E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	18
Program Memory Size	8КВ (2.75К х 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08km101-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1.4 EASY MIGRATION

The PIC24FV16KM204 family devices have two variants. The KM20X variant provides the full feature set of the device, while the KM10X offers a reduced peripheral set, allowing for the balance of features and cost (refer to Table 1-1). Both variants allow for a smooth migration path as applications grow and evolve.

The consistent pinout scheme used throughout the entire family also helps in migrating to the next larger device. This is true when moving between devices with the same pin count, different die variants, or even moving from 20-pin or 28-pin devices to 44-pin/48-pin devices.

The PIC24F family is pin compatible with devices in the dsPIC33 family, and shares some compatibility with the pinout schema for PIC18 and dsPIC30. This extends the ability of applications to grow from the relatively simple to the powerful and complex, yet still selecting a Microchip device.

1.2 Other Special Features

- Communications: The PIC24FV16KM204 family incorporates a range of serial communication peripherals to handle a range of application requirements. There is an MSSP module which implements both SPI and I²C™ protocols, and supports both Master and Slave modes of operation for each. Devices also include one of two UARTs with built-in IrDA[®] encoders/decoders.
- Analog Features: Select members of the PIC24FV16KM204 family include two 8-bit Digital-to-Analog Converters which offer support in Idle mode, and left and right justified input data, as well as up to two operational amplifiers with selectable power and speed modes.
- Real-Time Clock/Calendar (RTCC): This module implements a full-featured clock and calendar with alarm functions in hardware, freeing up timer resources and program memory space for use of the core application.
- 12-Bit A/D Converter: This module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period, and faster sampling speed. The 16-deep result buffer can be used either in Sleep, to reduce power, or in Active mode to improve throughput.
- Charge Time Measurement Unit (CTMU) Interface: The PIC24FV16KM204 family includes the new CTMU interface module, which can be used for capacitive touch sensing, proximity sensing, and also for precision time measurement and pulse generation. The CTMU can also be connected to the operational amplifiers to provide active guarding, which provides increased robustness in the presence of noise in capacitive touch applications.

1.3 Details on Individual Family Members

Devices in the PIC24FV16KM204 family are available in 20-pin, 28-pin, 44-pin and 48-pin packages. The general block diagram for all devices is shown in Figure 1-1.

Members of the PIC24FV16KM204 family are available as both standard and high-voltage devices. High-voltage devices, designated with an "FV" in the part number (such as PIC24FV16KM204), accommodate an operating VDD range of 2.0V to 5.5V and have an on-board voltage regulator that powers the core. Peripherals operate at VDD.

Standard devices, designated by "F" (such as PIC24F16KM204), function over a lower VDD range of 1.8V to 3.6V. These parts do not have an internal regulator, and both the core and peripherals operate directly from VDD.

The PIC24FV16KM204 family may be thought of as two different device groups, both offering slightly different sets of features. These differ from each other in multiple ways:

- · The size of the Flash program memory
- The number of external analog channels available
- The number of Digital-to-Analog Converters
- · The number of operational amplifiers
- The number of analog comparators
- The presence of a Real-Time Clock and Calendar (RTCC)
- The number and type of CCP modules (i.e., MCCP vs. SCCP)
- The number of serial communication modules (both MSSPs and UARTs)
- The number of Configurable Logic Cell (CLC) modules

The general differences between the different sub-families are shown in Table 1-1 and Table 1-2.

A list of the pin features available on the PIC24FV16KM204 family devices, sorted by function, is provided in Table 1-5.

TABLE 4-10: MCCP3 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CCP3CON1L ⁽¹⁾	188h	CCPON	_	CCPSIDL	r	TMRSYNC	CLKSEL2	CLKSEL1	CLKSEL0	TMRPS1	TMRPS0	T32	CCSEL	MOD3	MOD2	MOD1	MOD0	0000
CCP3CON1H ⁽¹⁾	18Ah	OPSSRC	RTRGEN	—	—	IOPS3	IOPS2	IOPS1	IOPS0	TRIGEN	ONESHOT	ALTSYNC	SYNC4	SYNC3	SYNC2	SYNC1	SYNC0	0000
CCP3CON2L ⁽¹⁾	18Ch	PWMRSEN	ASDGM	—	SSDG	—			_	ASDG7	ASDG6	ASDG5	ASDG4	ASDG3	ASDG2	ASDG1	ASDG0	0000
CCP3CON2H ⁽¹⁾	18Eh	OENSYNC	_	OCFEN	OCEEN	OCDEN	OCCEN	OCBEN	OCAEN	ICGSM1	ICGSM0	_	AUXOUT1	AUXOUT0	ICS2	ICS1	ICS0	0100
CCP3CON3L ⁽¹⁾	190h	_	_	_	_	_	_	_	_	_	_	DT5	DT4	DT3	DT2	DT1	DT0	0000
CCP3CON3H ⁽¹⁾	192h	OETRIG	OSCNT2	OSCNT1	OSCNT0	_	OUTM2	OUTM1	OUTM0	_	_	POLACE	POLBDF	PSSACE1	PSSACE0	PSSBDF1	PSSBDF0	0000
CCP3STAT ⁽¹⁾	194h	_	_	_	_	_	_	_	_	CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE	0000
CCP3TMRL ⁽¹⁾	198h							MCC	P3 Time Ba	se Register	Low Word							0000
CCP3TMRH ⁽¹⁾	19Ah							MCCF	P3 Time Bas	se Register	High Word							0000
CCP3PRL ⁽¹⁾	19Ch							MCCP3	Time Base F	Period Regis	ster Low Wor	d						FFFF
CCP3PRH ⁽¹⁾	19Eh							МССРЗ Т	īme Base F	Period Regis	ter High Wor	ď						FFFF
CCP3RAL ⁽¹⁾	1A0h							O	utput Comp	are 3 Data \	Vord A							0000
CCP3RBL ⁽¹⁾	1A4h		Output Compare 3 Data Word B 00								0000							
CCP3BUFL ⁽¹⁾	1A8h		Input Capture 3 Data Buffer Low Word 0000								0000							
CCP3BUFH ⁽¹⁾	1AAh							Input	Capture 3 [Data Buffer I	ligh Word							0000

 $\label{eq:logend: second depends on condition, r = reserved.} Legend: \ \ \, x = unknown, u = unchanged, ---= unimplemented, q = value depends on condition, r = reserved.$

Note 1: These registers are available only on PIC24F(V)16KM2XX devices.

TABLE 4-21: PORTA REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11 ^(4,5)	Bit 10 ^(4,5)	Bit 9 ^(4,5)	Bit 8 ^(4,5)	Bit 7 ⁽⁴⁾	Bit 6 ⁽³⁾	Bit 5 ⁽²⁾	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	2C0h	_	—	_	_	TRISA11	TRISA10	TRISA9	TRISA8	TRISA7	TRISA6	_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	0FDF ⁽¹⁾
PORTA	2C2h	_	_	_	_	RA11	RA10	RA9	RA8	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx
LATA	2C4h	_	_	_	_	LATA11	LATA10	LATA9	LATA8	LATA7	LATA6		LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
ODCA	2C6h	_	_	_	-	ODA11	ODA10	ODA9	ODA8	ODA7	ODA6	_	ODA4	ODA3	ODA2	ODA1	ODA0	0000

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved.

Note 1: Reset value depends on the device type; the PIC24F16KM204 value is shown.

2: These bits are only available when MCLRE (FPOR<7>) = 0.

3: These bits are not implemented in FV devices.

4: These bits are not implemented in 20-pin devices.

5: These bits are not implemented in 28-pin devices.

TABLE 4-22: PORTB REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11 ⁽²⁾	Bit 10 ⁽²⁾	Bit 9	Bit 8	Bit 7	Bit 6 ⁽²⁾	Bit 5 ⁽²⁾	Bit 4	Bit 3 ⁽²⁾	Bit 2	Bit 1	Bit 0	All Resets
TRISB	2C8h	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	_{FFFF} (1)
PORTB	2CAh	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	2CCh	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	2CEh	ODB15	ODB14	ODB13	ODB12	ODB11	ODB10	ODB9	ODB8	ODB7	ODB6	ODB5	ODB4	ODB3	ODB2	ODB1	ODB0	0000

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved.

Note 1: Reset value depends on the device type; the PIC24F16KM204 value is shown.

2: These bits are not implemented in 20-pin devices.

TABLE 4-23: PORTC REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9 ^(2,3)	Bit 8 ^(2,3)	Bit 7 ^(2,3)	Bit 6 ^(2,3)	Bit 5 ^(2,3)	Bit 4 ^(2,3)	Bit 3 ^(2,3)	Bit 2 ^(2,3)	Bit 1 ^(2,3)	Bit 0 ^(2,3)	All Resets
TRISC	2D0h	—	_		_		_	TRISC9	TRISC8	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	03FF ⁽¹⁾
PORTC	2D2h	_	_	_		—		RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx
LATTC	2D4h	_	_	_	_	_	_	LATC9	LATC8	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xxxx
ODCC	2D6h	_	_	_	_	_	_	ODC9	ODC8	ODC7	ODC6	ODC5	ODC4	ODC3	ODC2	ODC1	ODC0	0000

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition, r = reserved.

Note 1: Reset value depends on the device type; the PIC24F16KM204 value is shown.

2: These bits are not implemented in 20-pin devices.

3: These bits are not implemented in 28-pin devices.

6.3 NVM Address Register

As with Flash program memory, the NVM Address registers, NVMADRU and NVMADR, form the 24-bit Effective Address (EA) of the selected row or word for data EEPROM operations. The NVMADRU register is used to hold the upper 8 bits of the EA, while the NVMADR register is used to hold the lower 16 bits of the EA. These registers are not mapped into the Special Function Register (SFR) space; instead, they directly capture the EA<23:0> of the last Table Write instruction that has been executed and select the data EEPROM row to erase. Figure 6-1 depicts the program memory EA that is formed for programming and erase operations.

Like program memory operations, the Least Significant bit (LSb) of NVMADR is restricted to even addresses. This is because any given address in the data EEPROM space consists of only the lower word of the program memory width; the upper word, including the uppermost "phantom byte", are unavailable. This means that the LSb of a data EEPROM address will always be '0'.

Similarly, the Most Significant bit (MSb) of NVMADRU is always '0', since all addresses lie in the user program space.

FIGURE 6-1: DATA EEPROM ADDRESSING WITH TBLPAG AND NVM ADDRESS REGISTERS

6.4 Data EEPROM Operations

The EEPROM block is accessed using Table Read and Write operations, similar to those used for program memory. The TBLWTH and TBLRDH instructions are not required for data EEPROM operations since the memory is only 16 bits wide (data on the lower address is valid only). The following programming operations can be performed on the data EEPROM:

- · Erase one, four or eight words
- Bulk erase the entire data EEPROM
- Write one word
- Read one word

Note 1: Unexpected results will be obtained if the user attempts to read the EEPROM while a programming or erase operation is underway.

2: The XC16 C compiler includes library procedures to automatically perform the Table Read and Table Write operations, manage the Table Pointer and write buffers, and unlock and initiate memory write sequences. This eliminates the need to create assembler macros or time critical routines in C for each application.

The library procedures are used in the code examples detailed in the following sections. General descriptions of each process are provided for users who are not using the XC16 compiler libraries.

6.4.1.1 Data EEPROM Bulk Erase

To erase the entire data EEPROM (bulk erase), the address registers do not need to be configured because this operation affects the entire data EEPROM. The following sequence helps in performing a bulk erase:

- 1. Configure NVMCON to Bulk Erase mode.
- 2. Clear the NVMIF status bit and enable the NVM interrupt (optional).
- 3. Write the key sequence to NVMKEY.
- 4. Set the WR bit to begin the erase cycle.
- 5. Either poll the WR bit or wait for the NVM interrupt (NVMIF is set).

A typical bulk erase sequence is provided in Example 6-3.

6.4.2 SINGLE-WORD WRITE

To write a single word in the data EEPROM, the following sequence must be followed:

- Erase one data EEPROM word (as mentioned in the previous section) if the PGMONLY bit (NVMCON<12>) is set to '1'.
- 2. Write the data word into the data EEPROM latch.
- Program the data word into the EEPROM:
 Configure the NVMCON register to
 - program one EEPROM word (NVMCON<5:0> = 0001xx).
 - Clear the NVMIF status bit and enable the NVM interrupt (optional).
 - Write the key sequence to NVMKEY.
 - Set the WR bit to begin the erase cycle.
 - Either poll the WR bit or wait for the NVM interrupt (NVMIF is set).
 - To get cleared, wait until NVMIF is set.

A typical single-word write sequence is provided in Example 6-4.

EXAMPLE 6-3: DATA EEPROM BULK ERASE

// Set up NVMCON to bulk erase the data EEPROM NVMCON = 0×4050 ;

// Disable Interrupts For 5 Instructions
asm volatile ("disi #5");

// Issue Unlock Sequence and Start Erase Cycle
__builtin_write_NVM();

EXAMPLE 6-4: SINGLE-WORD WRITE TO DATA EEPROM

```
int __attribute__ ((space(eedata))) eeData = 0x1234;
                                                  // New data to write to EEPROM
  int newData;
                        _____
/*_____
The variable eeData must be a Global variable declared outside of any method
the code following this comment can be written inside the method that will execute the write
_ _ _ _ _
* /
  unsigned int offset;
  // Set up NVMCON to erase one word of data EEPROM
  NVMCON = 0 \times 4004;
  // Set up a pointer to the EEPROM location to be erased
  TBLPAG = __builtin_tblpage(&eeData); // Initialize EE Data page pointer
                                                 // Initizlize lower word of address
  offset = __builtin_tbloffset(&eeData);
  __builtin_tblwtl(offset, newData);
                                                 // Write EEPROM data to write latch
  asm volatile ("disi #5");
                                                  // Disable Interrupts For 5 Instructions
   __builtin_write_NVM();
                                                  // Issue Unlock Sequence & Start Write Cycle
  while(NVMCONbits.WR=1);
                                                  // Optional: Poll WR bit to wait for
                                                  // write sequence to complete
```

7.2.1 POR AND LONG OSCILLATOR START-UP TIMES

The oscillator start-up circuitry and its associated delay timers are not linked to the device Reset delays that occur at power-up. Some crystal circuits (especially low-frequency crystals) will have a relatively long start-up time. Therefore, one or more of the following conditions is possible after SYSRST is released:

- The oscillator circuit has not begun to oscillate.
- The Oscillator Start-up Timer (OST) has not expired (if a crystal oscillator is used).
- The PLL has not achieved a lock (if PLL is used).

The device will not begin to execute code until a valid clock source has been released to the system. Therefore, the oscillator and PLL start-up delays must be considered when the Reset delay time must be known.

7.2.2 FAIL-SAFE CLOCK MONITOR (FSCM) AND DEVICE RESETS

If the FSCM is enabled, it will begin to monitor the system clock source when SYSRST is released. If a valid clock source is not available at this time, the device will automatically switch to the FRC Oscillator and the user can switch to the desired crystal oscillator in the Trap Service Routine (TSR).

7.3 Special Function Register Reset States

Most of the Special Function Registers (SFRs) associated with the PIC24F CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in each section of this manual.

The Reset value for each SFR does not depend on the type of Reset, with the exception of four registers. The Reset value for the Reset Control register, RCON, will depend on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, will depend on the type of Reset and the programmed values of the FNOSCx bits in the Flash Configuration Word (FOSCSEL<2:0>); see Table 7-2. The RCFGCAL and NVMCON registers are only affected by a POR.

7.4 Brown-out Reset (BOR)

The PIC24FXXXXX family devices implement a BOR circuit, which provides the user several configuration and power-saving options. The BOR is controlled by the BORV<1:0> and BOREN<1:0> Configuration bits (FPOR<6:5,1:0>). There are a total of four BOR configurations, which are provided in Table 7-3.

The BOR threshold is set by the BORV<1:0> bits. If BOR is enabled (any values of BOREN<1:0>, except '00'), any drop of VDD below the set threshold point will reset the device. The chip will remain in BOR until VDD rises above the threshold.

If the Power-up Timer is enabled, it will be invoked after VDD rises above the threshold. Then, it will keep the chip in Reset for an additional time delay, TPWRT, if VDD drops below the threshold while the Power-up Timer is running. The chip goes back into a BOR and the Power-up Timer will be initialized. Once VDD rises above the threshold, the Power-up Timer will execute the additional time delay.

BOR and the Power-up Timer (PWRT) are independently configured. Enabling the Brown-out Reset does not automatically enable the PWRT.

7.4.1 LOW-POWER BOR (LPBOR)

The Low-Power BOR is an alternate setting for the BOR, designed to consume minimal power. In LPBOR mode, BORV<1:0> (FPOR<6:5>) = 00. The BOR trip point is approximately 2.0V. Due to the low current consumption, the accuracy of the LPBOR mode can vary.

Unlike the other BOR modes, LPBOR mode will not cause a device Reset when VDD drops below the trip point. Instead, it re-arms the POR circuit to ensure that the device will reset properly in the event that VDD continues to drop below the minimum operating voltage.

The device will continue to execute code when VDD is below the level of the LPBOR trip point. A device that requires falling edge BOR protection to prevent code from improperly executing should use one of the other BOR voltage settings.

IFS1: INTERRUPT FLAG STATUS REGISTER 1

REGISTER 8-6:

R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0	U-0	U-0
U2TXIF	U2RXIF	INT2IF	CCT4IF	CCT3IF	_	<u> </u>	_
bit 15							bit 8
U-0	R/W-0, HS	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS
	CCP5IF	—	INT1IF	CNIF	CMIF	BCL1IF	SSP1IF
bit 7							bit 0
Logondi			ra Cattabla bit				
Legena:	, bit	HS = Haluwal			aantad hit raar		
n = Value at		'1' = Bit is set	DIL	$0^{\circ} = \text{Bit is clear}$	ared	v – Bitis unkn	own
	TOR				areu		OWIT
bit 15	U2TXIF: UAR	T2 Transmitter	Interrupt Flag	Status bit			
Sit 10	1 = Interrupt r	equest has occ	curred	clatue bit			
	0 = Interrupt r	equest has not	occurred				
bit 14	U2RXIF: UAR	RT2 Receiver In	nterrupt Flag St	atus bit			
	1 = Interrupt r	equest has occ	curred				
hit 12		equest has not	Coccurred				
DIL 13	1 = Interrupt r	request has occ	riay Status Dit Surred				
	0 = Interrupt r	equest has not	occurred				
bit 12	CCT4IF: Capt	ture/Compare 4	4 Timer Interru	ot Flag Status b	pit		
	1 = Interrupt r	equest has occ	curred				
	0 = Interrupt r	equest has not	occurred				
bit 11	CCT3IF: Capi	ture/Compare 3	3 Timer Interru	pt Flag Status b	bit		
	1 = Interrupt r 0 = Interrupt r	equest has occ equest has not	currea coccurred				
bit 10-7	Unimplement	ted: Read as 'd)'				
bit 6	CCP5IF: Cap	ture/Compare &	5 Event Interru	pt Flag Status b	bit		
	1 = Interrupt r	equest has occ	curred				
	0 = Interrupt r	equest has not	occurred				
bit 5	Unimplement	ted: Read as 'o)'				
bit 4	INT1IF: Exter	nal Interrupt 1	Flag Status bit				
	1 = Interrupt r 0 = Interrupt r	equest has occ	occurred				
bit 3	CNIF: Input C	hange Notifica	tion Interrupt F	lag Status bit			
	1 = Interrupt r	equest has occ	curred				
	0 = Interrupt r	equest has not	occurred				
bit 2	CMIF: Compa	arator Interrupt	Flag Status Bit	:			
	1 = Interrupt r	equest has occ	curred				
bit 1			Collision Interr	unt Elaa Status	bit		
DILI	1 = Interrupt r	equest has occ		upi riag Sialus	bit		
	0 = Interrupt r	equest has not	occurred				
bit 0	SI2C1IF: MSS	SP1 SPI/I ² C Ev	ent Interrupt F	lag Status bit			
	1 = Interrupt r	equest has occ	curred				
	0 = Interrupt r	equest has not	occurred				

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	NVMIP2	NVMIP1	NVMIP0	—	—	—	_
bit 15							bit 8
	D 444 4	D 444 0	5444.0		D 444 4	D 444 0	D 444 0
0-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	AD1IP2	AD1IP1	AD1IP0	_	U1TXIP2	U11XIP1	
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-12	NVMIP<2:0>:	NVM Interrup	t Priority bits				
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 11-7	Unimplemen	ted: Read as '	0'				
bit 6-4	AD1IP<2:0>:	A/D Conversion	on Complete In	terrupt Priority	bits		
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 3	Unimplemen	ted: Read as '	0'				
bit 2-0	U1TXIP<2:0>	UART1 Trans	smitter Interrup	ot Priority bits			
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)			
	•						
	•						
	• 001 - Informu	nt is Driarity 1					
	001 - interrup	puis Fliulity I of source is dis	abled				

REGISTER 8-22: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	_	_	_	_	BCL2IP2	BCL2IP1	BCL2IP0
bit 15					•		bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
	SSP2IP2	SSP2IP1	SSP2IP0	—	—	_	—
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-11	Unimplemen	ted: Read as ')'				
bit 10-8	BCL2IP<2:0>	<mark>.:</mark> MSSP2 I ² C™	Bus Collision	Interrupt Priori	ty bits		
	111 = Interru	pt is Priority 7 (highest priority	interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 7	Unimplemen	ted: Read as ')'				
bit 6-4	SSP2IP<2:0>	: MSSP2 SPI/I	² C Event Inter	rupt Priority bits	6		
	111 = Interru	pt is Priority 7 (highest priority	r interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 3-0	Unimplemen	ted: Read as ')'				

REGISTER 8-28: IPC12: INTERRUPT PRIORITY CONTROL REGISTER 12

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

bit 7	CLKLOCK: Clock Selection Lock Enable bit <u>If FSCM is Enabled (FCKSM1 = 1):</u> 1 = Clock and PLL selections are locked 0 = Clock and PLL selections are not locked and may be modified by setting the OSWEN bit <u>If FSCM is Disabled (FCKSM1 = 0):</u> Clock and PLL selections are never locked and may be modified by setting the OSWEN bit.
bit 6	Unimplemented: Read as '0'
bit 5	LOCK: PLL Lock Status bit ⁽²⁾
	 1 = PLL module is in lock or PLL module start-up timer is satisfied 0 = PLL module is out of lock, PLL start-up timer is running or PLL is disabled
bit 4	Unimplemented: Read as '0'
bit 3	CF: Clock Fail Detect bit
	 1 = FSCM has detected a clock failure 0 = No clock failure has been detected
bit 2	SOSCDRV: Secondary Oscillator Drive Strength bit ⁽³⁾
	 1 = High-power SOSC circuit is selected 0 = Low/high-power select is done via the SOSCSRC Configuration bit
bit 1	SOSCEN: 32 kHz Secondary Oscillator (SOSC) Enable bit
	1 = Enables the Secondary Oscillator0 = Disables the Secondary Oscillator
bit 0	OSWEN: Oscillator Switch Enable bit
	 1 = Initiates an oscillator switch to the clock source specified by the NOSC<2:0> bits 0 = Oscillator switch is complete
Note 1:	Reset values for these bits are determined by the FNOSCx Configuration bits.

- 2: This bit also resets to '0' during any valid clock switch or whenever a non-PLL Clock mode is selected.
- **3:** When SOSC is selected to run from a digital clock input, rather than an external crystal (SOSCSRC = 0), this bit has no effect.

REGISTER	12-1: T1CC	ON: TIMER1 C	ONTROL R	EGISTER			
R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
TON		TSIDL			_	TECS1 ⁽¹⁾	TECS0 ⁽¹⁾
bit 15				·			bit 8
U-0	R/W-0	R/W-0	R/W-0	11-0	R/W-0	R/W-0	U-0
			TCKPS0			TCS	
bit 7	TO/TE				Torno	100	bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15	TON: Timer1 1 = Starts 16 0 = Stops 16	On bit 5-bit Timer1 5-bit Timer1					
bit 14	Unimplemen	ted: Read as ')'				
bit 13	TSIDL: Time	r1 Stop in Idle N	lode bit		1 1.		
	1 = Discontin0 = Continue	ues module opera s module opera	tion in Idle mo	ievice enters id	le mode		
bit 12-10	Unimplemen	ted: Read as ')'				
bit 9-8	TECS<1:0>: 11 = Reserve 10 = Timer1 01 = Timer1 00 = Timer1	Timer1 Extende ed; do not use uses the LPRC uses the Extern uses the Secon	ed Clock Select as the clock s al Clock (EC) dary Oscillato	ct bits ⁽¹⁾ ource from T1CK r (SOSC) as the	e clock source		
bit 7	Unimplemen	ted: Read as ')'				
bit 6	TGATE: Time	er1 Gated Time	Accumulation	Enable bit			
	When TCS = This bit is ign <u>When TCS =</u> 1 = Gated tir 0 = Gated tir	<u>1:</u> ored. <u>0:</u> ne accumulatio ne accumulatio	n is enabled n is disabled				
bit 5-4	TCKPS<1:0> 11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1	: Timer1 Input	Clock Prescal	e Select bits			
bit 3	Unimplemen	ted: Read as ')'				
bit 2	TSYNC: Time <u>When TCS =</u> 1 = Synchro 0 = Does no <u>When TCS =</u> This bit is ign	er1 External Clo <u>1:</u> nizes External ot synchronize E <u>0:</u> ored	ock Input Sync Clock input External Clock	hronization Sel input	ect bit		
bit 1	TCS: Timer1 1 = Timer1 c 0 = Internal c	Clock Source S lock source is s clock (Fosc/2)	Select bit elected by TE	CS<1:0>			
bit 0	Unimplemen	ted: Read as ')'				
Note 1: T	he TECSx bits a	are valid only wi	nen TCS = 1.				

13.5 Auxiliary Output

The MCCPx and SCCPx modules have an auxiliary (secondary) output that provides other peripherals access to internal module signals. The auxiliary output is intended to connect to other MCCP or SCCP modules, or other digital peripherals, to provide these types of functions:

- Time Base Synchronization
- Peripheral Trigger and Clock Inputs
- Signal Gating

The type of output signal is selected using the AUXOUT<1:0> control bits (CCPxCON2H<4:3>). The type of output signal is also dependent on the module operating mode.

On the PIC24FV16KM204 family of devices, only the CTMU discharge trigger has access to the auxiliary output signal.

AUXOUT<1:0>	CCSEL	MOD<3:0>	Comments	Signal Description
00	х	xxxx	Auxiliary output disabled	No Output
01	0	0000	Time Base modes	Time Base Period Reset or Rollover
10				Special Event Trigger Output
11				No Output
01	0	0001	Output Compare modes	Time Base Period Reset or Rollover
10		through		Output Compare Event Signal
11				Output Compare Signal
01	1	xxxx	Input Capture modes	Time Base Period Reset or Rollover
10				Reflects the Value of the ICDIS bit
11				Input Capture Event Signal

TABLE 13-5: AUXILIARY OUTPUT

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—		—	
bit 15							bit 8
R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE ⁽¹⁾	D/Ā	Р	S	R/W	UA	BF
bit 7	·						bit 0
Legend:							
R = Reada	able bit	W = Writable b	it	U = Unimplem	nented bit, read	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-8	Unimplemen	ted: Read as '0	,				
bit 7	SMP: Sample	e bit					
	<u>SPI Master m</u>	<u>iode:</u>					
	1 = Input data	a is sampled at t a is sampled at t	he end of data	a output time lata output time	`		
	SPI Slave mo	de.			•		
	SMP must be	cleared when S	PI is used in S	Slave mode.			
bit 6	CKE: SPI Clo	ock Select bit ⁽¹⁾					
	1 = Transmit 0 = Transmit	occurs on transi occurs on transi	tion from activ tion from Idle	e to Idle clock to active clock	state state		
bit 5	D/A: Data/Ad	dress bit					
	Used in I ² C™	¹ mode only.					
bit 4	P: Stop bit						
	Used in I ² C m	node only. This b	oit is cleared w	hen the MSSP	x module is di	sabled; SSPEN	bit is cleared.
bit 3	S: Start bit						
	Used in I ² C m	node only.					
bit 2	R/W: Read/W	/rite Information	bit				
	Used in I ² C m	node only.					
bit 1	UA: Update A	Address bit					
	Used in I ² C m	node only.					
bit 0	BF: Buffer Fu	III Status bit					
	1 = Receive i	s complete, SSF	xBUF is full				
		s not complete,	SSAXROF IS 6	empty			
Note 1:	Polarity of clock s	state is set by the	e CKP bit (SS	PxCON1<4>).			

REGISTER 14-1: SSPxSTAT: MSSPx STATUS REGISTER (SPI MODE)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_	_	_			_	_	_		
bit 15							bit 8		
R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0		
SMP	CKE	D/A	P ⁽¹⁾	S ⁽¹⁾	R/W	UA	BF		
bit 7	bit 7 bit								
Legend:									
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'									
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown		
bit 15-8	Unimpleme	nted: Read as ')'						
bit 7	SMP: Slew I	Rate Control bit							
	In Master or	<u>Slave mode:</u>	and for Stand	ard Spood mode	(100 kHz and	1 MU-)			
	0 = Slew rate	e control is enab	led for High-S	peed mode (40)	0 kHz)	1 1011 12)			
bit 6	CKE: SMBu	s Select bit	Ū		,				
	In Master or	Slave mode:							
	1 = Enables	SMBus-specific	inputs						
	0 = Disables		inputs						
bit 5	5 D/A: Data/Address bit								
	Reserved.								
In Slave mode: 1 = Indicates that the last byte received or transmitted was data									
L:1	0 = Indicates	s that the last by	te received or	transmitted was	saddress				
DIT 4	t 4 P: Stop bit ¹								
	1 = Indicates 0 = Stop bit	was not detected	last						
bit 3	S: Start bit ⁽¹)							
	1 = Indicates that a Start bit has been detected last								
	0 = Start bit	was not detected	d last						
bit 2	R/W: Read/	Write Information	ı bit						
	In Slave mod	<u>de:</u> (2)							
	1 = Read 0 = Write								
	In Master me	<u>ode:</u> (3)							
	1 = Transmit	t is in progress							
L:1	0 = Iransmit	t is not in progree	SS Dit Claure res :						
	1 = Indicator	Audress Dit (10-	DIL SIZVE MOD	e the address in	the SSDVADD	register			
	0 = Address	does not need t	o be updated			GUISICI			
Note 1:	This bit is cleare	ed on Reset and	when SSPEN	is cleared.					
2:	This bit holds the	e R/W bit inform	ation following	the last addres	s match. This l	oit is only valid	from the		
_	address match t	o the next Start I	bit, Stop bit or	not ACK bit.					
2.	UDing this hit wi	THE CLN DOCN		or ∧(`k∢∟Niwill in	dianta if the M	SCUVIC in Activ	o modo		

REGISTER 14-2: SSPxSTAT: MSSPx STATUS REGISTER (I²C[™] MODE)

3: ORing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSPx is in Active mode.

16.2.4 RTCC CONTROL REGISTERS

REGISTER 16-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾

R/W-0	U-0	R/W-0	R-0 HSC	R-0 HSC	R/W-0	R/W-0	R/W-0		
RTCEN ⁽²⁾	_	RTCWREN	RTCSYNC	HALFSEC ⁽³⁾	RTCOE	RTCPTR1	RTCPTR0		
bit 15	j bit 8								
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CAL7	CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0								
bit 7 bit 0									
Legend: HSC = Hardware Settable/Clearable bit									
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'			
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown		
L:1 4 F		C Enchla hit(2)							
DIL 15	1 = RTCC m		d						
	0 = RTCC m	odule is disable	ed						
bit 14	Unimplemen	ted: Read as 'd	כי						
bit 13	RTCWREN: F	RTCC Value Re	egisters Write E	Enable bit					
	1 = RTCVALH and RTCVALL registers can be written to by the user								
	0 = RTCVALH and RTCVALL registers are locked out from being written to by the user								
bit 12	RTCSYNC: RTCC Value Registers Read Synchronization bit								
1 = RTCVALH, RTCVALL and ALCFGRPT registers can change while reading due to a rollover rip							rollover ripple		
	can be assumed to be valid.								
	0 = RTCVALH, RTCVALL or ALCFGRPT registers can be read without concern over a rollover ripple								
bit 11	HALFSEC: Half Second Status bit ⁽³⁾								
1 = Second half period of a second									
	0 = First half period of a second								
bit 10		C Output Enab	ble bit						
 1 = RICC output is enabled 0 = RTCC output is disabled 									
bit 9-8	RTCPTR<1:0>: RTCC Value Register Window Pointer bits								
	Points to the c	corresponding F	RTCC Value reg	gisters when rea	ading the RTC	ALH and RTC	ALL registers.		
		<1:0> value dec	crements on ev	ery read or write	e of RTCVALH	until it reaches	.00.		
	RTCVAL<15:8>:								
	01 = WEEKD	AY							
	10 = MONTH								
	11 = Reserve	d							
	$\frac{\text{RICVAL} < 7:0}{0.0} = \text{SECON}$	<u>>:</u> DS							
	01 = HOURS								
	10 = DAY								
	11 = YEAR								

Note 1: The RCFGCAL register is only affected by a POR.

- 2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
- 3: This bit is read-only; it is cleared to '0' on a write to the lower half of the MINSEC register.

REGISTER 10-2: RICPWC: RICC CONFIGURATION REGISTER 2	GISTER 16-2:	RTCPWC: RTCC CONFIGURATION REGISTER 2 ⁽¹⁾
--	--------------	--

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
PWCEN	PWCPOL	PWCCPRE	PWCSPRE	RTCCLK1 ⁽²⁾	RTCCLK0 ⁽²⁾	RTCOUT1	RTCOUT0			
bit 15 bit 8										
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—	—	—	—		—	—			
bit 7 bit 0										
Legend:										
R = Reada	ble bit	W = Writable	bit	U = Unimpleme	nted bit, read as	'0'				
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cleare	ed	x = Bit is unkr	nown			
bit 15	PWCEN: Po	wer Control Er	able bit							
	1 = Power co	ontrol is enable	d							
	0 = Power co	ontrol is disable	ed							
bit 14	PWCPOL: P	Power Control F	Polarity bit							
	1 = Power co	1 = Power control output is active-high								
hit 12	U = Power control output is active-low									
DIL 13	1 - DWC stability window slock is divide by 2 of source DTCC slock									
	1 - PWC stability window clock is divide-by-2 of source RTCC clock 0 = PWC stability window clock is divide-by-1 of source RTCC clock									
bit 12	PWCSPRE: Power Control Sample Prescaler bits									
1 = PWC sample window clock is divide-by-2 of source RTCC clock										
	0 = PWC sample window clock is divide-by-1 of source RTCC clock									
bit 11-10	RTCCLK<1:	0>: RTCC Clo	ck Select bits ⁽²	2)						
Determines the source of the internal RTCC clock, which is used for all RTCC timer operations.						tions.				
	00 = Externa	= External Secondary Oscillator (SOSC)								
	$0 \perp = internal10 = External$	01 = Internal LPRC Oscillator 10 = External power line source – 50 Hz								
	11 = Externa	11 = External power line source – 60 Hz								
bit 9-8	RTCOUT<1:	:0>: RTCC Out	put Select bits	;						
	Determines t	the source of th	ne RTCC pin c	output.						
	00 = RTCC a	00 = RTCC alarm pulse								
	01 = RTCC :	01 = RTCC seconds clock								
	11 = Power	control								
bit 7-0	Unimpleme	nted: Read as	' 0'							
Note 1:	The RTCPWC	register is only	affected by a	POR.						

2: When a new value is written to these register bits, the Seconds Value register should also be written to properly reset the clock prescalers in the RTCC.

R/W-0	R/W-0	R/W-0	R/W-0	r-0	U-0	R/W-0	R/W-0			
ASEN ⁽¹⁾	LPEN	CTMREQ	BGREQ	r	—	ASINT1	ASINT0			
bit 15	bit 8									
r										
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
			—	WM1	WM0	CM1	CM0			
bit 7 bit 0										
Logond		r - Reconved k	vit							
P = Read	R = Readable bit $W = W$ ritable bit $U = U$ nimplemented bit read as '0'									
		41' = Bit is set	Л	$0^{\circ} = \text{Bit is clear}$	ured	as u v = Bit is unkn	owp			
	alFOR				lieu		OWIT			
bit 15	ASEN: A/D A	uto-Scan Enable	e bit ⁽¹⁾							
	1 = Auto-sca	n is enabled								
	0 = Auto-sca	n is disabled								
bit 14	LPEN: A/D Lo	w-Power Enabl	e bit							
	1 = Returns t	o Low-Power m	ode after scan ode after scan	1						
bit 13	CTMREQ: CT	MU Request bi								
	1 = CTMU is	enabled when t	he A/D is enab	led and active						
h# 40		not enabled by	the A/D							
DIT 12	1 - Rand gar	a Gap Request	DIT	nabled and activ	10					
μ = Band gap is enabled when the A/D is enabled and active 0 = Band gap is not enabled by the A/D										
bit 11	Reserved: Maintain as '0'									
bit 10	Unimplemented: Read as '0'									
bit 9-8	ASINT<1:0>:	Auto-Scan (Thr	eshold Detect)	Interrupt Mode	bits					
	11 = Interrupt	after a Thresho	Id Detect sequ	ience has comp	leted and a val	id compare has	occurred			
	 10 = Interrupt after a Valid compare has occurred 01 = Interrupt after a Threshold Detect sequence has completed 									
	00 = No interi	rupt			lotod					
bit 7-4	Unimplemen	Unimplemented: Read as '0'								
bit 3-2	WM<1:0>: A/	D Write Mode bi	ts							
	11 = Reserved									
	10 = Auto-compare only (conversion results are not saved, but interrupts are generated when a valid match as defined by the CMx and ASINTX bits, occurs)									
	01 = Convert	01 = Convert and save (conversion results are saved to locations as determined by the register bits when								
	a match	a match, as defined by the CMx bits, occurs)								
	00 = Legacy o	00 = Legacy operation (conversion data is saved to a location determined by the buffer register bits)								
bit 1-0	CM<1:0>: A/[Compare Mod	e bits							
	11 = Outside	11 = Outside Window mode (valid match occurs if the conversion result is outside of the window defined by the corresponding buffer pair)								
	10 = Inside Window mode (valid match occurs if the conversion result is inside the window defined by the									
	correspo	corresponding buffer pair)								
	register)			ii the result is gr			sponding builer			
	00 = Less Tha	an mode (valid ma	atch occurs if th	e result is less th	an the value in th	ne correspondinț	g buffer register)			
Note 1:	When using au	to-scan with Th	reshold Detect	: (ASEN = 1), do	o not configure	the sample cloc	k source to			
	Auto-Convert n the sample clo	node (SSRC<3: ck source (SSR	0> = 7). Any ot C<3:0> = 7), m	her available SS nake sure ASEN	SRC selection is I is cleared.	s valid. To use a	uto-convert as			

REGISTER 19-4: AD1CON5: A/D CONTROL REGISTER 5

CTMUCON1H: CTMU CONTROL 1 HIGH REGISTER

REGISTER 24-2:

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 EDG1SEL3 EDG1MOD EDG1POL EDG1SEL2 EDG1SEL1 EDG1SEL0 EDG2STAT EDG1STAT bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 U-0 EDG2MOD EDG2POL EDG2SEL3 EDG2SEL2 EDG2SEL1 EDG2SEL0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' '0' = Bit is cleared -n = Value at POR '1' = Bit is set x = Bit is unknown bit 15 EDG1MOD: Edge 1 Edge-Sensitive Select bit 1 = Input is edge-sensitive 0 = Input is level-sensitive bit 14 EDG1POL: Edge 1 Polarity Select bit 1 = Edge 1 is programmed for a positive edge response 0 = Edge 1 is programmed for a negative edge response bit 13-10 EDG1SEL<3:0>: Edge 1 Source Select bits 1111 = Edge 1 source is the Comparator 3 output 1110 = Edge 1 source is the Comparator 2 output 1101 = Edge 1 source is the Comparator 1 output 1100 = Edge 1 source is CLC2 1011 = Edge 1 source is CLC1 1010 = Edge 1 source is the MCCP2 Compare Event (CCP2IF) 1001 = Edge 1 source is CTED8⁽¹⁾ 1000 = Edge 1 source is CTED7⁽¹⁾ 0111 = Edge 1 source is CTED6 0110 = Edge 1 source is CTED5 0101 = Edge 1 source is CTED4 0100 = Edge 1 source is CTED3⁽²⁾ 0011 = Edge 1 source is CTED1 0010 = Edge 1 source is CTED2 0001 = Edge 1 source is the MCCP1 Compare Event (CCP1IF) 0000 = Edge 1 source is Timer1 bit 9 EDG2STAT: Edge 2 Status bit Indicates the status of Edge 2 and can be written to control the current source. 1 = Edge 2 has occurred 0 = Edge 2 has not occurred bit 8 EDG1STAT: Edge 1 Status bit Indicates the status of Edge 1 and can be written to control the current source. 1 = Edge 1 has occurred 0 = Edge 1 has not occurred bit 7 EDG2MOD: Edge 2 Edge-Sensitive Select bit 1 = Input is edge-sensitive 0 = Input is level-sensitive Edge sources, CTED7 and CTED8, are not available on 28-pin and 20-pin devices. Note 1:

2: Edge sources, CTED3, CTED9 and CTED11, are not available on 20-pin devices.

CMSTAT (Comparator Status)
CMyCON (Comparator y Control) 227
CORCON (CPU Control)
CORCON (CPU Core Control) 90
CTMUCON1H (CTMU Control 1 Hign)246
CTMUCON1L (CTMU Control 1 Low)244
CTMUCON2L (CTMU Control 2 Low) 248
CVRCON (Comparator Voltage
Reference Control) 240
DACXCON (DACX Control)230
DEVID (Device ID)
DEV/DEV/ (Dovice Povision) 256
FBS (Boot Segment Configuration)249
FGS (General Segment Configuration) 250
FICD (In-Circuit Debugger Configuration)254
FOSC (Oscillator Configuration)251
EOSCSEL (Oscillator Selection Configuration) 250
FPOR (Reset Configuration)
FWDT (Watchdog Timer Configuration)252
HIVDCON (High/Low Voltage Detect Control) 208
TIEVDCON (Thyn/Low-Voltage Delect Control)
IEC0 (Interrupt Enable Control 0)
IEC1 (Interrupt Enable Control 1) 99
IEC2 (Interrupt Enable Control 2)
IEC3 (Interrupt Enable Control 3)
IEC4 (Interrupt Enable Control 4) 101
IEC5 (Interrupt Enable Control 5)
IEC6 (Interrupt Enable Control 6) 102
$I \subseteq CO (Interrupt \subseteq Cost = 0)$
IF SU (Interrupt Flag Status U)
IFS1 (Interrupt Flag Status 1)
IES2 (Interrupt Flag Status 2) 95
IF O2 (Interrupt Flag Otatus 2)
IFS3 (Interrupt Flag Status 3)
IFS4 (Interrupt Flag Status 4)
IES5 (Interrupt Elag Status 5) 07
IFS6 (Interrupt Flag Status 6)
INTCON1 (Interrupt Control 1)
INTCONI2 (Interrupt Control 2)
INTTREG (Interrupt Control and Status)
IPC0 (Interrupt Priority Control 0) 103
IDC4 (Interrupt Priority Control 4)
IPC1 (Interrupt Priority Control 1)104
IPC10 (Interrupt Priority Control 10)
IPC12 (Interrupt Priority Control 12) 112
IPC15 (Interrupt Priority Control 15)
IPC16 (Interrupt Priority Control 16)
IPC18 (Interrupt Priority Control 18) 115
IPC19 (Interrupt Priority Control 19)116
IPC2 (Interrupt Priority Control 2)
IDC20 (Interrupt Driority Control 20) 117
IPC24 (Interrupt Priority Control 24)
IPC24 (Interrupt Priority Control 24)
IPC24 (Interrupt Priority Control 24)
IPC24 (Interrupt Priority Control 24)117IPC3 (Interrupt Priority Control 3)106IPC4 (Interrupt Priority Control 4)107
IPC24 (Interrupt Priority Control 24) 117 IPC3 (Interrupt Priority Control 3) 106 IPC4 (Interrupt Priority Control 4) 107 IPC5 (Interrupt Priority Control 5) 108
IPC24 (Interrupt Priority Control 24) 117 IPC3 (Interrupt Priority Control 3) 106 IPC4 (Interrupt Priority Control 4) 107 IPC5 (Interrupt Priority Control 5) 108 IPC6 (Interrupt Priority Control 5) 108
IPC24 (Interrupt Priority Control 24) 117 IPC3 (Interrupt Priority Control 3) 106 IPC4 (Interrupt Priority Control 4) 107 IPC5 (Interrupt Priority Control 5) 108 IPC6 (Interrupt Priority Control 6) 109
IPC24 (Interrupt Priority Control 24) 117 IPC3 (Interrupt Priority Control 3) 106 IPC4 (Interrupt Priority Control 4) 107 IPC5 (Interrupt Priority Control 5) 108 IPC6 (Interrupt Priority Control 6) 109 IPC7 (Interrupt Priority Control 7) 110
IPC24 (Interrupt Priority Control 24) 117 IPC3 (Interrupt Priority Control 3) 106 IPC4 (Interrupt Priority Control 4) 107 IPC5 (Interrupt Priority Control 5) 108 IPC6 (Interrupt Priority Control 6) 109 IPC7 (Interrupt Priority Control 7) 110 MINSEC (RTCC Minutes and Seconds Value) 188
IPC24 (Interrupt Priority Control 24) 117 IPC3 (Interrupt Priority Control 3) 106 IPC4 (Interrupt Priority Control 4) 107 IPC5 (Interrupt Priority Control 5) 108 IPC6 (Interrupt Priority Control 6) 109 IPC7 (Interrupt Priority Control 6) 109 IPC7 (Interrupt Priority Control 7) 110 MINSEC (RTCC Minutes and Seconds Value) 188 MTHDX (RTCC Month and Day Value) 197
IPC24 (Interrupt Priority Control 24) 117 IPC3 (Interrupt Priority Control 3) 106 IPC4 (Interrupt Priority Control 4) 107 IPC5 (Interrupt Priority Control 5) 108 IPC6 (Interrupt Priority Control 6) 109 IPC7 (Interrupt Priority Control 7) 110 MINSEC (RTCC Minutes and Seconds Value) 187
IPC24 (Interrupt Priority Control 24)117IPC3 (Interrupt Priority Control 3)106IPC4 (Interrupt Priority Control 4)107IPC5 (Interrupt Priority Control 5)108IPC6 (Interrupt Priority Control 6)109IPC7 (Interrupt Priority Control 7)110MINSEC (RTCC Minutes and Seconds Value)188MTHDY (RTCC Month and Day Value)187NVMCON (Flash Memory Control)69
IPC24 (Interrupt Priority Control 24) 117 IPC3 (Interrupt Priority Control 3) 106 IPC4 (Interrupt Priority Control 4) 107 IPC5 (Interrupt Priority Control 5) 108 IPC6 (Interrupt Priority Control 6) 109 IPC7 (Interrupt Priority Control 6) 109 IPC7 (Interrupt Priority Control 7) 110 MINSEC (RTCC Minutes and Seconds Value) 188 MTHDY (RTCC Month and Day Value) 187 NVMCON (Flash Memory Control) 69 NVMCON (Nonvolatile Memory Control) 74
IPC24 (Interrupt Priority Control 24) 117 IPC3 (Interrupt Priority Control 3) 106 IPC4 (Interrupt Priority Control 4) 107 IPC5 (Interrupt Priority Control 5) 108 IPC6 (Interrupt Priority Control 6) 109 IPC7 (Interrupt Priority Control 7) 110 MINSEC (RTCC Minutes and Seconds Value) 188 MTHDY (RTCC Month and Day Value) 187 NVMCON (Flash Memory Control) 74 OSCCON (Opplater Control) 74
IPC24 (Interrupt Priority Control 24)117IPC3 (Interrupt Priority Control 3)106IPC4 (Interrupt Priority Control 4)107IPC5 (Interrupt Priority Control 5)108IPC6 (Interrupt Priority Control 6)109IPC7 (Interrupt Priority Control 7)110MINSEC (RTCC Minutes and Seconds Value)188MTHDY (RTCC Month and Day Value)187NVMCON (Flash Memory Control)69NVMCON (Nonvolatile Memory Control)74OSCCON (Oscillator Control)123
IPC24 (Interrupt Priority Control 24)117IPC3 (Interrupt Priority Control 3)106IPC4 (Interrupt Priority Control 4)107IPC5 (Interrupt Priority Control 5)108IPC6 (Interrupt Priority Control 6)109IPC7 (Interrupt Priority Control 7)110MINSEC (RTCC Minutes and Seconds Value)188MTHDY (RTCC Month and Day Value)187NVMCON (Flash Memory Control)69NVMCON (Nonvolatile Memory Control)74OSCCON (Oscillator Control)123OSCTUN (FRC Oscillator Tune)126

PADCFG1 (Pad Configuration Control)	171
RCFGCAL (RTCC Calibration	
and Configuration)	183
RCON (Reset Control)	80
REFOCON (Reference Oscillator Control)	129
RTCCSWT (RTCC Control/Sample	
Window Timer)	191
RTCPWC (RTCC Configuration 2)	185
SR (ALU STATUS)	38, 89
SSPxADD (MSSPx Slave Address/Baud	
Rate Generator)	170
SSPxCON1 (MSSPx Control 1, I ² C Mode)	166
SSPxCON1 (MSSPx Control 1, SPI Mode)	165
SSPxCON2 (MSSPx Control 2, I ² C Mode)	167
SSPxCON3 (MSSPx Control 3, I ² C Mode)	169
SSPxCON3 (MSSPx Control 3, SPI Mode)	168
SSPxMSK (I ² C Slave Address Mask)	170
SSPxSTAT (MSSPx Status, I ² C Mode)	163
SSPxSTAT (MSSPx Status, SPI Mode)	162
T1CON (Timer1 Control)	142
ULPWCON (ULPWU Control)	133
UxMODE (UARTx Mode)	176
UxRXREG (UARTx Receive)	180
UxSTA (UARTx Status and Control)	178
UxTXREG (UARTx Transmit)	180
WKDYHR (RTCC Weekday and Hours Value).	188
YEAR (RTCC Year Value)	187
Resets	
Brown-out Reset (BOR)	
Clock Source Selection	
Delav Times	
Device Times	
Low-Power BOR (LPBOR)	83
RCON Flag Operation	
SER States	83
Retention Regulator (RETREG)	134
Revision History	
RTCC	
Alarm Configuration	192
Alarm Mask Settings (figure)	193
ALRMVAL Register Mappings	
	189
Calibration	189 192
Calibration Module Registers	189 192 .182
Calibration Module Registers	189 192 182 .182
Calibration Module Registers Mapping Clock Source Selection	189 192 182 182 182
Calibration Module Registers Mapping Clock Source Selection	189 189 192 182 182 182 182
Calibration Module Registers Mapping Clock Source Selection Write Lock	189 182 182 182 182 182 182
Calibration Module Registers Mapping Clock Source Selection Write Lock Power Control BTCVAL Register Mappings	
Calibration Module Registers Mapping Clock Source Selection Write Lock Power Control RTCVAL Register Mappings	

S

Serial Peripheral Interface. See SPI Mode.	
SFR Space	
Software Stack	63
SPI Mode	
I/O Pin Configuration	159

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733

Fax: 61-2-9868-6755

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820