

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	18
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08km101t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-15: UART1 REGISTER MAP

		•																
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	220h	UARTEN	—	USIDL	IREN	RTSMD	-	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U1STA	222h	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	224h	_	_	_	_	_	_	_				UART1 Tra	ansmit Regi	ster				xxxx
U1RXREG	226h	—	— — — — — — — UART1 Receive Register								0000							
U1BRG	228h	228h Baud Rate Generator Prescaler										0000						

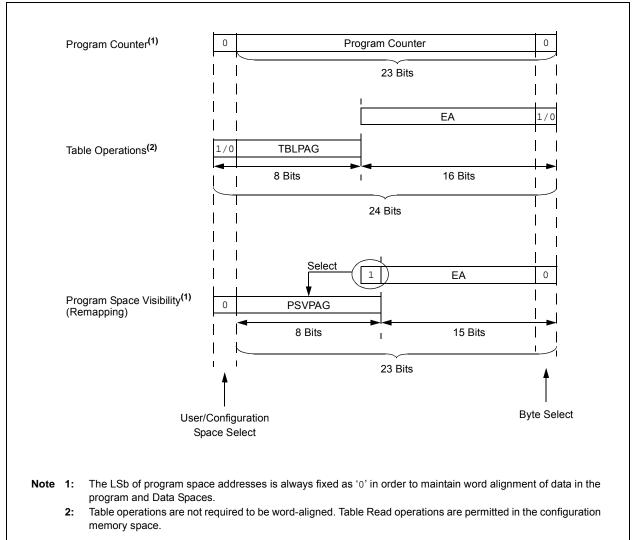
Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved.

TABLE 4-16: UART2 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U2MODE ⁽¹⁾	230h	UARTEN	—	USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U2STA ⁽¹⁾	232h	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG ⁽¹⁾	234h	_	_	_	—	_	_	_				UART2 Tra	nsmit Regis	ster				xxxx
U2RXREG ⁽¹⁾	236h	_	_	_	—	_	_	_	UART2 Receive Register 0					0000				
U2BRG ⁽¹⁾	238h		Baud Rate Generator Prescaler									0000						

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved.

Note 1: These registers are available only on PIC24F(V)16KM2XX devices.


TABLE 4-35: PROGRAM SPACE ADDRESS CONSTRUCTION

	Access	Program Space Address							
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>			
Instruction Access	User	0	PC<22:1>			0			
(Code Execution)			0xx xxxx x	xxxx xxxx xxxx xxx0					
TBLRD/TBLWT	User	TB	LPAG<7:0>	Data EA<15:0>					
(Byte/Word Read/Write)		02	xxx xxxx	xxx	XXXX XXXX XXXX XXXX				
	Configuration	TBLPAG<7:0>		Data EA<15:0>					
		1:	xxx xxxx	xxxx xxxx xxxx xxxx					
Program Space Visibility	User	0	PSVPAG<7:	:0>(2) Data EA<14:0>(1)					
(Block Remap/Read)		0	xxxx xxx	κx	x xxx xxxx xxxx xxxx				

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

2: PSVPAG can have only two values ('00' to access program memory and FF to access data EEPROM) on the PIC24F16KM family.

FIGURE 4-5: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

5.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on Flash programming, refer to the "PIC24F Family Reference Manual", "Program Memory" (DS39715).

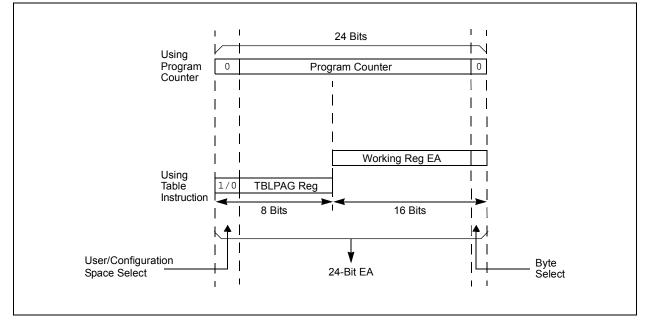
The PIC24FV16KM204 family of devices contains internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable when operating with VDD over 1.8V.

Flash memory can be programmed in three ways:

- In-Circuit Serial Programming[™] (ICSP[™])
- Run-Time Self-Programming (RTSP)
- Enhanced In-Circuit Serial Programming (Enhanced ICSP)

ICSP allows a PIC24FXXXXX device to be serially programmed while in the end application circuit. This is simply done with two lines for the programming clock and programming data (which are named PGECx and PGEDx, respectively), and three other lines for power (VDD), ground (VSS) and Master Clear/Program Mode Entry Voltage (MCLR/VPP). This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or custom firmware to be programmed. Run-Time Self-Programming (RTSP) is accomplished using TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user may write program memory data in blocks of 32 instructions (96 bytes) at a time, and erase program memory in blocks of 32, 64 and 128 instructions (96,192 and 384 bytes) at a time.

The NVMOP<1:0> (NVMCON<1:0>) bits decide the erase block size.


