

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

÷ХГ

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I²C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 19x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08km102-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

		Pin Features				
44-Pin TQFP/QFN ⁽¹⁾	Pin	PIC24FXXKMX04 PIC24FVXXKMX04				
∞ ८ ७ 0 ° ∿ 0 4 0 0 4	1	AN21/SDA1/T1CK/U1RTS/U1BCLK/IC2/ /CLC10/CTED4/CN21/RB9				
K K K K > > K K K K K 図 図 図 図 図 2 % C C C ≤ 4	2	U1RX/ /CN18/RC6				
• 7 9 7 7 7 8 8 0 7 7 5 4 1 •	3	U1TX/ /CN17/RC7				
RB9 1 33 RB4	4	/CN20/RC8				
RC6 2 32 RA8	5	IC4/OC2F/CTED7/CN19/RC9				
RC8 4 30 RA2	6	IC1/ / /CTED3/CN9/RA7				
RC9 5 PIC24FXXKMX04 29 Vss	7	/OC1A/CTED1/INT2/CN8/RA6 VCAP or VDDCORE				
RA7 6 20 000 RA6 7 27 RC2	8	PGED2/SDI1/OC1C/CTED11/CN16/RB10				
RB10 8 26 RC1	9	PGEC2/SCK1/OC2A/CTED9/CN15/RB11				
RB11 9 25 RC0 RB12 10 24 RB3	10	AN12/HLVDIN/ /CTED2/ /AN12/HLVDIN/ /CTED2/INT2/				
RB13 11 23 RB2	11	/ /AN11/SDO1/OC1D/CTPL S/CN13/RB13				
	12	/ /CN35/RA10				
A110 A110 VDD VSS VSS VSS VSS VSS VSS VSS VSS VSS	13	/ /CTED8/CN36/RA11				
	14	/CVREF/ / /AN10/ / /C1OUT/OCFA/CTED5/INT1/CN12/				
WCI		RB14				
	15	/ /AN9/ /REFO/SS1/TCKIA/CTED6/CN11/RB15				
	16	AVss				
	17	AVDD				
	18	MCLR/Vpp/RA5				
	19	CVREF+/VREF+/ /AN0/ /CN2/ CVREF+/VREF+/ /AN0/ / RA0 CTED1/CN2/RA0 CTED				
	20	CVREF-/VREF-/AN1/CN3/RA1				
	21	PGED1/AN2/CTCMP/ULPWU/C1IND/ / / /CN4/RB0				
	22	PGEC1/ / /AN3/C1INC/ / /CTED12/CN5//RB1				
	23	/ /AN4/C1INB/ / /TCKIB/CTED13/CN6/RB2				
	24	/AN5/C1INA/ / /CN7/RB3				
	25	AN6/CN32/RC0				
	26	AN7/CN31/RC1				
	27	AN8/CN10/RC2				
	28					
	29					
	30					
	30					
	32	SOSCI/AN15/ / /CN1/RB4				
	33					
	35	/CN34/RAQ				
	36	/CN28/RC3				
	37	/CN25/BC4				
	38	/CN26/RC5				
Legend: Values in indicate pin	39	Vss				
function differences between	40	VDD				
PIC24F(V)XXKM202 and	41	PGED3/AN17/ASDA1/OC1E/CLCINA/CN27/RB5				
	-					
PIC24F(V)XXKM102 devices.	42	FGEG3/ANTO/AGGET/OCTF/GEGIND/GN24/RD0				
Note 1: Exposed pad on underside of	42 43	AN19/INT0/CN23/RB7 AN19/ /OC1A/INT0/CN23/RB7				
Note 1: Exposed pad on underside of device is connected to Vss.	42 43 44	AN19/INT0/CN23/RB7 AN19/ /OC1A/INT0/CN23/RB7 AN20/SCL1/UICTS/C3OUT/OC1B/CTED10/CN22/RB8				

1.1.4 EASY MIGRATION

The PIC24FV16KM204 family devices have two variants. The KM20X variant provides the full feature set of the device, while the KM10X offers a reduced peripheral set, allowing for the balance of features and cost (refer to Table 1-1). Both variants allow for a smooth migration path as applications grow and evolve.

The consistent pinout scheme used throughout the entire family also helps in migrating to the next larger device. This is true when moving between devices with the same pin count, different die variants, or even moving from 20-pin or 28-pin devices to 44-pin/48-pin devices.

The PIC24F family is pin compatible with devices in the dsPIC33 family, and shares some compatibility with the pinout schema for PIC18 and dsPIC30. This extends the ability of applications to grow from the relatively simple to the powerful and complex, yet still selecting a Microchip device.

1.2 Other Special Features

- Communications: The PIC24FV16KM204 family incorporates a range of serial communication peripherals to handle a range of application requirements. There is an MSSP module which implements both SPI and I²C™ protocols, and supports both Master and Slave modes of operation for each. Devices also include one of two UARTs with built-in IrDA[®] encoders/decoders.
- Analog Features: Select members of the PIC24FV16KM204 family include two 8-bit Digital-to-Analog Converters which offer support in Idle mode, and left and right justified input data, as well as up to two operational amplifiers with selectable power and speed modes.
- Real-Time Clock/Calendar (RTCC): This module implements a full-featured clock and calendar with alarm functions in hardware, freeing up timer resources and program memory space for use of the core application.
- 12-Bit A/D Converter: This module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period, and faster sampling speed. The 16-deep result buffer can be used either in Sleep, to reduce power, or in Active mode to improve throughput.
- Charge Time Measurement Unit (CTMU) Interface: The PIC24FV16KM204 family includes the new CTMU interface module, which can be used for capacitive touch sensing, proximity sensing, and also for precision time measurement and pulse generation. The CTMU can also be connected to the operational amplifiers to provide active guarding, which provides increased robustness in the presence of noise in capacitive touch applications.

1.3 Details on Individual Family Members

Devices in the PIC24FV16KM204 family are available in 20-pin, 28-pin, 44-pin and 48-pin packages. The general block diagram for all devices is shown in Figure 1-1.

Members of the PIC24FV16KM204 family are available as both standard and high-voltage devices. High-voltage devices, designated with an "FV" in the part number (such as PIC24FV16KM204), accommodate an operating VDD range of 2.0V to 5.5V and have an on-board voltage regulator that powers the core. Peripherals operate at VDD.

Standard devices, designated by "F" (such as PIC24F16KM204), function over a lower VDD range of 1.8V to 3.6V. These parts do not have an internal regulator, and both the core and peripherals operate directly from VDD.

The PIC24FV16KM204 family may be thought of as two different device groups, both offering slightly different sets of features. These differ from each other in multiple ways:

- · The size of the Flash program memory
- The number of external analog channels available
- The number of Digital-to-Analog Converters
- · The number of operational amplifiers
- The number of analog comparators
- The presence of a Real-Time Clock and Calendar (RTCC)
- The number and type of CCP modules (i.e., MCCP vs. SCCP)
- The number of serial communication modules (both MSSPs and UARTs)
- The number of Configurable Logic Cell (CLC) modules

The general differences between the different sub-families are shown in Table 1-1 and Table 1-2.

A list of the pin features available on the PIC24FV16KM204 family devices, sorted by function, is provided in Table 1-5.

DETIGETERTOREOTO					
Features	PIC24FV16KM204	PIC24FV08KM204	PIC24FV16KM202	PIC24FV08KM202	
Operating Frequency		DC-3	2 MHz		
Program Memory (bytes)	16K	8K	16K	8K	
Program Memory (instructions)	5632	2816	5632	2816	
Data Memory (bytes)		20)48		
Data EEPROM Memory (bytes)		5	12		
Interrupt Sources (soft vectors/NMI traps)		40 (36/4)		
Voltage Range		2.0-	-5.5V		
I/O Ports	PORTA<1 PORTB< PORTC	RTA<7,5:0> RTB<15:0>			
Total I/O Pins	37			23	
Timers	(One 16-bit timer, f	, ive MCCPs/SCC	11 Ps with up to tv	vo 16/32 timers each)	
Capture/Compare/PWM modules MCCP SCCP			3 2		
Serial Communications MSSP UART			2 2		
Input Change Notification Interrupt	36			22	
12-Bit Analog-to-Digital Module (input channels)	22			19	
Analog Comparators			3		
8-Bit Digital-to-Analog Converters			2		
Operational Amplifiers			2		
Charge Time Measurement Unit (CTMU)		Y	<i>ï</i> es		
Real-Time Clock and Calendar (RTCC)		Y	es		
Configurable Logic Cell (CLC)			2		
Resets (and delays)	POR, BOR, RESET Instruction, MCLR, WDT, Illegal Opcode, REPEAT Instruction, Hardware Traps, Configuration Word Mismatch (PWRT, OST, PLL Lock)				
Instruction Set	76 Base Inst	ructions, Multiple	e Addressing N	lode Variations	
Packages	44-Pin QFN/TQFP, 28-Pin 48-Pin UQFN SPDIP/SSOP/SOIC/QI			28-Pin SOP/SOIC/QFN	

TABLE 1-3: DEVICE FEATURES FOR THE PIC24FV16KM204 FAMILY

NOTES:

3.0 CPU

Note:	This data sheet summarizes the features							
	of this group of PIC24F devices. It is not							
	intended to be a comprehensive refer-							
	ence source. For more information on the							
	CPU, refer to the "PIC24F Family							
	Reference Manual", "CPU" (DS39703).							

The PIC24F CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set and a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M instructions of user program memory space. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the REPEAT instructions, which are interruptible at any point.

PIC24F devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can act as a data, address or address offset register. The 16th working register (W15) operates as a Software Stack Pointer (SSP) for interrupts and calls.

The upper 32 Kbytes of the Data Space (DS) memory map can optionally be mapped into program space at any 16K word boundary of either program memory or data EEPROM memory, defined by the 8-bit Program Space Visibility Page Address (PSVPAG) register. The program to Data Space mapping feature lets any instruction access program space as if it were Data Space.

The Instruction Set Architecture (ISA) has been significantly enhanced beyond that of the PIC18, but maintains an acceptable level of backward compatibility. All PIC18 instructions and addressing modes are supported, either directly, or through simple macros. Many of the ISA enhancements have been driven by compiler efficiency needs.

The core supports Inherent (no operand), Relative, Literal, Memory Direct and three groups of addressing modes. All modes support Register Direct and various Register Indirect modes. Each group offers up to seven addressing modes. Instructions are associated with predefined addressing modes depending upon their functional requirements. For most instructions, the core is capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing trinary operations (i.e., A + B = C) to be executed in a single cycle.

A high-speed, 17-bit by 17-bit multiplier has been included to significantly enhance the core arithmetic capability and throughput. The multiplier supports Signed, Unsigned and Mixed mode, 16-bit by 16-bit or 8-bit by 8-bit integer multiplication. All multiply instructions execute in a single cycle.

The 16-bit ALU has been enhanced with integer divide assist hardware that supports an iterative non-restoring divide algorithm. It operates in conjunction with the REPEAT instruction looping mechanism and a selection of iterative divide instructions to support 32-bit (or 16-bit), divided by 16-bit integer signed and unsigned division. All divide operations require 19 cycles to complete but are interruptible at any cycle boundary.

The PIC24F has a vectored exception scheme with up to eight sources of non-maskable traps and up to 118 interrupt sources. Each interrupt source can be assigned to one of seven priority levels.

A block diagram of the CPU is illustrated in Figure 3-1.

3.1 Programmer's Model

Figure 3-2 displays the programmer's model for the PIC24F. All registers in the programmer's model are memory mapped and can be manipulated directly by instructions.

Table 3-1 provides a description of each register. All registers associated with the programmer's model are memory mapped.

4.3.2 DATA ACCESS FROM PROGRAM MEMORY AND DATA EEPROM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program memory without going through Data Space. It also offers a direct method of reading or writing a word of any address within data EEPROM memory. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

Note: The TBLRDH and TBLWTH instructions are not used while accessing data EEPROM memory.

The PC is incremented by 2 for each successive 24-bit program word. This allows program memory addresses to directly map to Data Space addresses. Program memory can thus be regarded as two 16-bit, word-wide address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word, and TBLRDH and TBLWTH access the space which contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

 TBLRDL (Table Read Low): In Word mode, it maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>). In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when byte select is '1'; the lower byte is selected when it is '0'.

 TBLRDH (Table Read High): In Word mode, it maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom' byte, will always be '0'.

In Byte mode, it maps the upper or lower byte of the program word to D<7:0> of the data address, as above. Note that the data will always be '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in **Section 5.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Memory Page Address register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

Note: Only Table Read operations will execute in the configuration memory space, and only then, in implemented areas, such as the Device ID. Table Write operations are not allowed.

© 2013 Microchip Technology Inc.

5.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on Flash programming, refer to the "PIC24F Family Reference Manual", "Program Memory" (DS39715).

The PIC24FV16KM204 family of devices contains internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable when operating with VDD over 1.8V.

Flash memory can be programmed in three ways:

- In-Circuit Serial Programming[™] (ICSP[™])
- Run-Time Self-Programming (RTSP)
- Enhanced In-Circuit Serial Programming (Enhanced ICSP)

ICSP allows a PIC24FXXXXX device to be serially programmed while in the end application circuit. This is simply done with two lines for the programming clock and programming data (which are named PGECx and PGEDx, respectively), and three other lines for power (VDD), ground (VSS) and Master Clear/Program Mode Entry Voltage (MCLR/VPP). This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or custom firmware to be programmed. Run-Time Self-Programming (RTSP) is accomplished using TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user may write program memory data in blocks of 32 instructions (96 bytes) at a time, and erase program memory in blocks of 32, 64 and 128 instructions (96,192 and 384 bytes) at a time.

The NVMOP<1:0> (NVMCON<1:0>) bits decide the erase block size.

5.1 Table Instructions and Flash Programming

Regardless of the method used, Flash memory programming is done with the Table Read and Write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using the TBLPAG<7:0> bits and the Effective Address (EA) from a W register, specified in the table instruction, as depicted in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0				
_	NVMIP2	NVMIP1	NVMIP0	—	—	—	_				
bit 15							bit 8				
	D 444 4	D 444 0	D #44.0		D 444 4	D 444 0	D 444 0				
0-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
	AD1IP2	AD1IP1	AD1IP0	_	U1TXIP2	U1TXIP1					
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15	Unimplemen	ted: Read as '	0'								
bit 14-12	NVMIP<2:0>:	NVM Interrup	t Priority bits								
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)							
	•										
	•										
	001 = Interru	pt is Priority 1									
	000 = Interru	pt source is dis	abled								
bit 11-7	Unimplemen	ted: Read as '	0'								
bit 6-4	AD1IP<2:0>:	A/D Conversion	on Complete In	terrupt Priority	bits						
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)							
	•										
	•										
	001 = Interru	pt is Priority 1									
	000 = Interru	pt source is dis	abled								
bit 3	Unimplemen	ted: Read as '	0'								
bit 2-0	U1TXIP<2:0>	UART1 Trans	smitter Interrup	ot Priority bits							
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)							
	•										
	•										
	• 001 - Informu	nt is Driarity 1									
	001 - interrup	puis Fliulity I of source is dis	abled								

REGISTER 8-22: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

REGISTER 8-29: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0	
—	—	—	—	—	RTCIP2	RTCIP1	RTCIP0	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—		—	—	—	—	_	—	
bit 7		•	•	•		•	bit 0	
Legend:								
R = Readable	e bit	W = Writable	able bit U = Unimplemented bit, read as '0'					
-n = Value at POR		'1' = Rit is set		'0' = Bit is cleared		x = Bit is unknown		
					arcu			
bit 15-11	Unimplement	ted: Read as ')'					
bit 15-11 bit 10-8	Unimplement	ted: Read as 't)' ck and Calend	ar Interrupt Pric	prity bits			
bit 15-11 bit 10-8	Unimplement RTCIP<2:0>:	ted: Read as '(Real-Time Clo)' ck and Calend	ar Interrupt Pric	prity bits			
bit 15-11 bit 10-8	Unimplement RTCIP<2:0>: 111 = Interrup	ted: Read as '(Real-Time Clo ot is Priority 7 (o' ck and Calend highest priority	ar Interrupt Pric	prity bits			
bit 15-11 bit 10-8	Unimplement RTCIP<2:0>: 111 = Interrup	ted: Read as 'o Real-Time Clo ot is Priority 7 (o' ck and Calend highest priority	ar Interrupt Pric	prity bits			
bit 15-11 bit 10-8	Unimplement RTCIP<2:0>: 111 = Interrup	ted: Read as 'd Real-Time Clo ot is Priority 7 (o' ck and Calend highest priority	ar Interrupt Pric	prity bits			
bit 15-11 bit 10-8	Unimplement RTCIP<2:0>: 111 = Interrup • • •	ted: Read as '(Real-Time Clo ot is Priority 7 ()	o' ck and Calend highest priority	ar Interrupt Pric	prity bits			
bit 15-11 bit 10-8	Unimplement RTCIP<2:0>: 111 = Interrup • • • 001 = Interrup 000 = Interrup	ted: Read as 'c Real-Time Clo ot is Priority 7 (ot is Priority 1 ot source is dis	_o , ck and Calend highest priority abled	ar Interrupt Pric	prity bits			
bit 15-11 bit 10-8 bit 7-0	Unimplement RTCIP<2:0>: 111 = Interrup 001 = Interrup 000 = Interrup Unimplement	ted: Read as '(Real-Time Clo ot is Priority 7 () ot is Priority 1 ot source is dis ted: Read as '(D' ck and Calend highest priority abled	ar Interrupt Pric	prity bits			

REGISTER 8-31: IPC18: INTERRUPT PRIORITY CONTROL REGISTER 18

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
	—	—	—	—	HLVDIP2	HLVDIP1	HLVDIP0
bit 7							bit 0
Laward							

Leg	end	
-----	-----	--

bit 2-0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

HLVDIP<2:0>: High/Low-Voltage Detect Interrupt Priority bits

- 111 = Interrupt is Priority 7 (highest priority interrupt)
- •

001 = Interrupt is Priority 1

000 = Interrupt source is disabled

10.5 Doze Mode

Generally, changing clock speed and invoking one of the power-saving modes are the preferred strategies for reducing power consumption. There may be circumstances, however, where this is not practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed may introduce communication errors, while using a power-saving mode may stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default.

It is also possible to use Doze mode to selectively reduce power consumption in event driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption. Meanwhile, the CPU Idles, waiting for something to invoke an interrupt routine. Enabling the automatic return to full-speed CPU operation on interrupts is enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

10.6 Selective Peripheral Module Control

Idle and Doze modes allow users to substantially reduce power consumption by slowing or stopping the CPU clock. Even so, peripheral modules still remain clocked, and thus, consume power. There may be cases where the application needs what these modes do not provide: the allocation of power resources to CPU processing with minimal power consumption from the peripherals.

PIC24F devices address this requirement by allowing peripheral modules to be selectively disabled, reducing or eliminating their power consumption. This can be done with two control bits:

- The Peripheral Enable bit, generically named, "XXXEN", located in the module's main control SFR.
- The Peripheral Module Disable (PMD) bit, generically named, "XXXMD", located in one of the PMDx Control registers.

Both bits have similar functions in enabling or disabling its associated module. Setting the PMDx bits for a module, disables all clock sources to that module, reducing its power consumption to an absolute minimum. In this state, the control and status registers associated with the peripheral will also be disabled, so writes to those registers will have no effect, and read values will be invalid. Many peripheral modules have a corresponding PMDx bit.

In contrast, disabling a module by clearing its XXXEN bit, disables its functionality, but leaves its registers available to be read and written to. Power consumption is reduced, but not by as much as when the PMDx bits are used. Most peripheral modules have an enable bit; exceptions include capture, compare and RTCC.

To achieve more selective power savings, peripheral modules can also be selectively disabled when the device enters Idle mode. This is done through the control bit of the generic name format, "XXXIDL". By default, all modules that can operate during Idle mode will do so. Using the disable on Idle feature disables the module while in Idle mode, allowing further reduction of power consumption during Idle mode, enhancing power savings for extremely critical power applications.

11.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORT, LAT and TRIS registers for data control, each port pin can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The maximum open-drain voltage allowed is the same as the maximum VIH specification.

11.2 Configuring Analog Port Pins

The use of the ANSx and TRISx registers controls the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRISx bit set (input). If the TRISx bit is cleared (output), the digital output level (VOH or VOL) will be converted.

When reading the PORTx register, all pins configured as analog input channels will read as cleared (a low level). Analog levels on any pin that is defined as a digital input (including the ANx pins) may cause the input buffer to consume current that exceeds the device specifications.

11.2.1 ANALOG SELECTION REGISTER

I/O pins with shared analog functionality, such as A/D inputs and comparator inputs, must have their digital inputs shut off when analog functionality is used. Note that analog functionality includes an analog voltage being applied to the pin externally.

To allow for analog control, the ANSx registers are provided. There is one ANSx register for each port (ANSA, ANSB and ANSC). Within each ANSx register, there is a bit for each pin that shares analog functionality with the digital I/O functionality.

If a particular pin does not have an analog function, that bit is unimplemented. See Register 11-1 to Register 11-3 for implementation.

REGISTER 11-1: ANSA: PORTA ANALOG SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	ANSA4 ⁽¹⁾	ANSA3	ANSA2	ANSA1	ANSA0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable I	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			iown

bit 15-5 Unimplemented: Read as '0'

bit 4-0 ANSA<4:0>: Analog Select Control bits⁽¹⁾

1 = Digital input buffer is not active (use for analog input)

0 = Digital input buffer is active

Note 1: The ANSA4 bit is not available on 20-pin devices.

REGISTER 13-1: CCPxCON1L: CCPx CONTROL 1 LOW REGISTERS (CONTINUED)

- bit 3-0 MOD<3:0>: CCPx Mode Select bits
 - For CCSEL = 1 (Input Capture modes):
 - 1xxx = Reserved
 - 011x = Reserved
 - 0101 = Capture every 16th rising edge
 - 0100 = Capture every 4th rising edge
 - 0011 = Capture every rising and falling edge
 - 0010 = Capture every falling edge
 - 0001 = Capture every rising edge
 - 0000 = Capture every rising and falling edge (Edge Detect mode)
 - For CCSEL = 0 (Output Compare/Timer modes):
 - 1111 = External Input mode: Pulse generator is disabled, source is selected by ICS<2:0>
 - 1110 = Reserved
 - 110x = Reserved
 - 10xx = Reserved
 - 0111 = Variable Frequency Pulse mode
 - 0110 = Center-Aligned Pulse Compare mode, buffered
 - 0101 = Dual Edge Compare mode, buffered
 - 0100 = Dual Edge Compare mode
 - 0011 = 16-Bit/32-Bit Single Edge mode, toggle output on compare match
 - 0010 = 16-Bit/32-Bit Single Edge mode, drive output low on compare match
 - 0001 = 16-Bit/32-Bit Single Edge mode, drive output high on compare match
 - 0000 = 16-Bit/32-Bit Timer mode, output functions are disabled
- **Note 1:** Clock options are limited in some operating modes. See Table 13-1 for restrictions.

	11.0						
	0-0						
DEINSTINC	_	OCFEN()	OCEEN()	OCDEN()	OCCENT,	OCBEIN,	
DIL 15							DILO
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ICGSM1			AUXOUT1			ICS1	ICS0
bit 7	1000110		/10/10011	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1002	1001	bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	OENSYNC: C	output Enable S	Synchronizatio	n bit			
	1 = Update b	y output enable	e bits occurs or	n the next Time	Base Reset or	rollover	
	0 = Update b	y output enable	e bits occurs in	nmediately			
bit 14	Unimplemen	ted: Read as '	כי				
bit 13-8	OC <f:a>EN:</f:a>	Output Enable	/Steering Cont	rol bits ⁽¹⁾			N4 = :
	1 = OCx pin i 0 = OCx pin	s controlled by	the CCPX mod	ule and product the	ces an output o nin is available	ompare or PW	IVI signal nic or another
	periphera	I multiplexed o	n the pin	x module, me			gie of another
bit 7-6	ICGSM<1:0>	Input Capture	Gating Source	Mode Control	bits		
	11 = Reserve	d	-				
	10 = One-Sho	ot mode: Falling	g edge from ga	ting source dis	ables future ca	pture events (I	CDIS = 1)
	01 = One-Sho	ot mode: Rising	edge from ga	ting source ena	ables future cap	oture events (IC	DIS = 0
	level will	disable future	capture events	oni yaung sour			events, a low
bit 5	Unimplemen	ted: Read as ')'				
bit 4-3	AUXOUT<1:0	>: Auxiliary Ou	utput Signal on	Event Selectio	n bits		
	11 = Input ca	pture or output	compare even	t; no signal in T	Timer mode		
	10 = Signal o	utput is defined	by module op	erating mode (see Table 13-5)	
	01 = Time bas	se rollover eve	nt (all modes)				
hit 2.0		ut Captura Sa	urco Soloct bit				
bit 2-0	111 = Unuse	d		>			
	110 = CLC2	output					
	101 = CLC1	output					
	100 = Unuse	d					
	011 = Compa	arator 3 output					
	001 = Compa	arator 1 output					
	000 = Input C	Capture x (ICx)	I/O pin				

REGISTER 13-4: CCPxCON2H: CCPx CONTROL 2 HIGH REGISTERS

Note 1: OCFEN through OCBEN (bits<13:9>) are implemented in MCCPx modules only.

16.2.4 RTCC CONTROL REGISTERS

REGISTER 16-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾

R/W-0	U-0	R/W-0	R-0 HSC	R-0 HSC	R/W-0	R/W-0	R/W-0
RTCEN ⁽²⁾	_	RTCWREN	RTCSYNC	HALFSEC ⁽³⁾	RTCOE	RTCPTR1	RTCPTR0
bit 15							bit 8
							J
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0
bit 7							bit 0
Legend:		HSC = Hardw	are Settable/C	learable bit			
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
L:1 4 F		C Enchla hit(2)					
DIL 15	1 = RTCC m		d				
	0 = RTCC m	odule is disable	ed				
bit 14	Unimplemen	ted: Read as 'd	כי				
bit 13	RTCWREN: F	RTCC Value Re	egisters Write E	Enable bit			
	1 = RTCVAL	H and RTCVAL	L registers car	n be written to b	y the user		
	0 = RTCVALI	H and RTCVAL	L registers are	locked out from	n being writter	n to by the user	
bit 12	RTCSYNC: R	TCC Value Re	gisters Read S	Synchronization	bit		
	1 = RTCVALI	H, RTCVALL ar in an invalid da	nd ALCFGRPT	registers can c	hange while ro	eading due to a	rollover ripple
	can be as	ssumed to be v	alid.		twice and rest		
	0 = RTCVAL	H, RTCVALL or	ALCFGRPT r	egisters can be	read without of	concern over a	rollover ripple
bit 11	HALFSEC: H	alf Second Stat	tus bit ⁽³⁾				
	1 = Second h	alf period of a	second				
	0 = First half	period of a sec	cond				
bit 10		C Output Enab	ble bit				
	1 = RTCC out = 0 = RTCC out = 0 = RTCC out = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =	itput is enabled	1				
bit 9-8	RTCPTR<1:0	>: RTCC Value	e Register Wind	dow Pointer bits	6		
	Points to the c	corresponding F	RTCC Value reg	gisters when rea	ading the RTC	ALH and RTC	ALL registers.
		<1:0> value dec	crements on ev	very read or write	e of RTCVALH	until it reaches	.00.
	$\frac{RICVAL < 15:2}{0.0} = MINUTE$	<u>3>:</u> :S					
	01 = WEEKD	AY					
	10 = MONTH						
	11 = Reserve	d					
	$\frac{\text{RICVAL} < 7:0}{0.0} = \text{SECON}$	<u>>:</u> DS					
	01 = HOURS						
	10 = DAY						
	11 = YEAR						

Note 1: The RCFGCAL register is only affected by a POR.

- 2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
- 3: This bit is read-only; it is cleared to '0' on a write to the lower half of the MINSEC register.

REGISTER 17-3: CLCxSEL: CLCx INPUT MUX SELECT REGISTER (CONTINUED)

- bit 6-4 DS2<2:0>: Data Selection MUX 2 Signal Selection bits
 - 111 = MCCP2 Compare Event Flag (CCP2IF)
 - 110 = MCCP1 Compare Event Flag (CCP1IF)
 - 101 = Digital logic low
 - 100 = A/D end of conversion event
 - For CLC1:
 - 011 = UART1 TX
 - 010 = Comparator 1 output
 - 001 = CLC2 output
 - 000 = CLCINB I/O pin
 - For CLC2:
 - 011 = UART2 TX
 - 010 = Comparator 1 output
 - 001 = CLC1 output
 - 000 = CLCINB I/O pin
- bit 3 Unimplemented: Read as '0'
- bit 2-0 DS1<2:0>: Data Selection MUX 1 Signal Selection bits
 - 111 = SCCP5 Compare Event Flag (CCP5IF)
 - 110 = SCCP4 Compare Event Flag (CCP4IF)
 - 101 = Digital logic low
 - 100 = 8 MHz FRC clock source
 - 011 = LPRC clock source
 - 010 = SOSC clock source
 - 001 = System clock (TCY)
 - 000 = CLCINA I/O pin

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CH0NB	2 CH0NB1	CH0NB0	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0	
bit 15							bit 8	
	D/M/ O	D/M/ O	D/M/ 0	DW/ 0				
	2 CHONA1							
bit 7	2 CHUNAT	CHUNAU	0110074	CHUSAS	CHUSAZ	CHUSAT	bit 0	
Sit							Site	
Legend:								
R = Read	able bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown	
bit 15-13	CH0NB<2:0> 111 = AN6 ⁽¹⁾ 110 = AN5 ⁽²⁾ 101 = AN4 100 = AN3 011 = AN2 010 = AN1 001 = AN0 000 = AVss	: Sample B Ch	annel 0 Negat	ive Input Select	bits			
<pre>010 = AN1 001 = AN0 000 = AVss bit 12-8 CH0SB<4:0>: S/H Amplifier Positive Input Select for MUX B Multiplexer Setting bits 11111 = Unimplemented, do not use 11110 = AVpof³ 11100 = AVpsf³ 11101 = AVssf³ 11101 = Lower guardband rail (0.785 * VDD) 11011 = Lower guardband rail (0.785 * VDD) 11010 = Internal Band Gap Reference (VBs)⁽³⁾ 11000-11001 = Unimplemented, do not use 10001 = No channels are connected, all inputs are floating (used for CTMU) 10111 = No channels are connected, all inputs are floating (used for CTMU) 10110 = No channels are connected, all inputs are floating (used for CTMU temperature sensor input does not require the corresponding CTMEN22 (AD1CTMENH<6>) bit) 10101 = Channel 0 positive input is AN21 10100 = Channel 0 positive input is AN19 10010 = Channel 0 positive input is AN19 10011 = Channel 0 positive input is AN19 10010 = Channel 0 positive input is AN19 10011 = Channel 0 positive input is AN17⁽²⁾</pre>								
Note 1: 2:	This is implement This is implement	ed on 44-pin de ed on 28-pin a	evices only. nd 44-pin devid	ces only.				

3: The band gap value used for this input is 2x or 4x the internal VBG, which is selected when PVCFG<1:0> = 1x.

REGISTER 19-5: AD1CHS: A/D SAMPLE SELECT REGISTER

DS30003030B-page 218

REGISTER 19-8: AD1CSSH: A/D INPUT SCAN SELECT REGISTER (HIGH WORD)	(1)
--	-----

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
_	CSS30	CSS29	CSS28	CSS27	CSS26	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS23	CSS22	CSS21	CSS20 ⁽²⁾	CSS19 ⁽²⁾	CSS18	CSS17	CSS16
bit 7							bit 0

Legend:							
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

'0'	
	'0'

- bit 14-10CSS<30:26>: A/D Input Scan Selection bits1 = Includes the corresponding channel for input scan0 = Skips the channel for input scanbit 9-8Unimplemented: Read as '0'bit 7-0CSS<23:16>: A/D Input Scan Selection bits⁽²⁾1 = Includes the corresponding channel for input scan0 = Skips the channel for input scan
- **Note 1:** Unimplemented channels are read as '0'. Do not select unimplemented channels for sampling as indeterminate results may be produced.
 - 2: The CSS<20:19> bits are not implemented in 20-pin devices.

REGISTER 19-9: AD1CSSL: A/D INPUT SCAN SELECT REGISTER (LOW WORD)⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8 ^(2,3)
bit 15	•		•	•			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS7 ^(2,3)	CSS6 ^(2,3)	CSS5 ⁽²⁾	CSS4	CSS3	CSS2	CSS1	CSS0
bit 7	•						bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 CSS<15:0>: A/D Input Scan Selection bits^(2,3)

1 = Includes the corresponding ANx input for scan

- 0 = Skips the channel for input scan
- **Note 1:** Unimplemented channels are read as '0'. Do not select unimplemented channels for sampling as indeterminate results may be produced.
 - 2: The CSS<8:5> bits are not implemented in 20-pin devices.
 - 3: The CSS<8:6> bits are not implemented in 28-pin devices.

REGISTER 23-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	_	_		_		—	—	
bit 15		•					bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CVREN	CVROE	CVRSS	CVR4	CVR3	CVR2	CVR1	CVR0	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown	
bit 15-8	Unimplemented: Read as '0'							
bit 7	CVREN: Comparator Voltage Reference Enable bit							
	1 = CVREF circuit is powered on							
		rcuit is powered	d down					
bit 6	CVROE: Com	parator VREF (Dutput Enable	Dit				
	1 = CVREF VC 0 = CVREF VC	oltage level is o oltage level is d	utput on the C isconnected fr	VREF pin om the CVREF i	nin			
bit 5	CVRSS: Com	inarator VREE S	Source Selectic	on bit	pin			
bit o	1 = Compara	tor reference s	ource. CVRSRO	C = VREF+ – VR	EF-			
	0 = Comparator reference source, CVRsRc = AVDD – AVss							
bit 4-0	CVR<4:0>: C	omparator VRE	F Value Select	ion $0 \le CVR < 4$:0> ≤ 31 bits			
	When CVRSS	<u>S = 1:</u>						
	$CVREF = (VREF-) + (CVR<4:0>/32) \cdot (VREF+ - VREF-)$							
	$\frac{When CVRSS = 0}{CVRSS = (0)/R < 4.0 > (22) + (0)/R = -0.00}$							
$CVREF = (AVSS) + (CVR < 4:0 > 32) \cdot (AVDD = AVSS)$								