

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 19x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08km102-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-12: SCCP5 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CCP5CON1L ⁽¹⁾	1D0h	CCPON	—	CCPSIDL	r	TMRSYNC	CLKSEL2	CLKSEL1	CLKSEL0	TMRPS1	TMRPS0	T32	CCSEL	MOD3	MOD2	MOD1	MOD0	0000
CCP5CON1H ⁽¹⁾	1D2h	OPSSRC	RTRGEN	_	—	IOPS3	IOPS2	IOPS1	IOPS0	TRIGEN	ONESHOT	ALTSYNC	SYNC4	SYNC3	SYNC2	SYNC1	SYNC0	0000
CCP5CON2L ⁽¹⁾	1D4h	PWMRSEN	ASDGM	_	SSDG	_	_	_	_	ASDG7	ASDG6	ASDG5	ASDG4	ASDG3	ASDG2	ASDG1	ASDG0	0000
CCP5CON2H ⁽¹⁾	1D6h	OENSYNC	_	_	_	_	_	_	OCAEN	ICGSM1	ICGSM0	_	AUXOUT1	AUXOUT0	ICSEL2	ICSEL1	ICSEL0	0100
CCP5CON3H ⁽¹⁾	1DAh	OETRIG	OSCNT2	OSCNT1	OSCNT0	—	—	—	—	—	_	POLACE	—	PSSACE1	PSSACE0	—	—	0000
CCP5STATL ⁽¹⁾	1DCh	—	—	_	_	—	—	—	—	CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE	0000
CCP5TMRL ⁽¹⁾	1E0h							SCCP5	5 Time Base	Register Lo	w Word							0000
CCP5TMRH ⁽¹⁾	1E2h							SCCP5	5 Time Base	Register Hi	gh Word							0000
CCP5PRL ⁽¹⁾	1E4h							SCCP5 Tir	me Base Pe	riod Registe	r Low Word							FFFF
CCP5PRH ⁽¹⁾	1E6h							SCCP5 Tin	ne Base Pei	riod Registe	r High Word							FFFF
CCP5RAL ⁽¹⁾	1E8h							Out	put Compar	e 5 Data Wo	ord A							0000
CCP5RBL ⁽¹⁾	1ECh							Out	put Compar	e 5 Data Wo	ord B							0000
CCP5BUFL ⁽¹⁾	1F0h							Input C	apture 5 Da	ata Buffer Lo	w Word			OG4 ASDG3 ASDG2 ASDG1 ASDG1 OUT1 AUXOUT0 ICSEL2 ICSEL1 IC - PSSACE1 PSSACE0 ICDIS EVT SCEVT ICDIS ICOV IC				0000
CCP5BUFH ⁽¹⁾	1F2h							Input C	apture 5 Da	ta Buffer Hi	gh Word							0000

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition, r = reserved.

Note 1: These registers are available only on PIC24F(V)16KM2XX devices.

TABLE 4-15: UART1 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	220h	UARTEN		USIDL	IREN	RTSMD		UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U1STA	222h	UTXISEL1	UTXINV	UTXISEL0		UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	224h	_	_	_		_	_	_				UART1 Tra	ansmit Regis	ster				xxxx
U1RXREG	226h	_	_	_		_	_	_				UART1 Re	eceive Regis	ster				0000
U1BRG	228h							E	Baud Rate G	enerator Pres	caler							0000

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved.

TABLE 4-16: UART2 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U2MODE ⁽¹⁾	230h	UARTEN	_	USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U2STA ⁽¹⁾	232h	UTXISEL1	UTXINV	UTXISEL0	-	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG ⁽¹⁾	234h	_	_	_	—	_	_	_				UART2 Tra	nsmit Regis	ster				xxxx
U2RXREG ⁽¹⁾	236h	_	_	_	—	_	_	_				UART2 Re	ceive Regis	ter				0000
U2BRG ⁽¹⁾	238h							I	Baud Rate G	enerator Pres	scaler							0000

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved.

Note 1: These registers are available only on PIC24F(V)16KM2XX devices.

TABLE 4-21: PORTA REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11 ^(4,5)	Bit 10 ^(4,5)	Bit 9 ^(4,5)	Bit 8 ^(4,5)	Bit 7 ⁽⁴⁾	Bit 6 ⁽³⁾	Bit 5 ⁽²⁾	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	2C0h	_	—	_	_	TRISA11	TRISA10	TRISA9	TRISA8	TRISA7	TRISA6	_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	0FDF ⁽¹⁾
PORTA	2C2h	_	_	_	_	RA11	RA10	RA9	RA8	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx
LATA	2C4h	_	_	_	_	LATA11	LATA10	LATA9	LATA8	LATA7	LATA6		LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
ODCA	2C6h	_	_	_	-	ODA11	ODA10	ODA9	ODA8	ODA7	ODA6	_	ODA4	ODA3	ODA2	ODA1	ODA0	0000

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved.

Note 1: Reset value depends on the device type; the PIC24F16KM204 value is shown.

2: These bits are only available when MCLRE (FPOR<7>) = 0.

3: These bits are not implemented in FV devices.

4: These bits are not implemented in 20-pin devices.

5: These bits are not implemented in 28-pin devices.

TABLE 4-22: PORTB REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11 ⁽²⁾	Bit 10 ⁽²⁾	Bit 9	Bit 8	Bit 7	Bit 6 ⁽²⁾	Bit 5 ⁽²⁾	Bit 4	Bit 3 ⁽²⁾	Bit 2	Bit 1	Bit 0	All Resets
TRISB	2C8h	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	_{FFFF} (1)
PORTB	2CAh	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	2CCh	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	2CEh	ODB15	ODB14	ODB13	ODB12	ODB11	ODB10	ODB9	ODB8	ODB7	ODB6	ODB5	ODB4	ODB3	ODB2	ODB1	ODB0	0000

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved.

Note 1: Reset value depends on the device type; the PIC24F16KM204 value is shown.

2: These bits are not implemented in 20-pin devices.

TABLE 4-23: PORTC REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9 ^(2,3)	Bit 8 ^(2,3)	Bit 7 ^(2,3)	Bit 6 ^(2,3)	Bit 5 ^(2,3)	Bit 4 ^(2,3)	Bit 3 ^(2,3)	Bit 2 ^(2,3)	Bit 1 ^(2,3)	Bit 0 ^(2,3)	All Resets
TRISC	2D0h	—	_		_		_	TRISC9	TRISC8	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	03FF ⁽¹⁾
PORTC	2D2h	_	_	_		—		RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx
LATTC	2D4h	_	_	_	_	_	_	LATC9	LATC8	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xxxx
ODCC	2D6h	_	_	_	_	_	_	ODC9	ODC8	ODC7	ODC6	ODC5	ODC4	ODC3	ODC2	ODC1	ODC0	0000

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition, r = reserved.

Note 1: Reset value depends on the device type; the PIC24F16KM204 value is shown.

2: These bits are not implemented in 20-pin devices.

3: These bits are not implemented in 28-pin devices.

8.3 Interrupt Control and Status Registers

The PIC24FV16KM204 family of devices implements a total of 33 registers for the interrupt controller:

- INTCON1
- INTCON2
- IFS0 through IFS6
- · IEC0 through IEC6
- IPC0 through IPC7, IPC10, IPC12, IPC15, IPC16, IPC18 through IPC20 and IPC24
- INTTREG

Global Interrupt Enable (GIE) control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit, as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the AIVT.

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals, or external signal, and is cleared via software.

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

The IPCx registers are used to set the Interrupt Priority Level (IPL) for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels. The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into the Vector Number (VECNUM<6:0>) and the Interrupt Level (ILR<3:0>) bit fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence. For example, the INT0 (External Interrupt 0) is depicted as having a vector number and a natural order priority of 0. The INT0IF status bit is found in IFS0<0>, the INT0IE enable bit in IEC0<0> and the INT0IP<2:0> priority bits are in the first position of IPC0 (IPC0<2:0>).

Although they are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. The ALU STATUS Register (SR) contains the IPL<2:0> bits (SR<7:5>). These indicate the current CPU Interrupt Priority Level. The user may change the current CPU Interrupt Priority Level by writing to the IPLx bits.

The CORCON register contains the IPL3 bit, which together with IPL<2:0>, also indicates the current CPU Interrupt Priority Level. IPL3 is a read-only bit so that the trap events cannot be masked by the user's software.

All Interrupt registers are described in Register 8-1 through Register 8-35, in the following sections.

R/W-0, HS DAC2IF bit 15 U-0 bit 7 Legend:							
DAC2IF bit 15 U-0 bit 7 Legend:	R/W-0, HS	R/W-0, HS	U-0	U-0	U-0	U-0	R/W-0, HS
bit 15 U-0 bit 7 Legend:	DAC1IF	CTMUIF	—	—	—	—	HLVDIF
U-0 — bit 7							bit 8
U-0 — bit 7 Legend:							
bit 7	U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	U-0
bit 7 Legend:		—	—	—	U2ERIF	U1ERIF	—
Legend:							bit 0
Legend:							
		HS = Hardwar	e Settable bit				
R = Readable b	oit	W = Writable I	Dit		nented bit, read		
-n = value at PC	JR	"1" = Bit is set		$0^{\circ} = Bit is clea$	ared	x = Bit is unkr	iown
bit 15		tal to Analog C	onvortor 2 Into	rrunt Eloa Stati	ue hit		
	JACZIF. Digit			Hupt Flag Statt			
)) = Interrupt r	equest has not	occurred				
bit 14 🛛 🛛	DAC1IF: Digit	tal-to-Analog C	onverter 1 Inte	rrupt Flag Stati	us bit		
1	L = Interrupt r	equest has occ	urred				
C) = Interrupt r	equest has not	occurred				
bit 13 C	CTMUIF: CTM	MU Interrupt Fla	ag Status bit				
1	L = Interrupt r	equest has occ	urred				
bit 12-9		ted: Read as '(,				
bit 8	H VDIF · High	/I ow-Voltage D	,)etect Interrunt	Flag Status bi	t		
1	= Interrupt r	equest has occ	urred		·		
-	= Interrupt r	equest has not	occurred				
bit 7-3 l	Jnimplemen	ted: Read as 'o)'				
bit 2 L	J2ERIF: UAF	RT2 Error Interro	upt Flag Status	s bit			
1	L = Interrupt r	equest has occ	urred				
0) = Interrupt r	equest has not	occurred				
bit 1 L	J1ERIF: UAF	RI1 Error Interro	upt Flag Status	bit			
] (Interrupt r Interrupt r	equest has occ	urred				
bit 0 l		Equest has not	occurred				

REGISTER 8-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	DAC2IP2	DAC2IP1	DAC2IP0		DAC1IP2	DAC1IP1	DAC1IP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
	CTMUIP2	CTMUIP1	CTMUIP0		<u> </u>		
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	כי				
bit 14-12	DAC2IP<2:0>	Digital-to-Ana	alog Converter	2 Event Interr	upt Priority bits		
	111 = Interru	pt is Priority 7(highest priority	/ interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 11	Unimplemen	ted: Read as ')'				
bit 10-8	DAC1IP<2:0>	>: Digital-to-Ana	alog Converter	1 Event Interr	upt Priority bits		
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 7	Unimplemen	ted: Read as '	כ'				
bit 6-4	CTMUIP<2:0	>: CTMU Interr	upt Priority bit	S			
	111 = Interru	pt is Priority 7(highest priority	/ interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 3-0	Unimplemen	ted: Read as '	כ'				

REGISTER 8-32: IPC19: INTERRUPT PRIORITY CONTROL REGISTER 19

9.0 OSCILLATOR CONFIGURATION

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on oscillator configuration, refer to the *"PIC24F Family Reference Manual"*, **"Oscillator with 500 kHz Low-Power FRC"** (DS39726).

The oscillator system for the PIC24FV16KM204 family of devices has the following features:

 A total of five external and internal oscillator options as clock sources, providing 11 different clock modes.

- On-chip 4x Phase Locked Loop (PLL) to boost internal operating frequency on select internal and external oscillator sources.
- Software-controllable switching between various clock sources.
- Software-controllable postscaler for selective clocking of CPU for system power savings.
- System frequency range declaration bits for External Clock (EC) mode. When using an EC source, the current consumption is reduced by setting the declaration bits to the expected frequency range.
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown.

A simplified diagram of the oscillator system is shown in Figure 9-1.

FIGURE 9-1: PIC24FXXXXX FAMILY CLOCK DIAGRAM

REGISTER 10-1: ULPWCON: ULPWU CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0
ULPEN	_	ULPSIDL	_	—	—	—	ULPSINK
bit 15				-			bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—		—	—	—	—
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable b	pit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	ULPEN: ULF	PWU Module En	able bit				
	1 = Module is	s enabled					
	0 = Module is	s disabled					
bit 14	Unimplemer	nted: Read as '	י)				
bit 13	ULPSIDL: U	LPWU Stop in Id	dle Select bit				
	1 = Discontin	ues module ope	eration when the	e device enters	Idle mode		
	0 = Continue	s module opera	tion in Idle mod	e			
bit 12-9	Unimplemer	nted: Read as ')'				
bit 8	ULPSINK: U	LPWU Current	Sink Enable bit				
	1 = Current s	sink is enabled					
	0 = Current s	sink is disabled					
bit 7-0	Unimplemer	nted: Read as 'o)'				

13.4 Input Capture Mode

Input Capture mode is used to capture a timer value from an independent timer base upon an event on an input pin or other internal Trigger source. The input capture features are useful in applications requiring frequency (time period) and pulse measurement. Figure 13-6 depicts a simplified block diagram of Input Capture mode. Input Capture mode uses a dedicated 16/32-bit, synchronous, up counting timer for the capture function. The timer value is written to the FIFO when a capture event occurs. The internal value may be read (with a synchronization delay) using the CCPxTMRH/L register.

To use Input Capture mode, the CCSEL bit (CCPxCON1L<4>) must be set. The T32 and the MOD<3:0> bits are used to select the proper Capture mode, as shown in Table 13-4.

MOD<3:0> (CCPxCON1L<3:0>)	T32 (CCPxCON1L<5>)	Operating Mode
0000	0	Edge Detect (16-bit capture)
0000	1	Edge Detect (32-bit capture)
0001	0	Every Rising (16-bit capture)
0001	1	Every Rising (32-bit capture)
0010	0	Every Falling (16-bit capture)
0010	1	Every Falling (32-bit capture)
0011	0	Every Rise/Fall (16-bit capture)
0011	1	Every Rise/Fall (32-bit capture)
0100	0	Every 4th Rising (16-bit capture)
0100	1	Every 4th Rising (32-bit capture)
0101	0	Every 16th Rising (16-bit capture)
0101	1	Every 16th Rising (32-bit capture)

TABLE 13-4: INPUT CAPTURE MODES

REGISTER 14-10: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

11.0	11.0	11.0	11.0				
0-0	0-0	0-0	0-0				
	—	—	—	SDO2DIS()	SCK2DIS()	SDO1DIS	SCK1DIS
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	_		—			—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimplem	nented bit, read	as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	nown
bit 15-12	Unimplement	ted: Read as 'd)'				
bit 11	SDO2DIS: MS	SSP2 SDO2 Pi	n Disable bit ⁽¹⁾				
	1 = The SPI	output data (SD	O2) of MSSP2	2 to the pin is di	isabled		
	0 = The SPI	output data (SE	O2) of MSSP2	2 is output to the	e pin		
bit 10	SCK2DIS: MS	SSP2 SCK2 Pir	n Disable bit ⁽¹⁾				
	1 = The SPI	clock (SCK2) o	f MSSP2 to the	e pin is disabled	ł		
	0 = The SPI	clock (SCK2) o	f MSSP2 is out	tput to the pin			
bit 9	SDO1DIS: MS	SSP1 SDO1 Pi	n Disable bit				
	1 = The SPI	output data (SD	O1) of MSSP1	1 to the pin is di	isabled		
	0 = The SPI	output data (SD	O1) of MSSP1	1 is output to the	e pin		
bit 8	SCK1DIS: MS	SSP1 SCK1 Pir	n Disable bit				
	1 = The SPI	clock (SCK1) o	f MSSP1 to the	e pin is disabled	ł		
	0 = The SPI	clock (SCK1) o	f MSSP1 is out	tput to the pin			
bit 7-0	Unimplement	ted: Read as 'd)'				

Note 1: These bits are implemented only on PIC24FXXKM20X devices.

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0
bit 15							bit 8
U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 7					•		bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15	Unimplement	ed: Read as '0	,				
bit 14-12	MINTEN<2:0	Binary Code	d Decimal Valu	ue of Minute's T	ens Digit bits		
	Contains a va	lue from 0 to 5					
bit 11-8	MINONE<3:0	>: Binary Code	ed Decimal Val	ue of Minute's (Ones Digit bits		
	Contains a va	lue from 0 to 9					
bit 7	Unimplemen	ted: Read as '	כ'				
bit 6-4	SECTEN<2:0	>: Binary Code	ed Decimal Val	ue of Second's	Tens Digit bits		
	Contains a va	lue from 0 to 5					
bit 3-0	SECONE<3:0	>: Binary Code	ed Decimal Val	lue of Second's	Ones Digit bits	6	
	Contains a va	lue from 0 to 9					

REGISTER 16-10: ALMINSEC: ALARM MINUTES AND SECONDS VALUE REGISTER

REGISTER 17-1: CLCxCONL: CLCx CONTROL REGISTER (LOW) (CONTINUED)

bit 2-0 MODE<2:0>: CLCx Mode bits

- 111 = Cell is a 1-input transparent latch with S and R
- 110 = Cell is a JK flip-flop with R
- 101 = Cell is a 2-input D flip-flop with R
- 100 = Cell is a 1-input D flip-flop with S and R
- 011 = Cell is an SR latch
- 010 = Cell is a 4-input AND
- 001 = Cell is an OR-XOR
- 000 = Cell is a AND-OR

REGISTER 17-2: CLCxCONH: CLCx CONTROL REGISTER (HIGH)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15						bit 8	

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	—	G4POL	G3POL	G2POL	G1POL
bit 7 bit 0							

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4	Unimplemented: Read as '0'
bit 3	G4POL: Gate 4 Polarity Control bit
	1 = The output of Channel 4 logic is inverted when applied to the logic cell0 = The output of Channel 4 logic is not inverted
bit 2	G3POL: Gate 3 Polarity Control bit
	1 = The output of Channel 3 logic is inverted when applied to the logic cell0 = The output of Channel 3 logic is not inverted
bit 1	G2POL: Gate 2 Polarity Control bit
	1 = The output of Channel 2 logic is inverted when applied to the logic cell0 = The output of Channel 2 logic is not inverted
bit 0	G1POL: Gate 1 Polarity Control bit
	 1 = The output of Channel 1 logic is inverted when applied to the logic cell 0 = The output of Channel 1 logic is not inverted

REGISTER 19-5: AD1CHS: A/D SAMPLE SELECT REGISTER (CONTINUED)

- bit 7-5 **CH0NA<2:0>:** Sample A Channel 0 Negative Input Select bits The same definitions as for CHONB<2:0>.
- bit 4-0 **CH0SA<4:0>:** Sample A Channel 0 Positive Input Select bits The same definitions as for CHONA<4:0>.
- Note 1: This is implemented on 44-pin devices only.
 - 2: This is implemented on 28-pin and 44-pin devices only.
 - 3: The band gap value used for this input is 2x or 4x the internal VBG, which is selected when PVCFG<1:0> = 1x.

REGISTER 19-6: AD1CHITH: A/D SCAN COMPARE HIT REGISTER (HIGH WORD)⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CHH23	CHH22	CHH21	CHH20 ⁽²⁾	CHH19 ⁽²⁾	CHH18	CHH17	CHH16
bit 7							bit 0

Legend:				
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8 **Unimplemented:** Read as '0'.

bit 7-0 CHH<23:16>: A/D Compare Hit bits⁽²⁾

If CM<1:0> = 11:

1 = A/D Result Buffer x has been written with data or a match has occurred

0 = A/D Result Buffer x has not been written with data

For All Other Values of CM<1:0>:

- 1 = A match has occurred on A/D Result Channel x
- 0 = No match has occurred on A/D Result Channel x

Note 1: Unimplemented channels are read as '0'.

2: The CHH<20:19> bits are not implemented in 20-pin devices.

REGISTER 19-8: AD1CSSH: A/D INPUT SCAN SELECT REGISTER (HIGH WORD)	(1)
--	-----

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
_	CSS30	CSS29	CSS28	CSS27	CSS26	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS23	CSS22	CSS21	CSS20 ⁽²⁾	CSS19 ⁽²⁾	CSS18	CSS17	CSS16
bit 7							bit 0

Legend:					
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

'0'	
	'0'

- bit 14-10CSS<30:26>: A/D Input Scan Selection bits1 = Includes the corresponding channel for input scan0 = Skips the channel for input scanbit 9-8Unimplemented: Read as '0'bit 7-0CSS<23:16>: A/D Input Scan Selection bits⁽²⁾1 = Includes the corresponding channel for input scan0 = Skips the channel for input scan
- **Note 1:** Unimplemented channels are read as '0'. Do not select unimplemented channels for sampling as indeterminate results may be produced.
 - 2: The CSS<20:19> bits are not implemented in 20-pin devices.

REGISTER 19-9: AD1CSSL: A/D INPUT SCAN SELECT REGISTER (LOW WORD)⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8 ^(2,3)
bit 15	•		•	•			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS7 ^(2,3)	CSS6 ^(2,3)	CSS5 ⁽²⁾	CSS4	CSS3	CSS2	CSS1	CSS0
bit 7	•						bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 CSS<15:0>: A/D Input Scan Selection bits^(2,3)

1 = Includes the corresponding ANx input for scan

- 0 = Skips the channel for input scan
- **Note 1:** Unimplemented channels are read as '0'. Do not select unimplemented channels for sampling as indeterminate results may be produced.
 - 2: The CSS<8:5> bits are not implemented in 20-pin devices.
 - 3: The CSS<8:6> bits are not implemented in 28-pin devices.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CTMUEN		CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ITRIM5	M5 ITRIM4 ITRIM3 ITRIM2 ITRIM1 ITRIM0						IRNG0
bit 7							bit 0
Legend:						(0)	
R = Readable	e bit	W = Writable t	Dit	U = Unimpler	mented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		0' = Bit is cle	eared	x = Bit is unkr	iown
1.11.45							
DIT 15		I MU Enable bit					
	0 = Module is	s disabled					
bit 14	Unimplemen	ted: Read as '0	,				
bit 13	CTMUSIDL:	CTMU Stop in Id	dle Mode bit				
	1 = Discontir	nues module op	eration when o	device enters le	dle mode		
	0 = Continue	es module opera	tion in Idle mo	ode			
bit 12	TGEN: Time	Generation Ena	ble bit				
	1 = Enables0 = Disables	edge delay gen edge delay ger	eration eration				
bit 11	EDGEN: Edg	e Enable bit					
	1 = Edges ar 0 = Edges ar	re not blocked re blocked					
bit 10	EDGSEQEN:	: Edge Sequenc	e Enable bit				
	1 = Edge 1 e 0 = No edge	event must occu sequence is ne	r before Edge eded	2 event can oo	ccur		
bit 9	IDISSEN: An	alog Current So	urce Control b	oit			
	1 = Analog c	urrent source of	utput is ground	ded			
h:t 0			utput is not gro	ounded			
DIL 8		wu ingger con	troi dit 1				
	0 = Trigger o	output is disable	d				
bit 7-2	ITRIM<5:0>:	Current Source	Trim bits				
	011111 = M a	aximum positive	change from	nominal currer	nt		
	011110						
	•						
	•						
	000001 = Mi	nimum positive	change from r	nominal current	t		
	000000 = Nc	ominal current of	utput specified	by IRNG<1:0	> at		
	•	ninum negative	change nom		it.		
	•						
	•						
	100010 = Ma	aximum negative	e change from	nominal curre	nt		
					-		

REGISTER 24-1: CTMUCON1L: CTMU CONTROL 1 LOW REGISTER

DC CHA	RACTER	RISTICS	Standard Operatin	l Operatin g tempera	g Conditio ture	ons: 1.8 2.0 -40 -40	V to 3.6V (PIC24F16KM204) V to 5.5V (PIC24FV16KM204) $^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $^{\circ}C \le TA \le +125^{\circ}C$ for Extended
Param No.	Sym	Characteristic	Min	Тур ⁽¹⁾	Мах	Conditions	
		Data EEPROM Memory					
D140	Epd	Cell Endurance	100,000	—	—	E/W	
D141	Vprd	VDD for Read	VMIN	—	3.6	V	Vмın = Minimum operating voltage
D143A	Tiwd	Self-Timed Write Cycle Time	—	4	—	ms	
D143B	TREF	Number of Total Write/Erase Cycles Before Refresh	_	10M	_	E/W	
D144	TRETDD	Characteristic Retention	40	—	—	Year	Provided no other specifications are violated
D145	Iddpd	Supply Current During Programming	—	7	—	mA	

TABLE 27-12: DC CHARACTERISTICS: DATA EEPROM MEMORY

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

TABLE 27-13: DC CHARACTERISTICS: COMPARATOR

DC CHARACTERISTICS			Standard O	perating Co	nditions: 1.8\ 2.0\ -40° -40°	/ to 3.6V (F / to 5.5V (F C ≤ TA ≤ +8 C ≤ TA ≤ +?	PIC24F16KM204) PIC24FV16KM204) 85°C for Industrial 125°C for Extended
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
D300	VIOFF	Input Offset Voltage		20	40	mV	
D301	VICM	Input Common-Mode Voltage	0	—	Vdd	V	
D302	CMRR	Common-Mode Rejection Ratio	55	_		dB	

TABLE 27-14: DC CHARACTERISTICS: COMPARATOR VOLTAGE REFERENCE

DC CHARACTERISTICS			Standard	Operating temperatu	Conditions: re	1.8V to 3.6 2.0V to 5.5 -40°C \leq TA -40°C \leq TA	5V (PIC24F16KM204) 5V (PIC24FV16KM204) $A \le +85^{\circ}$ C for Industrial $A \le +125^{\circ}$ C for Extended
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
VRD310	CVRES	Resolution	_		VDD/32	LSb	
VRD311	CVRAA	Absolute Accuracy	—	—	1	LSb	AVDD = 3.3V-5.5V
VRD312	CVRur	Unit Resistor Value (R)	—	2k		Ω	

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Comments
300	TRESP	Response Time ^{*(1)}	_	150	400	ns	
301	Тмс2оv	Comparator Mode Change to Output Valid [*]	—	—	10	μS	

TABLE 27-26: COMPARATOR TIMING REQUIREMENTS

Parameters are characterized but not tested.

*

Note 1: Response time is measured with one comparator input at (VDD – 1.5)/2, while the other input transitions from Vss to VDD.

TABLE 27-27: COMPARATOR VOLTAGE REFERENCE SETTLING TIME SPECIFICATIONS

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Comments
VR310	TSET	Settling Time ⁽¹⁾			10	μS	

Note 1: Settling time is measured while CVRSS = 1 and the CVR<3:0> bits transition from '0000' to '1111'.

FIGURE 27-10: CAPTURE/COMPARE/PWM TIMINGS (MCCPx, SCCPx MODULES)

TABLE 27-28: CAPTURE/COMPARE/PWM REQUIREMENTS (MCCPx, SCCPx MODULES)

Param No.	Symbol	Characteristic	Min	Max	Units	Conditions
50	TCLKL	CCPx Time Base Clock Source Low Time	TCY/2		ns	
51	ТсікН	CCPx Time Base Clock Source High Time	TCY/2		ns	
52	TCLK	CCPx Time Base Clock Source Period	Тсү		ns	
53	TccL	CCPx Capture or Gating Input Low Time	TCLK	—	ns	
54	ТссН	CCPx Capture or Gating Input High Time	TCLK	_	ns	
55	TCCP	CCPx Capture or Gating Input Period	2 * Tclk/N	—	ns	N = Prescale Value (1, 4 or 16)

TABLE 27-30: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)

Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions
73	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	35	—	ns	
74	TscH2dlL, TscL2dlL	Hold Time of SDIx Data Input to SCKx Edge	40	—	ns	
75	TDOR	SDOx Data Output Rise Time	—	25	ns	
76	TDOF	SDOx Data Output Fall Time	—	25	ns	
78	TscR	SCKx Output Rise Time (Master mode)	—	25	ns	
79	TscF	SCKx Output Fall Time (Master mode)	_	25	ns	
81	TDOV2scH, TDOV2scL	SDOx Data Output Setup to SCKx Edge	Тсү	—	ns	
	Fsck	SCKx Frequency	—	10	MHz	

48-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) - 6x6 mm Body [UQFN] With 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	0.40 BSC			
Optional Center Pad Width	W2			4.45
Optional Center Pad Length	T2			4.45
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X28)	X1			0.20
Contact Pad Length (X28)	Y1			0.80
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2153A