5.1 Table Instructions and Flash Programming

Regardless of the method used, Flash memory programming is done with the Table Read and Write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using the TBLPAG<7:0> bits and the Effective Address (EA) from a W register, specified in the table instruction, as depicted in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

REGISTER 8-31: IPC18: INTERRUPT PRIORITY CONTROL REGISTER 18

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 15	·	•			•		bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	—	—	—	—	HLVDIP2	HLVDIP1	HLVDIP0
bit 7							bit 0
Logondi							

Legend:	
---------	--

bit 2-0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

HLVDIP<2:0>: High/Low-Voltage Detect Interrupt Priority bits

- 111 = Interrupt is Priority 7 (highest priority interrupt)
- •

001 = Interrupt is Priority 1

000 = Interrupt source is disabled

13.0 CAPTURE/COMPARE/PWM/ TIMER MODULES (MCCP AND SCCP)

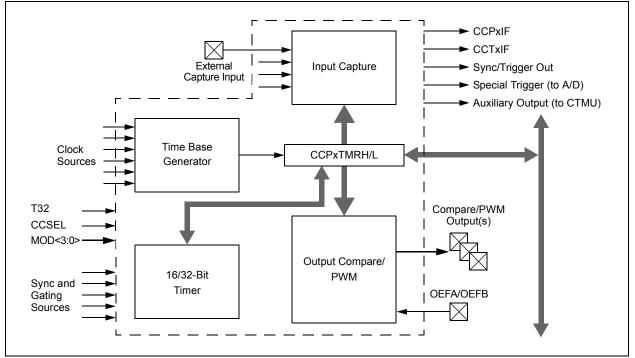
Note:	This data sheet summarizes the features
	of this group of PIC24F devices. It is not
	intended to be a comprehensive refer-
	ence source. For more information on the
	MCCP/SCCP modules, refer to the
	"PIC24F Family Reference Manual".

PIC24FV16KM204 family devices include several Capture/Compare/PWM/Timer base modules, which provide the functionality of three different peripherals of earlier PIC24F devices. The module can operate in one of three major modes:

- General Purpose Timer
- Input Capture
- Output Compare/PWM

The module is provided in two different forms, distinguished by the number of PWM outputs that the module can generate. Single output modules (SCCPs) provide only one PWM output. Multiple output modules (MCCPs) can provide up to six outputs and an extended range of power control features, depending on the pin count of the particular device. All other features of the modules are identical.

The SCCP and MCCP modules can be operated only in one of the three major modes at any time. The other modes are not available unless the module is reconfigured for the new mode. A conceptual block diagram for the module is shown in Figure 13-1. All three modes share a time base generator and a common Timer register pair (CCPxTMRH/L); other shared hardware components are added as a particular mode requires.


Each module has a total of seven control and status registers:

- CCPxCON1L (Register 13-1)
- CCPxCON1H (Register 13-2)
- CCPxCON2L (Register 13-3)
- CCPxCON2H (Register 13-4)
- CCPxCON3L (Register 13-5)
- CCPxCON3H (Register 13-6)
- CCPxSTATL (Register 13-7)

Each module also includes eight buffer/counter registers that serve as Timer Value registers or data holding buffers:

- CCPxTMRH/CCPxTMRL (Timer High/Low Counters)
- CCPxPRH/CCPxPRL (Timer Period High/Low)
- CCPxRA (Primary Output Compare Data Buffer)
- CCPxRB (Secondary Output Compare Data Buffer)
- CCPxBUFH/CCPxBUFL (Input Capture High/Low Buffers)

FIGURE 13-1: MCCPx/SCCPx CONCEPTUAL BLOCK DIAGRAM

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	_	_	—	—	—	—
bit 15	•			•		•	bit
DA							
R-0 ACKTIM	R/W-0 PCIE	R/W-0 SCIE	R/W-0 BOEN ⁽¹⁾	R/W-0 SDAHT	R/W-0 SBCDE	R/W-0 AHEN	R/W-0 DHEN
bit 7	FUE	SUE	BOEIN'	SDAHI	SECDE	ALEN	bit
							bit
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimplem	nented bit, read	1 as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-8	-	ted: Read as '					
bit 7		•	e Status bit (I ² 0	C™ mode only)			
	Unused in SP			•			
bit 6			ipt Enable bit (I	² C mode only)			
	Unused in SP			•			
bit 5			ipt Enable bit (I	² C mode only)			
	Unused in SP		(1)				
bit 4		r Overwrite Ena	able bit ⁽¹⁾				
	In SPI Slave I		ny timo that a p	ew data byte is	chiffod in igno	ring the DE bit	
				bit of the SSPxS			SSPOV bit
				buffer is not up			
bit 3	SDAHT: SDA	x Hold Time Se	election bit (I ² C	mode only)			
	Unused in SP	l mode.					
bit 2	SBCDE: Slav	ve Mode Bus C	ollision Detect	Enable bit (I ² C	Slave mode or	ıly)	
	Unused in SP	l mode.					
bit 1	AHEN: Addre	ess Hold Enabl	e bit (l ² C Slave	mode only)			
	Unused in SP	l mode.					
bit 0	DHEN: Data	Hold Enable bi	t (Slave mode o	only)			
	Unused in SP	Pl mode.					
Note 1: F	or Daisy-Chaine	ed SPI Operatio	on: Allows the u	iser to ignore al	I but the last re	ceived byte S	SDUV is still

REGISTER 14-6: SSPxCON3: MSSPx CONTROL REGISTER 3 (SPI MODE)

Note 1: For Daisy-Chained SPI Operation: Allows the user to ignore all but the last received byte. SSPOV is still set when a new byte is received and BF = 1, but hardware continues to write the most recent byte to SSPxBUF.

REGISTER 15-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R/W-0	R-0, HSC	R-1, HSC
UTXISEL1	UTXINV	UTXISEL0	—	UTXBRK	UTXEN	UTXBF	TRMT
bit 15							bit 8

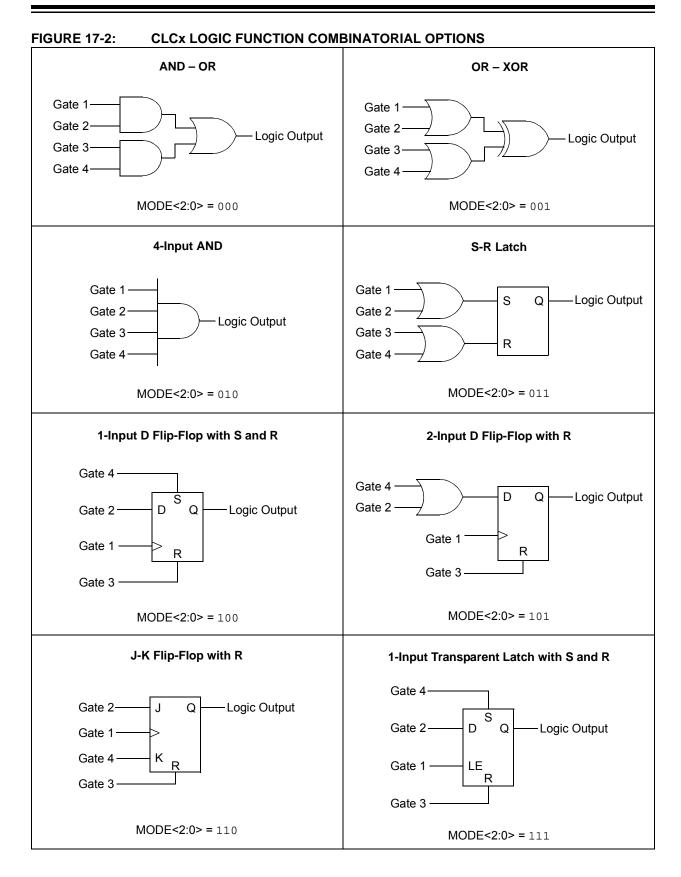
R/W-0	R/W-0	R/W-0	R-1, HSC	R-0, HSC	R-0, HSC	R/C-0, HS	R-0, HSC
URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
bit 7							bit 0

Legend:	HC = Hardware Clearable bit			
HS = Hardware Settable bit	C = Clearable bit	HSC = Hardware Settable/Cle	earable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15,13 UTXISEL<1:0>: UARTx Transmission Interrupt Mode Selection bits

- 11 = Reserved; do not use
- 10 = Interrupt when a character is transferred to the Transmit Shift Register (TSR) and as a result, the transmit buffer becomes empty
- 01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed
- 00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)
- bit 14 UTXINV: IrDA[®] Encoder Transmit Polarity Inversion bit

bit 14	UTXINV: IrDA [®] Encoder Transmit Polarity Inversion bit
	<u>If IREN = 0:</u>
	1 = UxTX Idle '0'
	0 = UxTX Idle '1'
	<u>If IREN = 1:</u>
	1 = UxTX Idle '1'
	0 = UxTX Idle '0'
bit 12	Unimplemented: Read as '0'
bit 11	UTXBRK: UARTx Transmit Break bit
	 1 = Sends Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion
	0 = Sync Break transmission is disabled or completed
bit 10	UTXEN: UARTx Transmit Enable bit
	 1 = Transmit is enabled; UxTX pin is controlled by UARTx 0 = Transmit is disabled; any pending transmission is aborted and the buffer is reset; UxTX pin is controlled by the PORT register
bit 9	UTXBF: UARTx Transmit Buffer Full Status bit (read-only)
	1 = Transmit buffer is full
	0 = Transmit buffer is not full, at least one more character can be written
bit 8	TRMT: Transmit Shift Register Empty bit (read-only)
	 1 = Transmit Shift Register is empty and the transmit buffer is empty (the last transmission has completed)
	0 = Transmit Shift Register is not empty; a transmission is in progress or queued
bit 7-6	URXISEL<1:0>: UARTx Receive Interrupt Mode Selection bits
	11 = Interrupt is set on an RSR transfer, making the receive buffer full (i.e., has 4 data characters)
	10 = Interrupt is set on an RSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters)
	0x = Interrupt is set when any character is received and transferred from the RSR to the receive buffer; receive buffer has one or more characters


16.2.4 RTCC CONTROL REGISTERS

REGISTER 16-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾

R/W-0	U-0	R/W-0	R-0, HSC	R-0, HSC	R/W-0	R/W-0	R/W-0			
RTCEN ⁽²⁾		RTCWREN	RTCSYNC	HALFSEC ⁽³⁾	RTCOE	RTCPTR1	RTCPTR0			
bit 15				1			bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0			
bit 7							bit (
Legend:		HSC = Hardw	are Settable/C	learable bit						
R = Readable	e bit	W = Writable I	oit	U = Unimplem	ented bit, rea	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	iown			
bit 15	RTCEN: RT	CC Enable bit ⁽²⁾								
		nodule is enable	-							
		nodule is disable								
bit 14	•	nted: Read as '0								
bit 13		RTCWREN: RTCC Value Registers Write Enable bit								
	 1 = RTCVALH and RTCVALL registers can be written to by the user 0 = RTCVALH and RTCVALL registers are locked out from being written to by the user 									
						n to by the user				
bit 12	0 = RTCVAL	H and RTCVAL	L registers are	locked out from	n being writter	n to by the user				
bit 12	0 = RTCVAL RTCSYNC:		L registers are gisters Read S	locked out from	h being writter bit		rollover ripple			
bit 12	0 = RTCVAL RTCSYNC: 1 = RTCVAL resulting	∟H and RTCVAL RTCC Value Reo ∟H, RTCVALL ar g in an invalid da	L registers are gisters Read S nd ALCFGRPT ta read. If the	locked out from ynchronization registers can c	n being writter bit hange while r	eading due to a				
bit 12	0 = RTCVAI RTCSYNC: 1 = RTCVAI resulting can be a	₋H and RTCVAL RTCC Value Reg ∟H, RTCVALL ar g in an invalid da assumed to be va	L registers are gisters Read S nd ALCFGRPT ta read. If the alid.	locked out from ynchronization registers can c register is read t	h being writter bit hange while r twice and rest	eading due to a ults in the same	data, the data			
	0 = RTCVAL RTCSYNC: 1 = RTCVAL resulting can be a 0 = RTCVAL	H and RTCVAL RTCC Value Reg H, RTCVALL ar in an invalid da assumed to be va H, RTCVALL or	L registers are gisters Read S nd ALCFGRPT ta read. If the alid. ALCFGRPT r	locked out from ynchronization registers can c register is read t	h being writter bit hange while r twice and rest	eading due to a ults in the same	data, the data			
bit 12 bit 11	0 = RTCVAL RTCSYNC: 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: H	H and RTCVAL RTCC Value Reg H, RTCVALL ar in an invalid da assumed to be va H, RTCVALL or Half Second Stat	L registers are gisters Read S ad ALCFGRPT ta read. If the alid. ALCFGRPT r tus bit ⁽³⁾	locked out from ynchronization registers can c register is read t	h being writter bit hange while r twice and rest	eading due to a ults in the same	data, the data			
	0 = RTCVAL RTCSYNC: 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: 1 = Second	H and RTCVAL RTCC Value Reg H, RTCVALL ar in an invalid da assumed to be va H, RTCVALL or	L registers are gisters Read S ad ALCFGRPT ta read. If the alid. ALCFGRPT r sus bit ⁽³⁾ second	locked out from ynchronization registers can c register is read t	h being writter bit hange while r twice and rest	eading due to a ults in the same	data, the data			
	0 = RTCVAL RTCSYNC: 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: H 1 = Second 0 = First hal	-H and RTCVAL RTCC Value Reg -H, RTCVALL ar g in an invalid da assumed to be va -H, RTCVALL or Half Second Stat half period of a s	L registers are gisters Read S ad ALCFGRPT ta read. If the alid. ALCFGRPT r sus bit ⁽³⁾ second ond	locked out from ynchronization registers can c register is read t	h being writter bit hange while r twice and rest	eading due to a ults in the same	data, the data			
bit 11	0 = RTCVAL RTCSYNC: 1 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: 1 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o	-H and RTCVAL RTCC Value Reg -H, RTCVALL ar g in an invalid da assumed to be va -H, RTCVALL or Half Second Stat half period of a sec CC Output Enab utput is enabled	L registers are gisters Read S ad ALCFGRPT ta read. If the alid. ALCFGRPT r tus bit ⁽³⁾ second ond le bit	locked out from ynchronization registers can c register is read t	h being writter bit hange while r twice and rest	eading due to a ults in the same	data, the data			
bit 11 bit 10	0 = RTCVAL RTCSYNC: 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: H 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o 0 = RTCC o	-H and RTCVAL RTCC Value Reg -H, RTCVALL ar g in an invalid da assumed to be va -H, RTCVALL or Half Second Stat half period of a sec CC Output Enab output is enabled output is disabled	L registers are gisters Read S ad ALCFGRPT ta read. If the alid. ALCFGRPT r second ond le bit	locked out from ynchronization registers can c register is read t egisters can be	h being writter bit hange while r twice and rest read without	eading due to a ults in the same	data, the data			
bit 11	0 = RTCVAL RTCSYNC: 1 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: H 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o 0 = RTCC o RTCPTR<1:	-H and RTCVAL RTCC Value Reg H, RTCVALL ar in an invalid da assumed to be va H, RTCVALL or Half Second Stat half period of a sec CC Output Enab utput is enabled utput is disabled 0-: RTCC Value	L registers are gisters Read S ad ALCFGRPT ta read. If the alid. ALCFGRPT r us bit ⁽³⁾ second ond le bit Register Wind	locked out from ynchronization registers can c register is read t egisters can be	h being writter bit hange while r twice and rest read without	eading due to a ults in the same concern over a	data, the data			
bit 11 bit 10	0 = RTCVAL RTCSYNC: 1 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: H 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o 0 = RTCC o RTCPTR<1: Points to the	-H and RTCVAL RTCC Value Reg -H, RTCVALL ar g in an invalid da assumed to be va -H, RTCVALL or Half Second Stat half period of a sec CC Output Enab output is enabled output is disabled	L registers are gisters Read S ad ALCFGRPT ta read. If the alid. ALCFGRPT r us bit ⁽³⁾ second ond le bit Register Wind TCC Value reg	locked out from ynchronization registers can c register is read t egisters can be dow Pointer bits gisters when rea	h being writter bit hange while r twice and rest read without ding the RTC	eading due to a ults in the same concern over a VALH and RTC\	data, the data rollover ripple /ALL registers			
bit 11 bit 10	0 = RTCVAL RTCSYNC: 1 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: H 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o 0 = RTCC o RTCPTR<1: Points to the	-H and RTCVAL RTCC Value Reg LH, RTCVALL ar g in an invalid da assumed to be va LH, RTCVALL or Half Second Stat half period of a sec CC Output Enab utput is enabled utput is disabled 0>: RTCC Value corresponding R R<1:0> value dec	L registers are gisters Read S ad ALCFGRPT ta read. If the alid. ALCFGRPT r us bit ⁽³⁾ second ond le bit Register Wind TCC Value reg	locked out from ynchronization registers can c register is read t egisters can be dow Pointer bits gisters when rea	h being writter bit hange while r twice and rest read without ding the RTC	eading due to a ults in the same concern over a VALH and RTC\	data, the data rollover ripple /ALL registers			
bit 11 bit 10	0 = RTCVAL RTCSYNC: 1 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: H 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o 0 = RTCC o RTCPTR<1: Points to the The RTCPTF <u>RTCVAL<15</u> 00 = MINUT	-H and RTCVAL RTCC Value Reg -H, RTCVALL ar g in an invalid da assumed to be va -H, RTCVALL or Half Second Stat half period of a sec CC Output Enab utput is enabled utput is disabled 0>: RTCC Value corresponding R R<1:0> value dec : <u>8>:</u> ES	L registers are gisters Read S ad ALCFGRPT ta read. If the alid. ALCFGRPT r us bit ⁽³⁾ second ond le bit Register Wind TCC Value reg	locked out from ynchronization registers can c register is read t egisters can be dow Pointer bits gisters when rea	h being writter bit hange while r twice and rest read without ding the RTC	eading due to a ults in the same concern over a VALH and RTC\	data, the data rollover ripple /ALL registers			
bit 11 bit 10	0 = RTCVAL RTCSYNC: 1 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: H 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o 0 = RTCC o RTCPTR<1: Points to the The RTCPTF <u>RTCVAL<15</u> 00 = MINUT 01 = WEEKI	-H and RTCVAL RTCC Value Reg -H, RTCVALL ar g in an invalid da assumed to be va -H, RTCVALL or Half Second Stat half period of a sec CC Output Enab output is enabled output is disabled 0>: RTCC Value corresponding R R<1:0> value dec : <u>8>:</u> ES DAY	L registers are gisters Read S ad ALCFGRPT ta read. If the alid. ALCFGRPT r us bit ⁽³⁾ second ond le bit Register Wind TCC Value reg	locked out from ynchronization registers can c register is read t egisters can be dow Pointer bits gisters when rea	h being writter bit hange while r twice and rest read without ding the RTC	eading due to a ults in the same concern over a VALH and RTC\	data, the data rollover ripple /ALL registers			
bit 11 bit 10	0 = RTCVAL RTCSYNC: 1 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: H 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o 0 = RTCC o RTCPTR<1: Points to the The RTCPTF <u>RTCVAL<15</u> 00 = MINUT	-H and RTCVAL RTCC Value Reg -H, RTCVALL ar g in an invalid da assumed to be va -H, RTCVALL or Half Second Stat half period of a sec CC Output Enab utput is enabled utput is disabled 0>: RTCC Value corresponding R R<1:0> value dec :8>: ES DAY H	L registers are gisters Read S ad ALCFGRPT ta read. If the alid. ALCFGRPT r us bit ⁽³⁾ second ond le bit Register Wind TCC Value reg	locked out from ynchronization registers can c register is read t egisters can be dow Pointer bits gisters when rea	h being writter bit hange while r twice and rest read without ding the RTC	eading due to a ults in the same concern over a VALH and RTC\	data, the data rollover ripple /ALL registers			
bit 11 bit 10	0 = RTCVAL RTCSYNC: 1 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: H 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o 0 = RTCC o RTCPTR<1: Points to the The RTCPTF <u>RTCVAL<15</u> 00 = MINUT 01 = WEEKE 10 = MONTH	-H and RTCVAL RTCC Value Reg H, RTCVALL ar g in an invalid da assumed to be va H, RTCVALL or Half Second Stat half period of a sec CC Output Enabled utput is enabled utput is disabled 0>: RTCC Value corresponding R R<1:0> value dec : <u>8>:</u> ES DAY H ed	L registers are gisters Read S ad ALCFGRPT ta read. If the alid. ALCFGRPT r us bit ⁽³⁾ second ond le bit Register Wind TCC Value reg	locked out from ynchronization registers can c register is read t egisters can be dow Pointer bits gisters when rea	h being writter bit hange while r twice and rest read without ding the RTC	eading due to a ults in the same concern over a VALH and RTC\	data, the data rollover ripple /ALL registers			
bit 11 bit 10	0 = RTCVAL RTCSYNC: 1 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: H 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o 0 = RTCC o RTCPTR<1: Points to the The RTCPTF <u>RTCVAL<15</u> 00 = MINUT 01 = WEEKI 10 = MONTH 11 = Reserv <u>RTCVAL<7:(</u> 00 = SECON	-H and RTCVAL RTCC Value Reg H, RTCVALL ar in an invalid da assumed to be va- H, RTCVALL or Half Second Stat half period of a sec CC Output Enab utput is enabled utput is disabled 0>: RTCC Value corresponding R R<1:0> value dec <u>:8>:</u> ES DAY H ed <u>)>:</u> NDS	L registers are gisters Read S ad ALCFGRPT ta read. If the alid. ALCFGRPT r us bit ⁽³⁾ second ond le bit Register Wind TCC Value reg	locked out from ynchronization registers can c register is read t egisters can be dow Pointer bits gisters when rea	h being writter bit hange while r twice and rest read without ding the RTC	eading due to a ults in the same concern over a VALH and RTC\	data, the data rollover ripple /ALL registers			
bit 11 bit 10	0 = RTCVAL RTCSYNC: 1 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: H 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o 0 = RTCC o RTCPTR<1: Points to the The RTCPTF <u>RTCVAL<15</u> 00 = MINUT 01 = WEEKI 10 = MONTH 11 = Reserv <u>RTCVAL<7:0</u>	-H and RTCVAL RTCC Value Reg H, RTCVALL ar in an invalid da assumed to be va- H, RTCVALL or Half Second Stat half period of a sec CC Output Enab utput is enabled utput is disabled 0>: RTCC Value corresponding R R<1:0> value dec <u>:8>:</u> ES DAY H ed <u>)>:</u> NDS	L registers are gisters Read S ad ALCFGRPT ta read. If the alid. ALCFGRPT r us bit ⁽³⁾ second ond le bit Register Wind TCC Value reg	locked out from ynchronization registers can c register is read t egisters can be dow Pointer bits gisters when rea	h being writter bit hange while r twice and rest read without ding the RTC	eading due to a ults in the same concern over a VALH and RTC\	data, the data rollover ripple /ALL registers			

Note 1: The RCFGCAL register is only affected by a POR.

- 2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
- 3: This bit is read-only; it is cleared to '0' on a write to the lower half of the MINSEC register.

REGISTER 19-7: AD1CHITL: A/D SCAN COMPARE HIT REGISTER (LOW WORD)⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CHH15	CHH14	CHH13	CHH12	CHH11	CHH10	CHH9	CHH8 ^(2,3)
bit 15				•	•	•	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CHH7 ^(2,3)	CHH6 ^(2,3)	CHH5 ⁽²⁾	CHH4	CHH3	CHH2	CHH1	CHH0
bit 7					·		bit 0
Legend:							
R = Readable	e bit	W = Writable b	oit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	x = Bit is unk	Bit is unknown	
bit 15-0	CHH<15:0>:	A/D Compare H	lit bits ^(2,3)				
	<u>If CM<1:0> =</u>	<u>11:</u>					
	1 = A/D Result Buffer x has been written with data or a match has occurred						

0 = A/D Result Buffer x has not been written with data

For All Other Values of CM<1:0>:

1 = A match has occurred on A/D Result Channel x

0 = No match has occurred on A/D Result Channel x

Note 1: Unimplemented channels are read as '0'.

2: The CHH<8:5> bits are not implemented in 20-pin devices.

3: The CHH<8:6> bits are not implemented in 28-pin devices.

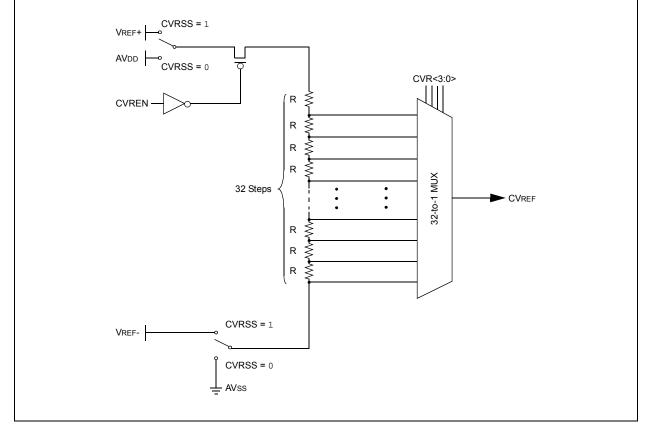
TABLE 19-4:	NUMERICAL EQUIVALENTS OF VARIOUS RESULT CODES:
	10-BIT FRACTIONAL FORMATS

VIN/VREF	10-Bit Differential Output Code (11-bit result)	16-Bit Fractional Format Equivalent Decimal Value	-	16-Bit Signed Fractional Fo Equivalent Decimal Val					
+1023/1024	011 1111 1111	1111 1111 1100 0000	0.999	0111 1111 1110 0000	0.999				
+1022/1024	011 1111 1110	1111 1111 1000 0000	0.998	0111 1111 1000 0000	0.998				
	•••								
+1/1024	000 0000 0001	0000 0000 0100 0000	0.001	0000 0000 0010 0000	0.001				
0/1024	000 0000 0000	0000 0000 0000 0000	0.000	0000 0000 0000 0000	0.000				
-1/1024	101 1111 1111	0000 0000 0000 0000	0.000	1111 1111 1110 0000	-0.001				
	•••								
-1023/1024	100 0000 0001	0000 0000 0000 0000	0.000	1000 0000 0010 0000	-0.999				
-1024/1024	100 0000 0000	0000 0000 0000 0000	0.000	1000 0000 0000 0000	-1.000				

NOTES:

23.0 COMPARATOR VOLTAGE REFERENCE

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Comparator Voltage Reference, refer to the "PIC24F Family Reference Manual", "Comparator Voltage Reference Module" (DS39709).


23.1 Configuring the Comparator Voltage Reference

The comparator voltage reference module is controlled through the CVRCON register (Register 23-1). The comparator voltage reference provides a range of output voltages with 32 distinct levels.

The comparator voltage reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF-. The voltage source is selected by the CVRSS bit (CVRCON<5>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output.

REGISTER 25-4: FOSC: OSCILLATOR CONFIGURATION REGISTER

R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
FCKSM1	FCKSM0	SOSCSEL	POSCFREQ1	POSCFREQ0	OSCIOFNC	POSCMD1	POSCMD0
bit 7							bit 0

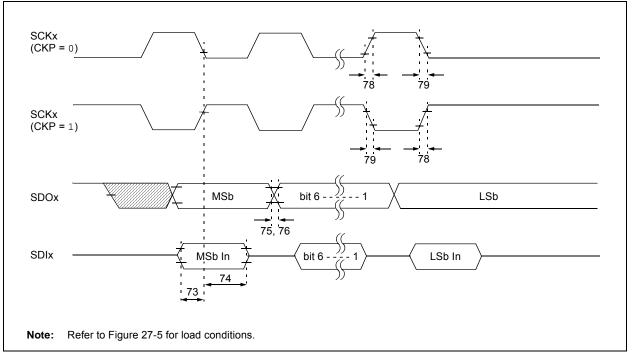
Legend:			
R = Readable bit	P = Programmable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	FCKSM<1:0>: Clock Switching and Fail-Safe Clock Monitor Selection Configuration bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
bit 5	SOSCSEL: Secondary Oscillator Power Selection Configuration bit 1 = Secondary Oscillator is configured for high-power operation 0 = Secondary Oscillator is configured for low-power operation
bit 4-3	POSCFREQ<1:0>: Primary Oscillator Frequency Range Configuration bits 11 = Primary Oscillator/External Clock input frequency is greater than 8 MHz 10 = Primary Oscillator/External Clock input frequency is between 100 kHz and 8 MHz 01 = Primary Oscillator/External Clock input frequency is less than 100 kHz 00 = Reserved; do not use
bit 2	 OSCIOFNC: CLKO Enable Configuration bit 1 = CLKO output signal is active on the OSCO pin; Primary Oscillator must be disabled or configured for the External Clock (EC) mode for the CLKO to be active (POSCMD<1:0> = 11 or 00) 0 = CLKO output is disabled
bit 1-0	POSCMD<1:0>: Primary Oscillator Configuration bits 11 = Primary Oscillator mode is disabled 10 = HS Oscillator mode is selected 01 = XT Oscillator mode is selected

00 = External Clock mode is selected

DC CHARACTERISTICS		Standard C			s: 1.8V to 3.6V (PIC24F16KM204) 2.0V to 5.5V (PIC24FV16KM204) $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended			
Parameter No.	Device	Typical ⁽¹⁾	Max	Units		onditions		
Power-Dow	n Current (IPD)							
DC60	PIC24FV16KMXXX		_		-40°C			
			8.0		+25°C			
		6.0	8.5	μA	+60°C	2.0V		
			9.0		+85°C			
			15.0		+125°C			
			—		-40°C			
			8.0		+25°C			
		6.0	9.0	μA	+60°C	5.0V		
			10.0		+85°C			
			15.0		+125°C		Sleep Mode ⁽²⁾	
	PIC24F16KMXXX		_		-40°C			
			0.80		+25°C			
		0.025	1.5	μA	+60°C	1.8V		
			2.0		+85°C			
			7.5		+125°C			
			—		-40°C			
			1.0		+25°C			
		0.040	2.0	μA	+60°C	3.3V		
			3.0		+85°C			
			7.5		+125°C			
DC61	PIC24FV16KMXXX	0.25	_	μA	+85°C	2.0V		
			7.5	P., 4	+125°C		Low-Voltage	
		0.35	3.0	μA	+85°C	5.0V	Sleep Mode ⁽²⁾	
			7.5	r	+125°C			

TABLE 27-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)


Legend: Unshaded rows represent PIC24F16KMXXX devices and shaded rows represent PIC24FV16KMXXX devices.

Note 1: Data in the Typical column is at 3.3V, +25°C (PIC24F16KMXXX) or 5.0V, +25°C (PIC24FV16KMXXX) unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as outputs and set low. PMSLP is set to '0' and WDT, etc., are all switched off.

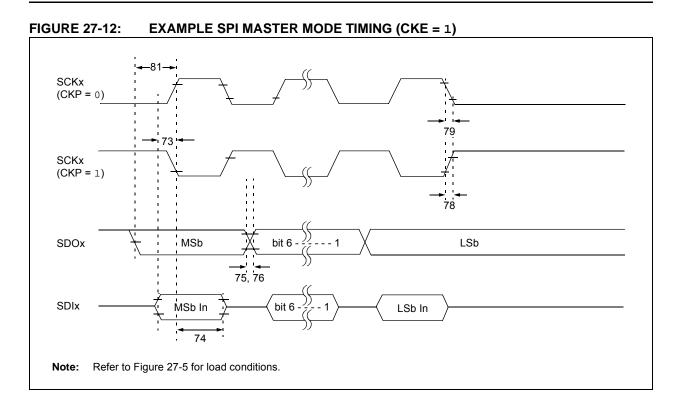

3: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

FIGURE 27-11: EXAMPLE SPI MASTER MODE TIMING (CKE = 0)

TABLE 27-29: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)

Param No.	Symbol	Characteristic	Min	Max	Units	Conditions
73	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	_	ns	
74	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	40	—	ns	
75	TDOR	SDOx Data Output Rise Time	_	25	ns	
76	TDOF	SDOx Data Output Fall Time	_	25	ns	
78	TscR	SCKx Output Rise Time (Master mode)	_	25	ns	
79	TscF	SCKx Output Fall Time (Master mode)	_	25	ns	
	Fsck	SCKx Frequency	—	10	MHz	

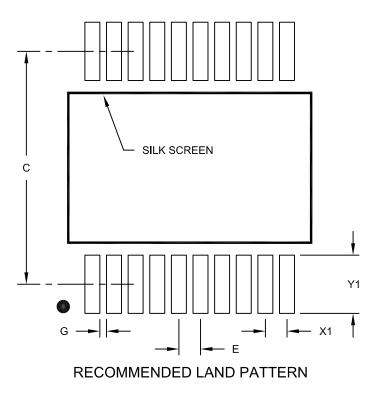


TABLE 27-30: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)

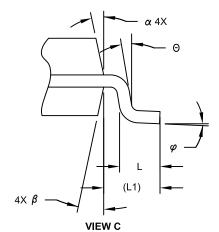
Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions
73	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	35	_	ns	
74	TscH2dlL, TscL2dlL	Hold Time of SDIx Data Input to SCKx Edge	40	—	ns	
75	TDOR	SDOx Data Output Rise Time	—	25	ns	
76	TDOF	SDOx Data Output Fall Time	—	25	ns	
78	TscR	SCKx Output Rise Time (Master mode)	—	25	ns	
79	TscF	SCKx Output Fall Time (Master mode)	_	25	ns	
81	TDOV2scH, TDOV2scL	SDOx Data Output Setup to SCKx Edge	Тсү	—	ns	
	Fsck	SCKx Frequency	_	10	MHz	

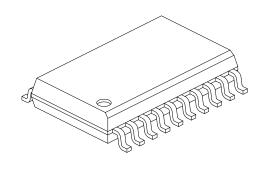
20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	-		-	
	Units		MILLIMETER	S
Dimension	Dimension Limits			MAX
Contact Pitch	E	0.65 BSC		
Contact Pad Spacing	С		7.20	
Contact Pad Width (X20)	X1			0.45
Contact Pad Length (X20)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2072A

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins	N	20		
Pitch	е	1.27 BSC		
Overall Height	Α	-	-	2.65
Molded Package Thickness	A2	2.05	-	-
Standoff §	A1	0.10	-	0.30
Overall Width	Е	10.30 BSC		
Molded Package Width	E1	7.50 BSC		
Overall Length	D	12.80 BSC		
Chamfer (Optional)	h	0.25	-	0.75
Foot Length	L	0.40	-	1.27
Footprint	L1	1.40 REF		
Lead Angle	Θ	0°	-	-
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.20	-	0.33
Lead Width	b	0.31	-	0.51
Mold Draft Angle Top	α	5°	-	15°
Mold Draft Angle Bottom	β	5°	-	15°

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-094C Sheet 2 of 2

NOTES: