0'

bit 1 CLC2IE: Configurable Logic Cell 2 Interrupt Enable bit

1 = Interrupt request is enabled


0 = Interrupt request is not enabled

bit 0 CLC1IE: Configurable Logic Cell 1 Interrupt Enable bit

1 = Interrupt request is enabled

0 = Interrupt request is not enabled

FIGURE 13-4: 32-BIT TIMER MODE

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_		_	_	—	_	
bit 15	·		·				bit
R/W-0		R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE	D/A	P ⁽¹⁾	S ⁽¹⁾	R/W	UA	BF
bit 7							bit
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value	at POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 15-8	Unimplemen	ted: Read as	0'				
bit 7	SMP: Slew R	ate Control bit					
	In Master or S						
				ard Speed mode		I 1 MHz)	
bit 6	CKE: SMBus				(0 KHZ)		
DIL O	In Master or S						
		SMBus-specific	c inputs				
	0 = Disables	SMBus-specifi	c inputs				
bit 5	D/A: Data/Ad	ldress bit					
	<u>In Master mo</u> Reserved.	<u>de:</u>					
	In Slave mod		(
				transmitted wa transmitted wa			
bit 4	P: Stop bit ⁽¹⁾				5 4441055		
bit 4		that a Stop bit	has been dete	ected last			
		vas not detecte					
bit 3	S: Start bit ⁽¹⁾						
		that a Start bit vas not detecte		ected last			
bit 2	R/W: Read/W	Vrite Informatio	n bit				
	In Slave mod	<u>e:</u> (2)					
	1 = Read						
	0 = Write In Master mo	do.(3)					
		is in progress					
		is not in progre	ess				
bit 1	UA: Update /	Address bit (10	-Bit Slave mod	le only)			
		that the user r does not need		e the address ir	the SSPxADE) register	
Note 1:	This bit is cleared	d on Reset and	when SSPEN	is cleared.			
2:	This bit holds the address match to				ss match. This	bit is only valid	from the
3:	ORing this bit wit	h SEN, RSEN,	PEN. RCEN	or ACKEN will in	ndicate if the M	SSPx is in Activ	ve mode

REGISTER 14-2: SSPxSTAT: MSSPx STATUS REGISTER (I²C[™] MODE)

REGISTER 14-5: SSPxCON2: MSSPx CONTROL REGISTER 2 (I²C[™] MODE)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_		_			_	—	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
GCEN	ACKSTAT	ACKDT ⁽¹⁾	ACKEN ⁽²⁾	RCEN ⁽²⁾	PEN ⁽²⁾	RSEN ⁽²⁾	SEN ⁽²⁾
bit 7							bit (
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	lown
		1 Bit io oot		o Bit io olot			
bit 15-8	Unimplemen	ted: Read as '	0'				
bit 7	GCEN: Gene	eral Call Enable	bit (Slave mod	e only)			
		interrupt when a call address is o	0	ddress (0000h)	is received in	the SSPxSR	
bit 6		cknowledge Sta		Transmit mode	≏ onlv)		
		edge was not re			c only)		
		edge was receiv					
bit 5	ACKDT: Ack	nowledge Data	bit (Master Red	ceive mode onl	y) ⁽¹⁾		
	1 = No Ackno	owledge					
	0 = Acknowle	•					
bit 4		nowledge Sequ		-	• •		
				SDAx and SC	CLx pins and	transmits ACI	KDT data bit
		ically cleared by edge sequence					
bit 3		ive Enable bit (mode only)(2)			
bit 0		Receive mode f	-	, mode only)			
	0 = Receive i						
bit 2	PEN: Stop Co	ondition Enable	bit (Master mo	de only) ⁽²⁾			
		Stop condition c	n SDAx and SO	CLx pins; auton	natically cleare	ed by hardware	
	0 = Stop cond				(0)		
bit 1	-	ated Start Cond		-			
		Repeated Start d Start conditio		DAx and SCLx	pins; automati	ically cleared by	/ hardware
bit 0	-	ondition Enable					
	Master Mode		DIC				
		<u></u> Start condition c	on SDAx and S	CLx pins: autor	natically cleare	ed by hardware	
	0 = Start con						
	Slave Mode:						
		etching is enabl etching is disab		ve transmit and	slave receive	(stretch is enab	oled)
Note 1:	The value that wi	ill be transmitte	d when the use	r initiates an Ao	cknowledge se	equence at the e	end of a
2:	receive. If the I ² C module		1.10				

REGISTER 16-2:	RTCPWC: RTCC CONFIGURATION REGISTER 2 ⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PWCEN	PWCPOL	PWCCPRE	PWCSPRE	RTCCLK1 ⁽²⁾	RTCCLK0 ⁽²⁾	RTCOUT1	RTCOUT0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—			_	—		
bit 7							bit (
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimpleme	nted bit, read as	'0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cleare	ed	x = Bit is unkr	nown
bit 15	PWCEN: Po	wer Control Er	able bit				
		ontrol is enable					
		ontrol is disable					
bit 14		ower Control F	•				
		ontrol output is ontrol output is	•				
bit 13		Power Control		caler hits			
			•	by-2 of source R ⁻	TCC clock		
				by-1 of source R			
bit 12	PWCSPRE:	Power Control	Sample Pres	caler bits			
				by-2 of source R1 by-1 of source R1			
bit 11-10	RTCCLK<1:	0>: RTCC Clo	ck Select bits ⁽²	2)			
				CC clock, which i	s used for all RT	CC timer opera	ations.
		al Secondary O I LPRC Oscillat		C)			
		al power line sc					
		al power line so					
bit 9-8	RTCOUT<1:	: 0>: RTCC Out	put Select bits	5			
		the source of th	ne RTCC pin c	output.			
	00 = RTCC a	•					
	01 = RTCC	seconds clock					
	11 = Power						
bit 7-0	Unimpleme	nted: Read as	'0'				
Note 1:	The RTCPWC	register is only	affected by a	POR			
			-	r bits the Secon	da Valua ragistar	should also be	o urritton to

2: When a new value is written to these register bits, the Seconds Value register should also be written to properly reset the clock prescalers in the RTCC.

NOTES:

17.1 Control Registers

The CLCx module is controlled by the following registers:

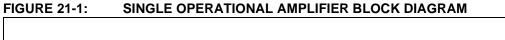
- CLCxCONL
- CLCxCONH
- CLCxSEL
- CLCxGLSL
- CLCxGLSH

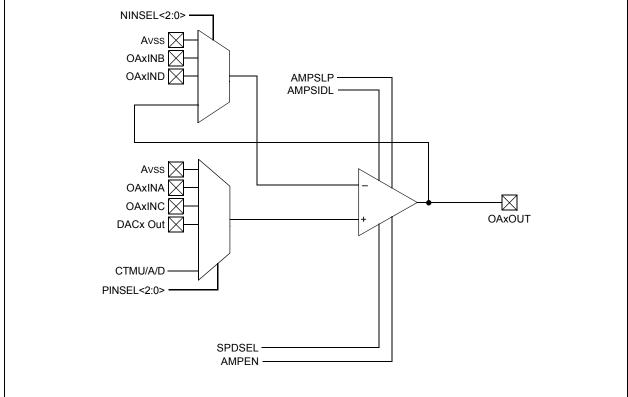
The CLCx Control registers (CLCxCONL and CLCxCONH) are used to enable the module and interrupts, control the output enable bit, select output polarity and select the logic function. The CLCx Control registers also allow the user to control the logic polarity of not only the cell output, but also some intermediate variables. The CLCx Source Select register (CLCxSEL) allows the user to select up to 4 data input sources using the 4 data input selection multiplexers. Each multiplexer has a list of 8 data sources available.

The CLCx Gate Logic Select registers (CLCxGLSL and CLCxGLSH) allow the user to select which outputs from each of the selection MUXes are used as inputs to the input gates of the logic cell. Each data source MUX outputs both a true and a negated version of its output. All of these 8 signals are enabled, ORed together by the logic cell input gates.

REGISTER 17-1: CLCxCONL: CLCx CONTROL REGISTER (LOW)

bit 14-12 U bit 11 I bit 10 I bit 9-8 U bit 7 L	LCEN: CLCx 1 = CLCx is 0 = CLCx is Unimplement INTP: CLCx I 1 = Interrupt 0 = Interrupt	enabled and mi disabled and ha ited: Read as '0 Positive Edge Ir will be generate will not be gene	xing input sign is logic zero c)' iterrupt Enabl ed when a risi	'0' = Bit is cle nals putputs le bit		U-0 — R/W-0 MODE1	U-0 bit 8 R/W-0 MODE0 bit 0
bit 15 R-0 LCOE bit 7 Legend: R = Readable b -n = Value at PC bit 15 bit 14-12 bit 14-12 bit 11 bit 10 bit 9-8 bit 7	LCOUT bit OR LCEN: CLCx 1 = CLCx is 0 = CLCx is Unimplemen INTP: CLCx I 1 = Interrupt 0 = Interrupt	LCPOL W = Writable I '1' = Bit is set Enable bit enabled and mi disabled and ha ited: Read as '0 Positive Edge Ir will be generate will not be gene	bit xing input sign s logic zero c o' nterrupt Enabl ed when a risi	U-0 — U = Unimpler '0' = Bit is cle nals putputs	R/W-0 MODE2 nented bit, read	MODE1	R/W-0 MODE0 bit 0
R-0 LCOE bit 7 Legend: R = Readable b -n = Value at PO bit 15 bit 14-12 bit 14-12 bit 11 bit 10 bit 10 bit 9-8 bit 7	LCOUT bit OR LCEN: CLCx 1 = CLCx is 0 = CLCx is Unimplemen INTP: CLCx I 1 = Interrupt 0 = Interrupt	LCPOL W = Writable I '1' = Bit is set Enable bit enabled and mi disabled and ha ited: Read as '0 Positive Edge Ir will be generate will not be gene	bit xing input sign s logic zero c o' nterrupt Enabl ed when a risi	U = Unimpler '0' = Bit is cle nals putputs	MODE2	MODE1	R/W-0 MODE0 bit 0
LCOE bit 7 Legend: R = Readable b -n = Value at PC bit 15 L bit 15 L bit 14-12 L bit 11 L bit 10 L bit 9-8 L bit 7 L	LCOUT bit OR LCEN: CLCx 1 = CLCx is 0 = CLCx is Unimplemen INTP: CLCx I 1 = Interrupt 0 = Interrupt	LCPOL W = Writable I '1' = Bit is set Enable bit enabled and mi disabled and ha ited: Read as '0 Positive Edge Ir will be generate will not be gene	bit xing input sign s logic zero c o' nterrupt Enabl ed when a risi	U = Unimpler '0' = Bit is cle nals putputs	MODE2	MODE1	MODE0 bit 0
LCOE bit 7 Legend: R = Readable b -n = Value at PC bit 15 L bit 15 L bit 14-12 L bit 11 L bit 10 L bit 9-8 L bit 7 L	LCOUT bit OR LCEN: CLCx 1 = CLCx is 0 = CLCx is Unimplemen INTP: CLCx I 1 = Interrupt 0 = Interrupt	LCPOL W = Writable I '1' = Bit is set Enable bit enabled and mi disabled and ha ited: Read as '0 Positive Edge Ir will be generate will not be gene	bit xing input sign s logic zero c o' nterrupt Enabl ed when a risi	U = Unimpler '0' = Bit is cle nals putputs	MODE2	MODE1	MODE0 bit 0
bit 7 Legend: R = Readable b -n = Value at PC bit 15 bit 14-12 bit 14-12 bit 10 bit 10 bit 9-8 bit 7	bit OR LCEN: CLCx 1 = CLCx is 0 = CLCx is Unimplemen INTP: CLCx I 1 = Interrupt 0 = Interrupt	W = Writable I '1' = Bit is set Enable bit enabled and mit disabled and hance ted: Read as '0 Positive Edge In will be generated will not be generated	xing input sign is logic zero c)' iterrupt Enabl ed when a risi	'0' = Bit is cle nals putputs le bit	nented bit, read	d as '0'	bit 0
Legend: R = Readable b -n = Value at PC bit 15 L bit 14-12 L bit 11 L bit 10 L bit 9-8 L bit 7 L	LCEN: CLCx 1 = CLCx is 0 = CLCx is Unimplement INTP: CLCx I 1 = Interrupt 0 = Interrupt	'1' = Bit is set Enable bit enabled and mit disabled and ha nted: Read as '0 Positive Edge Ir will be generate will not be gene	xing input sign is logic zero c)' iterrupt Enabl ed when a risi	'0' = Bit is cle nals putputs le bit	ared		
R = Readable b -n = Value at PC bit 15 L bit 14-12 L bit 14-12 L bit 11 L bit 10 L bit 9-8 L bit 7 L	LCEN: CLCx 1 = CLCx is 0 = CLCx is Unimplement INTP: CLCx I 1 = Interrupt 0 = Interrupt	'1' = Bit is set Enable bit enabled and mit disabled and ha nted: Read as '0 Positive Edge Ir will be generate will not be gene	xing input sign is logic zero c)' iterrupt Enabl ed when a risi	'0' = Bit is cle nals putputs le bit	ared		ıown
R = Readable b -n = Value at PC bit 15 L bit 14-12 L bit 14-12 L bit 11 L bit 10 L bit 9-8 L bit 7 L	LCEN: CLCx 1 = CLCx is 0 = CLCx is Unimplement INTP: CLCx I 1 = Interrupt 0 = Interrupt	'1' = Bit is set Enable bit enabled and mit disabled and ha nted: Read as '0 Positive Edge Ir will be generate will not be gene	xing input sign is logic zero c)' iterrupt Enabl ed when a risi	'0' = Bit is cle nals putputs le bit	ared		ıown
-n = Value at P(bit 15 L bit 14-12 L bit 11 L bit 10 L bit 9-8 L bit 7 L	LCEN: CLCx 1 = CLCx is 0 = CLCx is Unimplement INTP: CLCx I 1 = Interrupt 0 = Interrupt	'1' = Bit is set Enable bit enabled and mit disabled and ha nted: Read as '0 Positive Edge Ir will be generate will not be gene	xing input sign is logic zero c)' iterrupt Enabl ed when a risi	'0' = Bit is cle nals putputs le bit	ared		nown
bit 15 L bit 14-12 L bit 11 L bit 10 L bit 9-8 L bit 7 L	LCEN: CLCx 1 = CLCx is 0 = CLCx is Unimplement INTP: CLCx I 1 = Interrupt 0 = Interrupt	Enable bit enabled and mi disabled and ha ated: Read as '0 Positive Edge Ir will be generate will not be gene	ns logic zero c)' nterrupt Enabl ed when a risi	nals outputs e bit		x = Bit is unkr	nown
bit 14-12 U bit 11 I bit 10 I bit 9-8 U bit 7 L	1 = CLCx is 0 = CLCx is Unimplement INTP: CLCx I 1 = Interrupt 0 = Interrupt	enabled and mi disabled and ha ited: Read as '0 Positive Edge Ir will be generate will not be gene	ns logic zero c)' nterrupt Enabl ed when a risi	outputs e bit	on LCOUT		
bit 14-12 U bit 11 I bit 10 I bit 9-8 U bit 7 L	1 = CLCx is 0 = CLCx is Unimplement INTP: CLCx I 1 = Interrupt 0 = Interrupt	enabled and mi disabled and ha ited: Read as '0 Positive Edge Ir will be generate will not be gene	ns logic zero c)' nterrupt Enabl ed when a risi	outputs e bit	on LCOUT		
bit 14-12 U bit 11 I bit 10 I bit 9-8 U bit 7 L	0 = CLCx is 0 Unimplemen INTP: CLCx I 1 = Interrupt 0 = Interrupt	disabled and ha ited: Read as '0 Positive Edge Ir will be generate will not be gene	ns logic zero c)' nterrupt Enabl ed when a risi	outputs e bit	on LCOUT		
bit 14-12 U bit 11 I bit 10 I bit 10 I bit 9-8 U bit 7 I	Unimplemen INTP: CLCx I 1 = Interrupt 0 = Interrupt	nted: Read as '0 Positive Edge Ir will be generate will not be gene)' hterrupt Enabl ed when a risi	e bit	on LCOUT		
bit 11	INTP: CLCx I 1 = Interrupt 0 = Interrupt	Positive Edge Ir will be generate will not be gene	nterrupt Enabl ed when a risi		on LCOUT		
bit 10 I bit 9-8 I bit 7 I	1 = Interrupt 0 = Interrupt	will be generate will not be gene	ed when a risi		on LCOUT		
bit 10 I bit 9-8 U bit 7 I	0 = Interrupt	will not be gene		ing eage occurs	ULCOOL		
bit 9-8	INTN: CLCx		natoa				
bit 9-8		Negative Edge	Interrupt Enat	ole bit			
bit 9-8 U bit 7 L		will be generate		ing edge occurs	s on LCOUT		
bit 7 L	•	will not be gene					
	-	ted: Read as '0					
		Port Enable bit					
		rt pin output is e rt pin output is d					
	•	x Data Output S					
	1 = CLCx out	•					
	0 = CLCx out						
bit 5 L	LCPOL: CLC	x Output Polari	ty Control bit				
		out of the module					
	0 = The outr	ut of the medul		ed			
bit 4-3 L	•	out of the module		cu .			


21.0 DUAL OPERATIONAL AMPLIFIER MODULE


Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, *"Operational Amplifier (Op Amp)"* (DS30505). Device-specific information in this data sheet supersedes the information in the *"PIC24F Family Reference Manual"*.

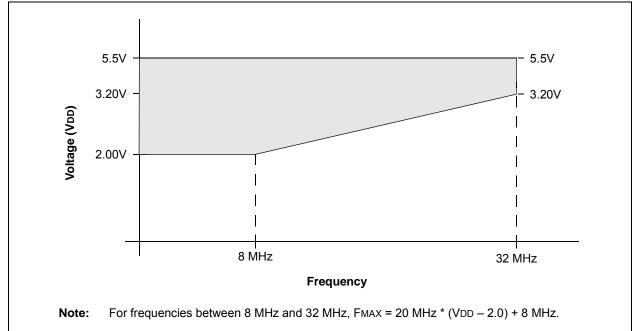
PIC24FV16KM204 family devices include two operational amplifiers to complement the microcontroller's other analog features. They may be used to provide analog signal conditioning, either as stand-alone devices or in addition to other analog peripherals. The two op amps are functionally identical; the block diagram for a single amplifier is shown in Figure 21-1. Each op amp has these features:

- · Internal unity-gain buffer option
- Multiple input options each on the inverting and non-inverting amplifier inputs
- · Rail-to-rail input and output capabilities
- User-selectable option for regular or low-power operation
- User-selectable operation in Idle and Sleep modes

When using the op amps, it is recommended to set the ANSx and TRISx bits of both the input and output pins to configure them as analog pins. See **Section 11.2 "Configuring Analog Port Pins"** for more information.

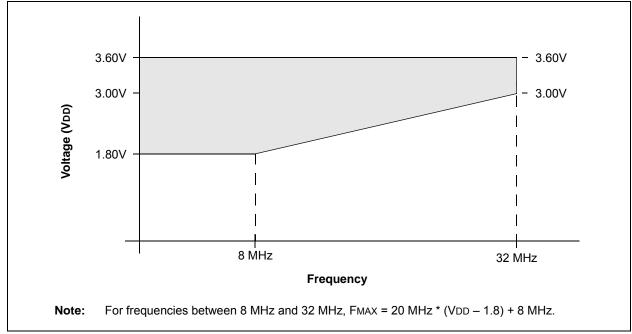
REGISTER 25-4: FOSC: OSCILLATOR CONFIGURATION REGISTER

R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
FCKSM1	FCKSM0	SOSCSEL	POSCFREQ1	POSCFREQ0	OSCIOFNC	POSCMD1	POSCMD0
bit 7							bit 0


Legend:			
R = Readable bit	P = Programmable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	FCKSM<1:0>: Clock Switching and Fail-Safe Clock Monitor Selection Configuration bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
bit 5	SOSCSEL: Secondary Oscillator Power Selection Configuration bit 1 = Secondary Oscillator is configured for high-power operation 0 = Secondary Oscillator is configured for low-power operation
bit 4-3	POSCFREQ<1:0>: Primary Oscillator Frequency Range Configuration bits 11 = Primary Oscillator/External Clock input frequency is greater than 8 MHz 10 = Primary Oscillator/External Clock input frequency is between 100 kHz and 8 MHz 01 = Primary Oscillator/External Clock input frequency is less than 100 kHz 00 = Reserved; do not use
bit 2	 OSCIOFNC: CLKO Enable Configuration bit 1 = CLKO output signal is active on the OSCO pin; Primary Oscillator must be disabled or configured for the External Clock (EC) mode for the CLKO to be active (POSCMD<1:0> = 11 or 00) 0 = CLKO output is disabled
bit 1-0	POSCMD<1:0>: Primary Oscillator Configuration bits 11 = Primary Oscillator mode is disabled 10 = HS Oscillator mode is selected 01 = XT Oscillator mode is selected

00 = External Clock mode is selected


NOTES:

27.1 DC Characteristics

FIGURE 27-2: PIC24F16KM204 FAMILY VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)

DC CHARA	CTERISTICS	Standard C			$\begin{array}{l} \textbf{s: 1.8V to 3.6V (PIC24F16KM204)} \\ \textbf{2.0V to 5.5V (PIC24FV16KM204)} \\ \textbf{-40^{\circ}C} \leq \text{TA} \leq +85^{\circ}\text{C} \text{ for Industrial} \\ \textbf{-40^{\circ}C} \leq \text{TA} \leq +125^{\circ}\text{C} \text{ for Extended} \end{array}$				
Parameter No.	Device	Typical ⁽¹⁾	Max	Units		onditions			
Power-Dow	n Current (IPD)								
DC60	PIC24FV16KMXXX		_		-40°C				
			8.0		+25°C				
		6.0	8.5	μA	+60°C	2.0V			
			9.0		+85°C				
			15.0		+125°C				
			—		-40°C				
			8.0		+25°C				
		6.0	9.0	μA	+60°C	5.0V			
			10.0		+85°C				
			15.0		+125°C		Sleep Mode ⁽²⁾		
	PIC24F16KMXXX		_		-40°C				
			0.80		+25°C				
		0.025	1.5	μA	+60°C	1.8V			
			2.0		+85°C				
			7.5		+125°C				
			—		-40°C				
			1.0		+25°C				
		0.040	2.0	μA	+60°C	3.3V			
			3.0		+85°C				
			7.5		+125°C				
DC61	PIC24FV16KMXXX	0.25	_	μA	+85°C	2.0V			
			7.5	P., 4	+125°C		Low-Voltage		
		0.35	3.0	μA	+85°C	5.0V	Sleep Mode ⁽²⁾		
			7.5	r	+125°C				

TABLE 27-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Legend: Unshaded rows represent PIC24F16KMXXX devices and shaded rows represent PIC24FV16KMXXX devices.

Note 1: Data in the Typical column is at 3.3V, +25°C (PIC24F16KMXXX) or 5.0V, +25°C (PIC24FV16KMXXX) unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as outputs and set low. PMSLP is set to '0' and WDT, etc., are all switched off.

3: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Comments
300	TRESP	Response Time ^{*(1)}	_	150	400	ns	
301	Тмс2о∨	Comparator Mode Change to Output Valid [*]	—	—	10	μs	

TABLE 27-26: COMPARATOR TIMING REQUIREMENTS

Parameters are characterized but not tested.

*

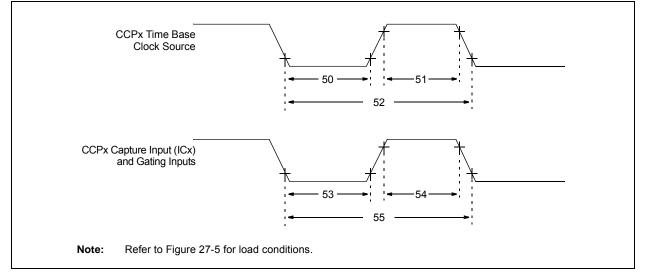

Note 1: Response time is measured with one comparator input at (VDD – 1.5)/2, while the other input transitions from Vss to VDD.

TABLE 27-27: COMPARATOR VOLTAGE REFERENCE SETTLING TIME SPECIFICATIONS

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Comments
VR310	TSET	Settling Time ⁽¹⁾			10	μS	

Note 1: Settling time is measured while CVRSS = 1 and the CVR<3:0> bits transition from '0000' to '1111'.

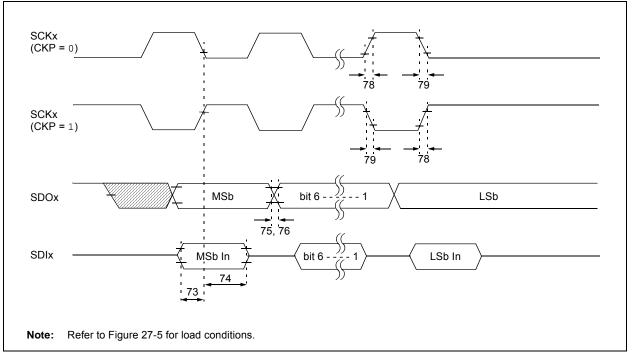

FIGURE 27-10: CAPTURE/COMPARE/PWM TIMINGS (MCCPx, SCCPx MODULES)

TABLE 27-28: CAPTURE/COMPARE/PWM REQUIREMENTS (MCCPx, SCCPx MODULES)

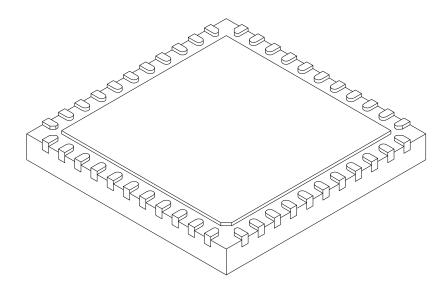
Param No.	Symbol	Characteristic	Min	Max	Units	Conditions
50	TCLKL	CCPx Time Base Clock Source Low Time	TCY/2	_	ns	
51	ТсікН	CCPx Time Base Clock Source High Time	Tcy/2	_	ns	
52	TCLK	CCPx Time Base Clock Source Period	Тсү	-	ns	
53	TccL	CCPx Capture or Gating Input Low Time	TCLK	—	ns	
54	ТссН	CCPx Capture or Gating Input High Time	TCLK	_	ns	
55	TCCP	CCPx Capture or Gating Input Period	2 * Tclk/N	—	ns	N = Prescale Value (1, 4 or 16)

FIGURE 27-11: EXAMPLE SPI MASTER MODE TIMING (CKE = 0)

TABLE 27-29: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)

Param No.	Symbol	Characteristic	Min	Max	Units	Conditions
73	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	_	ns	
74	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	40	—	ns	
75	TDOR	SDOx Data Output Rise Time	_	25	ns	
76	TDOF	SDOx Data Output Fall Time	_	25	ns	
78	TscR	SCKx Output Rise Time (Master mode)	_	25	ns	
79	TscF	SCKx Output Fall Time (Master mode)	_	25	ns	
	Fsck	SCKx Frequency	—	10	MHz	

TABLE 27-37: A/D MODULE SPECIF AC CHARACTERISTICS					$\begin{array}{l} \text{ onditions: } 1.8V \ \text{to } 3.6V \ (PIC24F16KM204) \\ 2.0V \ \text{to } 5.5V \ (PIC24FV16KM204) \\ -40^\circ\text{C} \leq \text{TA} \leq +85^\circ\text{C} \ \text{for Industrial} \\ -40^\circ\text{C} \leq \text{TA} \leq +125^\circ\text{C} \ \text{for Extended} \end{array}$			
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions	
			Device S	Supply				
AD01	AVDD	Module VDD Supply	Greater of: VDD – 0.3 or 1.8		Lesser of: VDD + 0.3 or 3.6	V	PIC24FXXKMXXX devices	
			Greater of: VDD – 0.3 or 2.0		Lesser of: VDD + 0.3 or 5.5	V	PIC24FVXXKMXXX devices	
AD02	AVss	Module Vss Supply	Vss – 0.3	_	Vss + 0.3	V		
			Reference	e Input	s			
AD05	VREFH	Reference Voltage High	AVss + 1.7	_	AVDD	V		
AD06	VREFL	Reference Voltage Low	AVss		AVDD – 1.7	V		
AD07	Vref	Absolute Reference Voltage	AVss – 0.3	_	AVDD + 0.3	V		
AD08	IVREF	Reference Voltage Input Current	—	1.25	—	mA		
AD09	Zvref	Reference Input Impedance	—	10k	—	Ω		
	•		Analog	Input	•			
AD10	VINH-VINL	Full-Scale Input Span	VREFL	_	VREFH	V	(Note 2)	
AD11	Vin	Absolute Input Voltage	AVss – 0.3	_	AVDD + 0.3	V		
AD12	VINL	Absolute Vın∟ Input Voltage	AVss – 0.3	_	AVDD/2	V		
AD17	RIN	Recommended Impedance of Analog Voltage Source	—		1k	Ω	12-bit	
	-		A/D Acc	uracy				
AD20b	Nr	Resolution	_	12	—	bits		
AD21b	INL	Integral Nonlinearity		±1	±9	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V	
AD22b	DNL	Differential Nonlinearity	_	±1	±5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V	
AD23b	Gerr	Gain Error	_	±1	±9	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V	
AD24b	EOFF	Offset Error	—	±1	±5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V	
AD25b		Monotonicity ⁽¹⁾	_	_	_	_	Guaranteed	


TABLE 27-37: A/D MODULE SPECIFICATIONS

 $\label{eq:Note_1:} \textbf{Note_1:} \quad \text{The A/D conversion result never decreases with an increase in the input voltage.}$

2: Measurements are taken with external VREF+ and VREF- used as the A/D voltage reference.

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	Limits	MIN	NOM	MAX		
Number of Pins	Ν	44				
Pitch	е	0.65 BSC				
Overall Height	Α	0.80	0.90	1.00		
Standoff	A1	0.00	0.02	0.05		
Terminal Thickness	A3	0.20 REF				
Overall Width	Е	8.00 BSC				
Exposed Pad Width	E2	6.25	6.45	6.60		
Overall Length	D	8.00 BSC				
Exposed Pad Length	D2	6.25	6.45	6.60		
Terminal Width	b	0.20	0.30	0.35		
Terminal Length	L	0.30	0.40	0.50		
Terminal-to-Exposed-Pad	K	0.20	-	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension. usually without tolerance. for information purposes only.

Microchip Technology Drawing C04-103C Sheet 2 of 2

NOTES: