

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 19x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08km102t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with Data Memory Space Addressing and makes it possible to access data in the program memory space.

4.1.2 HARD MEMORY VECTORS

All PIC24F devices reserve the addresses between 00000h and 000200h for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user at 000000h with the actual address for the start of code at 000002h.

PIC24F devices also have two Interrupt Vector Tables, located from 000004h to 0000FFh, and 000104h to 0001FFh. These vector tables allow each of the many device interrupt sources to be handled by separate ISRs. **Section 8.1 "Interrupt Vector Table (IVT)**" discusses the Interrupt Vector Tables in more detail.

4.1.3 DATA EEPROM

In the PIC24FV16KM204 family, the data EEPROM is mapped to the top of the user program memory space, starting at address, 7FFE00, and expanding up to address, 7FFFF.

The data EEPROM is organized as 16-bit-wide memory and 256 words deep. This memory is accessed using Table Read and Write operations similar to the user code memory.

4.1.4 DEVICE CONFIGURATION WORDS

Table 4-1 provides the addresses of the device Configuration Words for the PIC24FV16KM204 family. Their location in the memory map is displayed in Figure 4-1.

Refer to **Section 25.1** "**Configuration Bits**" for more information on device Configuration Words.

TABLE 4-1: DEVICE CONFIGURATION WORDS FOR PIC24FXXXXX FAMILY DEVICES

Configuration Word	Configuration Word Addresses
FBS	F80000
FGS	F80004
FOSCSEL	F80006
FOSC	F80008
FWDT	F8000A
FPOR	F8000C
FICD	F8000E

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION msw most significant word least significant word PC Address (Isw Address) Address 16 8 Λ 23 000000h 000001h 00000000 0000000 000002h 000003h 000004h 00000000 000005h 0000000 000006h 000007h Instruction Width Program Memory Phantom' Byte (read as '0')

4.2 **Data Address Space**

The PIC24F core has a separate, 16-bit-wide data memory space, addressable as a single linear range. The Data Space is accessed using two Address Generation Units (AGUs), one each for read and write operations. The Data Space memory map is displayed in Figure 4-3.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the Data Space. This gives a Data Space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility (PSV) area (see Section 4.3.3 "Reading Data From Program Memory Using Program Space Visibility").

Depending on the particular device, PIC24FV16KM family devices implement either 512 or 1024 words of data memory. Should an EA point to a location outside of this area, an all zero word or byte will be returned.

FIGURE 4-3:

4.2.1 DATA SPACE WIDTH

The data organized memory space is in byte-addressable, 16-bit-wide blocks. Data is aligned in data memory and registers as 16-bit words, but all the Data Space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

DATA SPACE MEMORY MAP FOR PIC24FXXXXX FAMILY DEVICES⁽³⁾

TABLE 4-9: MCCP2 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CCP2CON1L	164h	CCPON	_	CCPSIDL	r	TMRSYNC	CLKSEL2	CLKSEL1	CLKSEL0	TMRPS1	TMRPS0	T32	CCSEL	MOD3	MOD2	MOD1	MOD0	0000
CCP2CON1H	166h	OPSSRC	RTRGEN	_	_	IOPS3	IOPS2	IOPS1	IOPS0	TRIGEN	ONESHOT	ALTSYNC	SYNC4	SYNC3	SYNC2	SYNC1	SYNC0	0000
CCP2CON2L	168h	PWMRSEN	ASDGM	_	SSDG	_	_	_	_	ASDG7	ASDG6	ASDG5	ASDG4	ASDG3	ASDG2	ASDG1	ASDG0	0000
CCP2CON2H	16Ah	OENSYNC	_	OCFEN ⁽¹⁾	OCEEN ⁽¹⁾	OCDEN ⁽¹⁾	OCCEN ⁽¹⁾	OCBEN ⁽¹⁾	OCAEN	ICGSM1	ICGSM0	—	AUXOUT1	AUXOUT0	ICSEL2	ICSEL1	ICSEL0	0100
CCP2CON3L	16Ch	_	_	_	_	_	_	_	_	_		DT5	DT4	DT3	DT2	DT1	DT0	0000
CCP2CON3H	16Eh	OETRIG	OSCNT2	OSCNT1	OSCNT0	_	OUTM2 ⁽¹⁾	OUTM1 ⁽¹⁾	OUTM0 ⁽¹⁾	_	_	POLACE	POLBDF ⁽¹⁾	PSSACE1	PSSACE0	PSSBDF1 ⁽¹⁾	PSSBDF0(1)	0000
CCP2STATL	170h	_	_	_	_	_	_	_		CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE	0000
CCP2TMRL	174h							MCC	P2 Time Ba	ase Register	r Low Word							0000
CCP2TMRH	176h							MCC	P2 Time Ba	se Register	High Word							0000
CCP2PRL	178h							MCCP2	Time Base	Period Regi	ister Low Wo	rd						FFFF
CCP2PRH	17Ah							MCCP2	Time Base I	Period Regi	ster High Wo	ord						FFFF
CCP2RAL	17Ch							C	utput Comp	oare 2 Data	Word A							0000
CCP2RBL	180h		Output Compare 2 Data Word B 000										0000					
CCP2BUFL	184h							Inpu	t Capture 2	Data Buffer	Low Word							0000
CCP2BUFH	186h							Input	Capture 2	Data Buffer	High Word							0000

PIC24FV16KM204 FAMILY

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition, r = reserved.

Note 1: These bits are available only on PIC24F(V)16KM2XX devices.

REGISTER 5-1: NVMCON: FLASH MEMORY CONTROL REGISTER

R/SO-0, HC	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
WR	WREN	WRERR	PGMONLY ⁽⁴⁾	—	—	_	_
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	ERASE	NVMOP5 ⁽¹⁾	NVMOP4 ⁽¹⁾	NVMOP3 ⁽¹⁾	NVMOP2 ⁽¹⁾	NVMOP1 ⁽¹⁾	NVMOP0 ⁽¹⁾
bit 7							bit 0

Legend:	SO = Settable Only bit	HC = Hardware Clearable bit			
-n = Value at POR	'1' = Bit is set	R = Readable bit	W = Writable bit		
'0' = Bit is cleared	x = Bit is unknown	U = Unimplemented bit, rea	d as '0'		

bit 15	 WR: Write Control bit 1 = Initiates a Flash memory program or erase operation; the operation is self-timed and the bit is cleared by hardware once the operation is complete 0 = Program or erase operation is complete and inactive
bit 14	WREN: Write Enable bit
	 1 = Enables Flash program/erase operations 0 = Inhibits Flash program/erase operations
bit 13	WRERR: Write Sequence Error Flag bit
	 1 = An improper program or erase sequence attempt, or termination has occurred (bit is set automatically on any set attempt of the WR bit)
1:1.40	0 = The program or erase operation completed normally
DIT 12	
bit 11-7	Unimplemented: Read as '0'
bit 6	ERASE: Erase/Program Enable bit
	 1 = Performs the erase operation specified by the NVMOP<5:0> bits on the next WR command 0 = Performs the program operation specified by the NVMOP<5:0> bits on the next WR command
bit 5-0	NVMOP<5:0>: Programming Operation Command Byte bits ⁽¹⁾
	Erase Operations (when ERASE bit is ' <u>1'):</u>
	$1010xx = \text{Erase entire boot block (including code-protected boot block)}^{(2)}$
	1001xx = Erase entire memory (including boot block, configuration block, general block) ⁽²⁾
	$011010 = \text{Erase 4 rows of Flash memory}^{(3)}$
	$011000 = \text{Erase 1 row of Flash memory}^{(3)}$
	0101xx = Erase entire configuration block (except code protection bits)
	0100xx = Erase entire data EEPROM ⁽⁴⁾
	0011xx = Erase entire general memory block programming operations
	0001xx = Write 1 row of Flash memory (when ERASE bit is '0')
Note 1:	All other combinations of NVMOP<5:0> are no operation.
2:	Available in ICSP™ mode only. Refer to the device programming specification.

- 3: The address in the Table Pointer decides which rows will be erased.
- 4: This bit is used only while accessing data EEPROM.

REGISTER 7-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

bit 4	WDTO: Watchdog Timer Time-out Flag bit 1 = WDT time-out has occurred 0 = WDT time-out has not occurred
bit 3	SLEEP: Wake-up from Sleep Flag bit 1 = Device has been in Sleep mode 0 = Device has not been in Sleep mode
bit 2	IDLE: Wake-up from Idle Flag bit 1 = Device has been in Idle mode 0 = Device has not been in Idle mode
bit 1	BOR: Brown-out Reset Flag bit 1 = A Brown-out Reset has occurred (the BOR is also set after a POR) 0 = A Brown-out Reset has not occurred
bit 0	POR: Power-on Reset Flag bit 1 = A Power-on Reset has occurred 0 = A Power-on Reset has not occurred

- **Note 1:** All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN<1:0> Configuration bits are '11' (unprogrammed), the WDT is always enabled regardless of the SWDTEN bit setting.
 - 3: This is implemented on PIC24FV16KMXXX parts only; not used on PIC24F16KMXXX devices.

TABLE 7-1: RESET FLAG BIT OPERATION

Flag Bit	Setting Event	Clearing Event
TRAPR (RCON<15>)	Trap Conflict Event	POR
IOPUWR (RCON<14>)	Illegal Opcode or Uninitialized W Register Access	POR
CM (RCON<9>)	Configuration Mismatch Reset	POR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET Instruction	POR
WDTO (RCON<4>)	WDT Time-out	PWRSAV Instruction, POR
SLEEP (RCON<3>)	PWRSAV #SLEEP Instruction	POR
IDLE (RCON<2>)	PWRSAV #IDLE Instruction	POR
BOR (RCON<1>)	POR, BOR	—
POR (RCON<0>)	POR	_

Note: All Reset flag bits may be set or cleared by the user software.

REGISTER 8-17: IEC5: INTERRUPT ENABLE CONTROL REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—	—			
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	_	—	—	—	—	—	ULPWUIE
bit 7							bit 0
Legend:							

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-1 Unimplemented: Read as '0'

bit 0 ULPWUIE: Ultra Low-Power Wake-up Interrupt Enable bit

1 = Interrupt request is enabled

0 = Interrupt request is not enabled

REGISTER 8-18: IEC6: INTERRUPT ENABLE CONTROL REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	CLC2IE	CLC1IE
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-2 Unimplemented: Read as '0'

bit 1 CLC2IE: Configurable Logic Cell 2 Interrupt Enable bit

1 = Interrupt request is enabled

0 = Interrupt request is not enabled

bit 0 CLC1IE: Configurable Logic Cell 1 Interrupt Enable bit

1 = Interrupt request is enabled

0 = Interrupt request is not enabled

					•	•					
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
_	—	—	_			—	—				
bit 15							bit 8				
R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
ACKTIM	PCIE	SCIE	BOEN ⁽¹⁾	SDAHT	SBCDE	AHEN	DHEN				
bit 7							bit 0				
Legend:											
R = Readat	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'					
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow					nown						
bit 15-8	Unimplemen	Unimplemented: Read as '0'									
Dit /	ACK IIM: Ack	ACK IIM: Acknowledge Time Status bit (I ² C [™] mode only)									
L:1 0											
DIT 6	PCIE: Stop C	ondition interru	pt Enable bit (I	-C mode only)							
hit 5	SCIE: Stort C	andition Interru	nt Enchla hit (I	2C mode only)							
DIUS			pt Enable bit (i	C mode only)							
hit 4	BOEN: Buffer	r Overwrite Ena	able hit(1)								
	In SPI Slave r	mode.									
	1 = SSPxBU	F updates ever	y time that a n	ew data byte is	shifted in, igno	oring the BF bit					
	0 = If a new	byte is receive	d with the BF b	oit of the SSPx	STAT register a	already set, the	SSPOV bit of				
L:1 0	the SSP	CON1 register	is set and the	buffer is not up	dated						
DIT 3	SDARI: SDA		election bit (I-C	mode only)							
hit 2	SPCDE: Slow	n mode. vo Modo Rus C	ollision Dotost	Enable bit (120	Slavo modo or						
			Dilision Delect		Slave mode of	шу)					
hit 1		n moue.	hit (120 Clave	mada anlu)							
DILI				mode only)							
hit 0		Hold Enable bit	(Slavo modo /								
	Unused in SP	l mode		uny)							
Note 1.	For Daisy-Chaine	d SPI Operatio	n. Allows the	iser to ignore a	Il hut the last re	caivad hvta S	SPOV is still				

REGISTER 14-6: SSPxCON3: MSSPx CONTROL REGISTER 3 (SPI MODE)

Note 1: For Daisy-Chained SPI Operation: Allows the user to ignore all but the last received byte. SSPOV is still set when a new byte is received and BF = 1, but hardware continues to write the most recent byte to SSPxBUF.

16.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Real-Time Clock and Calendar, refer to the "PIC24F Family Reference Manual", "Real-Time Clock and Calendar (RTCC)" (DS39696).

The RTCC provides the user with a Real-Time Clock and Calendar (RTCC) function that can be calibrated.

Key features of the RTCC module are:

- · Operates in Sleep and Retention Sleep modes
- · Selectable clock source
- Provides hours, minutes and seconds using 24-hour format
- · Visibility of one half second period
- Provides calendar weekday, date, month and year
- Alarm-configurable for half a second, one second, 10 seconds, one minute, 10 minutes, one hour, one day, one week, one month or one year
- · Alarm repeat with decrementing counter
- · Alarm with indefinite repeat chime
- Year 2000 to 2099 leap year correction

- · BCD format for smaller software overhead
- Optimized for long term battery operation
- User calibration of the 32.768 kHz clock crystal/32K INTRC frequency with periodic auto-adjust
- · Optimized for long term battery operation
- · Fractional second synchronization
- Calibration to within ±2.64 seconds error per month
- · Calibrates up to 260 ppm of crystal error
- Ability to periodically wake-up external devices without CPU intervention (external power control)
- · Power control output for external circuit control
- · Calibration takes effect every 15 seconds
- · Runs from any one of the following:
 - External Real-Time Clock of 32.768 kHz
 - Internal 31.25 kHz LPRC Clock
 - 50 Hz or 60 Hz External Input

16.1 RTCC Source Clock

The user can select between the SOSC crystal oscillator, LPRC internal oscillator or an external 50 Hz/60 Hz power line input as the clock reference for the RTCC module. This gives the user an option to trade off system cost, accuracy and power consumption, based on the overall system needs.

FIGURE 16-1: RTCC BLOCK DIAGRAM

		-		-							
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0				
bit 15							bit 8				
5444.0	D 444 0	5444.0		D M M	D 444 0		5444.0				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	ARP16	ARP15	ARP14	ARP13	ARP12	ARP11	ARPIO				
DIL 7							DIL U				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15	ALRMEN: A	arm Enable bit									
	1 = Alarm is	enabled (clear	red automatica	lly after an ala	arm event whe	enever ARPT<7	:0> = 00h and				
	CHIME = ∩ = Alarmis	CHIME = 0) 0 = Alarm is disabled									
hit 14	CHIME: Chin	ne Enable bit									
SIC 11	1 = Chime is	s enabled: ARP	T<7:0> bits are	allowed to roll	l over from 00h	to FFh					
	0 = Chime is	disabled; ARP	T<7:0> bits sto	p once they re	ach 00h						
bit 13-10	AMASK<3:0	>: Alarm Mask	Configuration b	oits							
	0000 = Ever	y half second									
	0001 = Ever	y second									
	0011 = Every minute										
	0100 = Ever	y 10 minutes									
	0101 = Ever	0101 = Every nour 0110 = Once a day									
	0110 = Once	e a week									
	1000 = Once	e a month			th						
	1001 = Once	e a year (excep	t when configur	ed for Februar	ry 29 ¹¹ , once ev	very 4 years)					
	101x = Rese	erved – do not u	ISE								
bit 9-8	ALRMPTR<1	I:0>: Alarm Val	ue Register Wi	ndow Pointer b	oits						
	Points to the c	corresponding A	larm Value regis	ters when read	ing the ALRMV	ALH and ALRM	VALL registers.				
	The ALRMPT	R<1:0> value d	ecrements on e	very read or wr	rite of ALRMVA	LH until it reache	es '00'.				
	ALRMVAL<1	<u>5:8>:</u> //N									
	01 = ALRMV	VD									
	10 = ALRMM	INTH									
	$\frac{ALRIVAL < 7}{0.0} = AI RMS$	<u>:0>:</u> FC									
	01 = ALRMH	IR									
	10 = ALRMD	AY									
hit 7 0		Alerm Depect	Counter Value	hita							
DIL 7-0	ARP1<7:0>:	Alarm will ren	eat 255 more ti	DIIS							
	•										
	•										
		Alarm will not	reneat								
	The counter	decrements on	any alarm even	nt; it is preven	ted from rolling	over from 00h	to FFh unless				
	CHIME = 1.		-								

REGISTER 16-3: ALCFGRPT: ALARM CONFIGURATION REGISTER

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
_	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0			
bit 15							bit 8			
U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
—	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0			
bit 7					•		bit 0			
Legend:										
R = Readable bit W = Writable bit		bit	U = Unimplem	nented bit, read	l as '0'					
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unkr	nown			
bit 15	Unimplement	ed: Read as '0	,							
bit 14-12	MINTEN<2:0	Binary Code	d Decimal Valu	ue of Minute's T	ens Digit bits					
	Contains a va	lue from 0 to 5								
bit 11-8	MINONE<3:0	>: Binary Code	ed Decimal Val	ue of Minute's (Ones Digit bits					
	Contains a va	lue from 0 to 9								
bit 7	Unimplemen	ted: Read as '	כ'							
bit 6-4	SECTEN<2:0	>: Binary Code	ed Decimal Val	ue of Second's	Tens Digit bits					
	Contains a va	lue from 0 to 5								
bit 3-0	SECONE<3:0	>: Binary Code	ed Decimal Val	lue of Second's	Ones Digit bits	6				
	Contains a value from 0 to 9.									

REGISTER 16-10: ALMINSEC: ALARM MINUTES AND SECONDS VALUE REGISTER

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 G2D4T G2D4N G2D3T G2D3N G2D2T G2D2N G2D1T G2D1N bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 G1D4T G1D2N G1D4N G1D3T G1D3N G1D2T G1D1T G1D1N bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '0' = Bit is cleared x = Bit is unknown '1' = Bit is set bit 15 G2D4T: Gate 2 Data Source 4 True Enable bit 1 = The Data Source 4 inverted signal is enabled for Gate 2 0 = The Data Source 4 inverted signal is disabled for Gate 2 bit 14 G2D4N: Gate 2 Data Source 4 Negated Enable bit 1 = The Data Source 4 inverted signal is enabled for Gate 2 0 = The Data Source 4 inverted signal is disabled for Gate 2 bit 13 G2D3T: Gate 2 Data Source 3 True Enable bit 1 = The Data Source 3 inverted signal is enabled for Gate 2 0 = The Data Source 3 inverted signal is disabled for Gate 2 bit 12 G2D3N: Gate 2 Data Source 3 Negated Enable bit 1 = The Data Source 3 inverted signal is enabled for Gate 2 0 = The Data Source 3 inverted signal is disabled for Gate 2 bit 11 G2D2T: Gate 2 Data Source 2 True Enable bit 1 = The Data Source 2 inverted signal is enabled for Gate 2 0 = The Data Source 2 inverted signal is disabled for Gate 2 bit 10 G2D2N: Gate 2 Data Source 2 Negated Enable bit 1 = The Data Source 2 inverted signal is enabled for Gate 2 0 = The Data Source 2 inverted signal is disabled for Gate 2 bit 9 G2D1T: Gate 2 Data Source 1 True Enable bit 1 = The Data Source 1 inverted signal is enabled for Gate 2 0 = The Data Source 1 inverted signal is disabled for Gate 2 bit 8 G2D1N: Gate 2 Data Source 1 Negated Enable bit 1 = The Data Source 2 inverted signal is enabled for Gate 1 0 = The Data Source 2 inverted signal is disabled for Gate 1 bit 7 G1D4T: Gate 1 Data Source 4 True Enable bit 1 = The Data Source 4 inverted signal is enabled for Gate 1 0 = The Data Source 4 inverted signal is disabled for Gate 1 bit 6 G1D4N: Gate 1 Data Source 4 Negated Enable bit 1 = The Data Source 4 inverted signal is enabled for Gate 1 0 = The Data Source 4 inverted signal is disabled for Gate 1 G1D3T: Gate 1 Data Source 3 True Enable bit bit 5 1 = The Data Source 3 inverted signal is enabled for Gate 1 0 = The Data Source 3 inverted signal is disabled for Gate 1 bit 4 G1D3N: Gate 1 Data Source 3 Negated Enable bit 1 = The Data Source 3 inverted signal is enabled for Gate 1 0 = The Data Source 3 inverted signal is disabled for Gate 1

R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0				
ADON	_	ADSIDL	_	_	MODE12	FORM1	FORM0				
bit 15							bit 8				
L											
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0, HSC	R/C-0, HSC				
SSRC3	SSRC2	SSRC1	SSRC0		ASAM	SAMP	DONE				
bit 7						•	bit 0				
Legend:		C = Clearable	bit	U = Unimplem	nented bit, read	l as '0'					
R = Readable	e bit	W = Writable b	bit	HSC = Hardw	are Settable/C	learable bit					
-n = Value at POR '1' = Bit is set				'0' = Bit is clea	ared	x = Bit is unkn	own				
bit 15 ADON: A/D Operating Mode bit 1 = A/D Converter is operating 0 = A/D Converter is off											
bit 14	Unimplemented: Read as '0'										
bit 13	ADSIDL: A/D	Stop in Idle Mo	de bit								
	 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 										
bit 12-11	Unimplement	ted: Read as '0	,								
bit 10	MODE12: 12-Bit A/D Operation Mode bit										
	1 = 12-bit A/E 0 = 10-bit A/E) operation) operation									
bit 9-8	FORM<1:0>:	Data Output Fo	ormat bits (see	the following for	ormats)						
	 11 = Fractiona 10 = Absolute 01 = Decimal 00 = Absolute 	al result, signed fractional resu result, signed, decimal result	I, left justified It, unsigned, le right justified , unsigned, rig	eft justified ht justified							
bit 7-4	SSRC<3:0>: 3	Sample Clock S	Source Select	bits							
	1111 = Reser	ved									
	•										
	•										
	1101 = Reser 1100 = CLC2 1011 = SCCP 1010 = MCCF 1001 = MCCF 1000 = CLC1 0111 = Intern 0110 = TMR1 0101 = TMR1 0100 = CTML 0011 = SCCP 0010 = MCCF 0001 = INT0 e 0000 = Cleari	ved event ends sar 24 Compare Ev 23 Compare Ev 22 Compare Ev event ends sar al counter ends Sleep mode T event ends sa J event ends sar 25 Compare Ev 21 Compare Ev event ends sarr ng the Sample	mpling and sta ent (CCP4IF) ent (CCP3IF) ent (CCP2IF) mpling and sta sampling and sta ingger event en mpling and sta ent (CCP5IF) ent (CCP1IF) mpling and star bit ends samp	arts conversion ends sampling ends sampling ends sampling irts conversion d starts conversion arts conversion arts conversion ends sampling ends sampling ts conversion bling and starts	and starts conv and starts con and starts con ion (auto-conve nd starts conve and starts conv and starts conv and starts conve	version version ert) ersion ⁽¹⁾ version version					

REGISTER 19-1: AD1CON1: A/DA/D CONTROL REGISTER 1

Note 1: This version of the TMR1 Trigger allows A/D conversions to be triggered from TMR1 while the device is operating in Sleep mode. The SSRC<3:0> = 0101 option allows conversions to be triggered in Run or Idle modes only.

REGISTER 19-5: AD1CHS: A/D SAMPLE SELECT REGISTER (CONTINUED)

- bit 7-5 **CH0NA<2:0>:** Sample A Channel 0 Negative Input Select bits The same definitions as for CHONB<2:0>.
- bit 4-0 **CH0SA<4:0>:** Sample A Channel 0 Positive Input Select bits The same definitions as for CHONA<4:0>.
- Note 1: This is implemented on 44-pin devices only.
 - 2: This is implemented on 28-pin and 44-pin devices only.
 - 3: The band gap value used for this input is 2x or 4x the internal VBG, which is selected when PVCFG<1:0> = 1x.

REGISTER 19-6: AD1CHITH: A/D SCAN COMPARE HIT REGISTER (HIGH WORD)⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CHH23	CHH22	CHH21	CHH20 ⁽²⁾	CHH19 ⁽²⁾	CHH18	CHH17	CHH16
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **Unimplemented:** Read as '0'.

bit 7-0 CHH<23:16>: A/D Compare Hit bits⁽²⁾

If CM<1:0> = 11:

1 = A/D Result Buffer x has been written with data or a match has occurred

0 = A/D Result Buffer x has not been written with data

For All Other Values of CM<1:0>:

- 1 = A match has occurred on A/D Result Channel x
- 0 = No match has occurred on A/D Result Channel x

Note 1: Unimplemented channels are read as '0'.

2: The CHH<20:19> bits are not implemented in 20-pin devices.

23.0 COMPARATOR VOLTAGE REFERENCE

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Comparator Voltage Reference, refer to the "PIC24F Family Reference Manual", "Comparator Voltage Reference Module" (DS39709).

23.1 Configuring the Comparator Voltage Reference

The comparator voltage reference module is controlled through the CVRCON register (Register 23-1). The comparator voltage reference provides a range of output voltages with 32 distinct levels.

The comparator voltage reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF-. The voltage source is selected by the CVRSS bit (CVRCON<5>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output.

R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	
FWDTEN1	WINDIS	FWDTEN0	FWPSA	WDTPS3	WDTPS2	WDTPS1	WDTPS0	
bit 7							bit 0	
Legend:								
R = Readab	le bit	P = Programmable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown	
bit 7,5								
	10 = WDT is co 01 = WDT is er 00 = WDT is di	nabled only whi isabled in hard	ile the device i ware; SWDTE	s active, WDT is N bit is disabled	s disabled in SI I	eep; SWDTEN	bit is disabled	
bit 6	WINDIS: Winde	owed Watchdo	g Timer Disab	le bit				
	 1 = Standard WDT is selected; windowed WDT is disabled 0 = Windowed WDT is enabled; note that executing a CLRWDT instruction while the WDT is disabled hardware and software (FWDTEN<1:0> = 00 and SWDTEN (RCON<5>) = 0) will not cause device Reset 							
bit 4	FWPSA: WDT	Prescaler bit						
	1 = WDT preso 0 = WDT preso	caler ratio of 1: caler ratio of 1:	128 32					
bit 3-0	WDTPS<3:0>:	Watchdog Tim	er Postscale S	Select bits				
	1111 = 1:32,76	68						
	1110 = 1:16,38	34						
	1101 = 1.8, 192 1100 = 1:4.096	5						
	1011 = 1:2,048	3						
	1010 = 1:1,024	4						
	1001 = 1.512 1000 = 1.256							
	0111 = 1:128							
	0110 = 1:64							
	0101 = 1:32							
	0100 = 1.10 0011 = 1.8							
	0010 = 1 :4							
	0001 = 1:2							
	0000 = 1:1							

REGISTER 25-5: FWDT: WATCHDOG TIMER CONFIGURATION REGISTER

REGISTER 25-8: DEVID: DEVICE ID REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 23							bit 16

R	R	R	R	R	R	R	R
FAMID7	FAMID6	FAMID5	FAMID4	FAMID3	FAMID2	FAMID1	FAMID0
bit 15							bit 8

R	R	R	R	R	R	R	R
DEV7	DEV6	DEV5	DEV4	DEV3	DEV2	DEV1	DEV0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-16	Unimplemented: Read as '0'
bit 15-8	FAMID<7:0>: Device Family Identifier bits
	01000101 = PIC24FV16KM204 family
bit 7-0	DEV<7:0>: Individual Device Identifier bits
	00011111 = PIC24FV16KM204
	00011011 = PIC24FV16KM202
	00010111 = PIC24FV08KM204
	00010011 = PIC24FV08KM202
	00001111 = PIC24FV16KM104
	00001011 = PIC24FV16KM102
	00000011 = PIC24FV08KM102
	00000001 = PIC24FV08KM101
	00011110 = PIC24F16KM204
	00011010 = PIC24F16KM202
	00010110 = PIC24F08KM204
	00010010 = PIC24F08KM202
	00001110 = PIC24F16KM104
	00001010 = PIC24F16KM102
	00000010 = PIC24F08KM102
	00000000 = PIC24F08KM101

27.1 DC Characteristics

FIGURE 27-2: PIC24F16KM204 FAMILY VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)

DC CHARACTERISTICS			Standard Op	mperating C	onditions:	1.8V to 3.6V (PIC24F16KM204) 2.0V to 5.5V (PIC24FV16KM204) -40°C \leq TA \leq +85°C for Industrial -40°C \leq TA \leq +125°C for Extended		
Param No.	Sym	Characteristic	Min	Тур ⁽¹⁾	Мах	Units	Conditions	
	VIL	Input Low Voltage ⁽⁴⁾						
DI10		I/O Pins	Vss	—	0.2 Vdd	V		
DI15		MCLR	Vss	_	0.2 Vdd	V		
DI16		OSCI (XT mode)	Vss	—	0.2 Vdd	V		
DI17		OSCI (HS mode)	Vss	_	0.2 Vdd	V		
DI18		I/O Pins with I ² C™ Buffer	Vss	—	0.3 VDD	V	SMBus disabled	
DI19		I/O Pins with SMBus Buffer	Vss	—	0.8	V	SMBus enabled	
	Viн	Input High Voltage ^(4,5)						
DI20		I/O Pins: with Analog Functions Digital Only	0.8 Vdd 0.8 Vdd		Vdd Vdd	V V		
DI25		MCLR	0.8 VDD	_	Vdd	V		
DI26		OSCI (XT mode)	0.7 Vdd		Vdd	V		
DI27		OSCI (HS mode)	0.7 Vdd	_	Vdd	V		
DI28		I/O Pins with I ² C Buffer: with Analog Functions Digital Only	0.7 Vdd 0.7 Vdd		Vdd Vdd	V V		
DI29		I/O Pins with SMBus	2.1		Vdd	V	$2.5V \leq V\text{PIN} \leq V\text{DD}$	
DI30	ICNPU	CNx Pull-up Current	50	250	500	μA	VDD = 3.3V, VPIN = VSS	
DI31	IPU	Maximum Load Current for	—		30	μA	VDD = 2.0V	
		w/Internal Pull-up	—	_	1000	μA	VDD = 3.3V	
	lı∟	Input Leakage Current ^(2,3)						
DI50		I/O Ports	_	0.050	±0.100	μA	$\label{eq:VSS} \begin{split} &V\text{SS} \leq V\text{PIN} \leq V\text{DD}, \\ &\text{Pin at high-impedance} \end{split}$	
DI51		Pins with OAxOUT Functions (RB15 and RB3)	—	0.100	±0.200	μΑ	$\label{eq:VSS} \begin{split} &V\text{SS} \leq V\text{PIN} \leq V\text{DD}, \\ &\text{Pin at high-impedance} \end{split}$	

TABLE 27-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: Refer to Table 1-4 and Table 1-5 for I/O pin buffer types.

5: VIH requirements are met when the internal pull-ups are enabled.

DC CHARACTERISTICS			Standard Operating Conditions:1.8V to 3.6V (PIC24F16KM20 2.0V to 5.5V (PIC24FV16KM2)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Indus $-40^{\circ}C \le TA \le +125^{\circ}C$ for External			(PIC24F16KM204) (PIC24FV16KM204) +85°C for Industrial +125°C for Extended	
Param No.	Sym	Characteristic	Min	Тур ⁽¹⁾	Мах	Units	Comments
	GBWP	Gain Bandwidth	_	5		MHz	SPDSEL = 1
		Product	—	0.5	—	MHz	SPDSEL = 0
	SR	Slew Rate	—	1.2	_	V/µs	SPDSEL = 1
			—	0.3	_	V/µs	SPDSEL = 0
	AOL	DC Open-Loop Gain	—	90	_	dB	
	VIOFF	F Input Offset Voltage	—	±2	±10	mV	
	VIBC	Input Bias Current	—	—	—	nA	(Note 1)
	VICM	Common-Mode Input Voltage Range	AVss	—	AVdd	V	
	CMRR	Common-Mode Rejection Ratio	—	60	_	db	
	PSRR	Power Supply Rejection Ratio	—	60	—	dB	
	Vor	Output Voltage Range	AVss + 200	AVss + 5 to AVDD - 5	AVDD - 200	mV	0.5V input overdrive, no output loading

TABLE 27-17: OPERATIONAL AMPLIFIER SPECIFICATIONS

Note 1: The op amps use CMOS input circuitry with negligible input bias current. The maximum "effective bias current" is the I/O pin leakage specified by electrical Parameter DI50.

FIGURE 27-11: EXAMPLE SPI MASTER MODE TIMING (CKE = 0)

TABLE 27-29: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)

Param No.	Symbol	Characteristic	Min	Мах	Units	Conditions
73	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	_	ns	
74	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	40	—	ns	
75	TDOR	SDOx Data Output Rise Time		25	ns	
76	TDOF	SDOx Data Output Fall Time		25	ns	
78	TscR	SCKx Output Rise Time (Master mode)		25	ns	
79	TscF	SCKx Output Fall Time (Master mode)		25	ns	
	FSCK	SCKx Frequency		10	MHz	