

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

÷ХГ

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 19x10b/12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08km202-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Peripheral Features

- High-Current Sink/Source, 18 mA/18 mA All Ports
- Independent Ultra Low-Power, 32 kHz Timer Oscillator
- Up to Two Master Synchronous Serial Ports (MSSPs) with SPI and I²C™ modes:

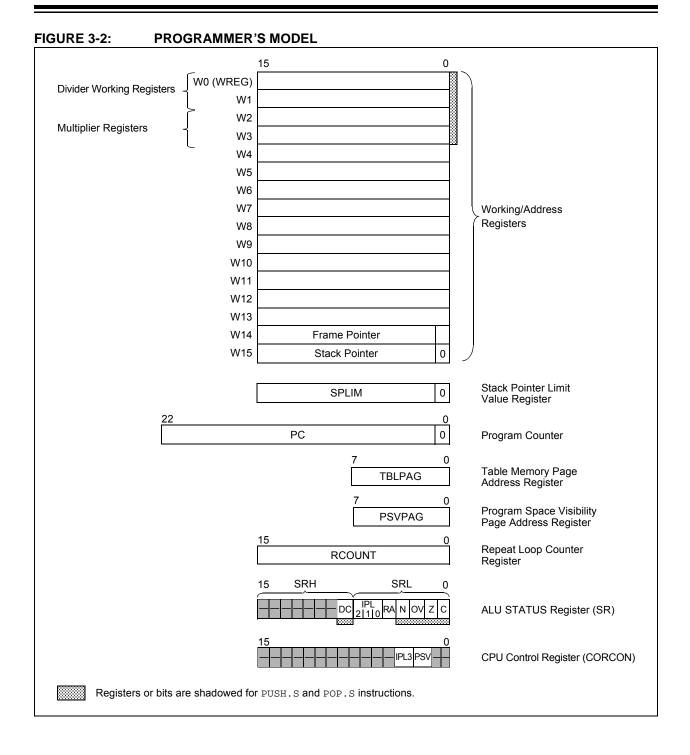
In SPI mode:

- User-configurable SCKx and SDOx pin outputs
- Daisy-chaining of SPI slave devices

In I²C mode:

- Serial clock synchronization (clock stretching)
- Bus collision detection and will arbitrate accordingly
- Support for 16-bit read/write interface
- Up to Two Enhanced Addressable UARTs:
 - LIN/J2602 bus support (auto-wake-up, Auto-Baud Detect, Break character support)
 - High and low speed (SCI)
 - IrDA[®] mode (hardware encoder/decoder function)
- Two External Interrupt Pins
- Hardware Real-Time Clock and Calendar (RTCC)
- Configurable Reference Clock Output (REFO)
- Two Configurable Logic Cells (CLC)
- Up to Two Single Output Capture/Compare/PWM (SCCP) modules and up to Three Multiple Output Capture/Compare/PWM (MCCP) modules

Special Microcontroller Features


- Wide Operating Voltage Range Options:
 - 1.8V to 3.6V (PIC24F devices)
 - 2.0V to 5.0V (PIC24FV devices)
- Selectable Power Management modes:
 - Idle: CPU shuts down, allowing for significant power reduction
 - Sleep: CPU and peripherals shut down for substantial power reduction and fast wake-up
 - Retention Sleep mode: PIC24FV devices can enter Sleep mode, employing the Retention Regulator, further reducing power consumption
 - Doze: CPU can run at a lower frequency than peripherals, a user-programmable feature
 - Alternate Clock modes allow on-the-fly switching to a lower clock speed for selective power reduction
- · Fail-Safe Clock Monitor:
 - Detects clock failure and switches to on-chip, low-power RC Oscillator
- Ultra Low-Power Wake-up Pin Provides an External Trigger for Wake from Sleep
- 10,000 Erase/Write Cycle Endurance Flash Program Memory, Typical
- 100,000 Erase/Write Cycle Endurance Data EEPROM, Typical
- Flash and Data EEPROM Data Retention: 20 Years Minimum
- Self-Programmable under Software Control
- Power-on Reset (POR), Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Watchdog Timer (WDT) with its Own On-Chip RC Oscillator for Reliable Operation
- On-Chip Regulator for 5V Operation
- Selectable Windowed WDT Feature
- Selectable Oscillator Options including:
 4x Phase Locked Loop (PLL)
- 8 MHz (FRC) Internal RC Oscillator:
 - HS/EC, High-Speed Crystal/Resonator Oscillator or External Clock
- In-Circuit Serial Programming™ (ICSP™) and In-Circuit Emulation (ICE) via Two Pins
- In-Circuit Debugging
- Programmable High/Low-Voltage Detect (HLVD) module
- Programmable Brown-out Reset (BOR):
 - Software enable feature
 - Configurable shutdown in Sleep
 - Auto-configures power mode and sensitivity based on device operating speed
 - LPBOR available for re-arming of the POR

Pin Diagrams (Continued)

	20-Pin QFN $\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
Dia	Pin Features					
Pin	PIC24F08KM101 PIC24FV08KM101					
1	PGED1/AN2/CTCMP/ULPWU/C1IND/OC2A/CN4/RB0					
2	PGEC1/AN3/C1INC/CTED12/CN5/RB1					
3	AN4/U1RX/TCKIB/CTED13/CN6/RB2					
4	OSCI/CLKI/AN13/C1INB/CN30/RA2					
5	OSCO/CLKO/AN14/C1INA/CN29/RA3					
6	PGED3/SOSCI/AN15/CLCINA/CN1/RB4					
7	PGEC3/SOSCO/SCLKI/AN16/PWRLCLK/CLCINB/CN0/RA4					
8	AN19/U1TX/CTED1/INT0/CN23/RB7 AN19/U1TX/IC1/OC1A/CTED1/INT0/CN23/RB7					
9	AN20/SCL1/U1CTS/OC1B/CTED10/CN22/RB8					
10	AN21/SDA1/T1CK/U1RTS/U1BCLK/IC2/CLC10/CTED4/CN21/RB9					
11	IC1/OC1A/INT2/CN8/RA6 VCAP OR VDDCORE					
12	AN12/HLVDIN/SCK1/OC1C/CTED2/CN14/RB12 AN12/HLVDIN/SCK1/OC1C/CTED2/INT2/CN14/RB12					
13	AN11/SDO1/OCFB/OC1D/CTPLS/CN13/RB13					
14	CVREF/AN10/SDI1/C1OUT/OCFA/CTED5/INT1/CN12/RB14					
15	AN9/REFO/SS1/TCKIA/CTED6/CN11/RB15					
16	Vss/AVss					
17	Vdd/AVdd					
18	MCLR/Vpp/RA5					
19	PGEC2/CVREF+ /VREF+/AN0/CN2/RA0					
20	PGED2/CVREF-/VREF-/AN1/CN3/RA1					

Table of Contents

1.0	Device Overview	
2.0	Guidelines for Getting Started with 16-Bit Microcontrollers	29
3.0	CPU	35
4.0	Memory Organization	41
5.0	Flash Program Memory	67
6.0	Data EEPROM Memory	73
7.0	Resets	79
8.0	Interrupt Controller	85
9.0	Oscillator Configuration	. 121
10.0	Power-Saving Features	. 131
11.0	I/O Ports	. 137
12.0	Timer1	
13.0	Capture/Compare/PWM/Timer Modules (MCCP and SCCP)	. 143
14.0	Master Synchronous Serial Port (MSSP)	
15.0	Universal Asynchronous Receiver Transmitter (UART)	. 173
16.0	Real-Time Clock and Calendar (RTCC)	. 181
17.0	Configurable Logic Cell (CLC)	. 195
18.0	High/Low-Voltage Detect (HLVD)	. 207
	12-Bit A/D Converter with Threshold Detect	
20.0	8-Bit Digital-to-Analog Converter (DAC)	. 229
21.0	Dual Operational Amplifier Module	. 233
22.0	Comparator Module	
23.0	Comparator Voltage Reference	. 239
24.0	Charge Time Measurement Unit (CTMU)	. 241
25.0	Special Features	. 249
26.0	Development Support	. 261
27.0	Electrical Characteristics	. 265
28.0	Packaging Information	. 297
Appe	ndix A: Revision History	. 325
Index	· · · · · · · · · · · · · · · · · · ·	327
	/icrochip Web Site	
Custo	omer Change Notification Service	. 333
Custo	omer Support	. 333
Produ	Jct Identification System	. 335

6.4.3 READING THE DATA EEPROM

To read a word from data EEPROM, the Table Read instruction is used. Since the EEPROM array is only 16 bits wide, only the TBLRDL instruction is needed. The read operation is performed by loading TBLPAG and WREG with the address of the EEPROM location, followed by a TBLRDL instruction.

A typical read sequence, using the Table Pointer management (builtin_tblpage and builtin_tbloffset) and Table Read (builtin_tblrd1) procedures from the C30 compiler library, is provided in Example 6-5.

Program Space Visibility (PSV) can also be used to read locations in the data EEPROM.

EXAMPLE 6-5: READING THE DATA EEPROM USING THE TBLRD COMMAND

<pre>intattribute ((space(eedata))) eeData = 0x1234;</pre>	
int data;	// Data read from EEPROM
/*	
The variable eeData must be a Global variable declared	d outside of any method
the code following this comment can be written inside	the method that will execute the read
*/	
unsigned int offset;	
// Set up a pointer to the EEPROM location to be e	erased
<pre>TBLPAG =builtin_tblpage(&eeData);</pre>	// Initialize EE Data page pointer
offset =builtin_tbloffset(&eeData);	// Initizlize lower word of address
<pre>data =builtin_tblrdl(offset);</pre>	// Write EEPROM data to write latch

7.2.1 POR AND LONG OSCILLATOR START-UP TIMES

The oscillator start-up circuitry and its associated delay timers are not linked to the device Reset delays that occur at power-up. Some crystal circuits (especially low-frequency crystals) will have a relatively long start-up time. Therefore, one or more of the following conditions is possible after SYSRST is released:

- The oscillator circuit has not begun to oscillate.
- The Oscillator Start-up Timer (OST) has not expired (if a crystal oscillator is used).
- The PLL has not achieved a lock (if PLL is used).

The device will not begin to execute code until a valid clock source has been released to the system. Therefore, the oscillator and PLL start-up delays must be considered when the Reset delay time must be known.

7.2.2 FAIL-SAFE CLOCK MONITOR (FSCM) AND DEVICE RESETS

If the FSCM is enabled, it will begin to monitor the system clock source when SYSRST is released. If a valid clock source is not available at this time, the device will automatically switch to the FRC Oscillator and the user can switch to the desired crystal oscillator in the Trap Service Routine (TSR).

7.3 Special Function Register Reset States

Most of the Special Function Registers (SFRs) associated with the PIC24F CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in each section of this manual.

The Reset value for each SFR does not depend on the type of Reset, with the exception of four registers. The Reset value for the Reset Control register, RCON, will depend on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, will depend on the type of Reset and the programmed values of the FNOSCx bits in the Flash Configuration Word (FOSCSEL<2:0>); see Table 7-2. The RCFGCAL and NVMCON registers are only affected by a POR.

7.4 Brown-out Reset (BOR)

The PIC24FXXXXX family devices implement a BOR circuit, which provides the user several configuration and power-saving options. The BOR is controlled by the BORV<1:0> and BOREN<1:0> Configuration bits (FPOR<6:5,1:0>). There are a total of four BOR configurations, which are provided in Table 7-3.

The BOR threshold is set by the BORV<1:0> bits. If BOR is enabled (any values of BOREN<1:0>, except '00'), any drop of VDD below the set threshold point will reset the device. The chip will remain in BOR until VDD rises above the threshold.

If the Power-up Timer is enabled, it will be invoked after VDD rises above the threshold. Then, it will keep the chip in Reset for an additional time delay, TPWRT, if VDD drops below the threshold while the Power-up Timer is running. The chip goes back into a BOR and the Power-up Timer will be initialized. Once VDD rises above the threshold, the Power-up Timer will execute the additional time delay.

BOR and the Power-up Timer (PWRT) are independently configured. Enabling the Brown-out Reset does not automatically enable the PWRT.

7.4.1 LOW-POWER BOR (LPBOR)

The Low-Power BOR is an alternate setting for the BOR, designed to consume minimal power. In LPBOR mode, BORV<1:0> (FPOR<6:5>) = 00. The BOR trip point is approximately 2.0V. Due to the low current consumption, the accuracy of the LPBOR mode can vary.

Unlike the other BOR modes, LPBOR mode will not cause a device Reset when VDD drops below the trip point. Instead, it re-arms the POR circuit to ensure that the device will reset properly in the event that VDD continues to drop below the minimum operating voltage.

The device will continue to execute code when VDD is below the level of the LPBOR trip point. A device that requires falling edge BOR protection to prevent code from improperly executing should use one of the other BOR voltage settings.

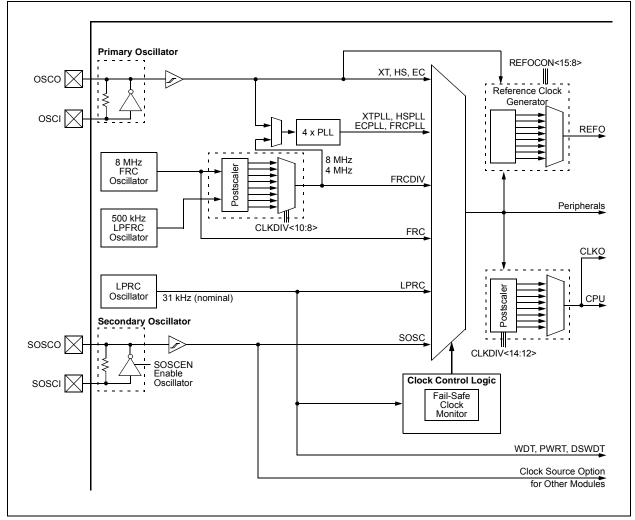
REGISTER 8-3: INTCON1: INTERRUPT CONTROL REGISTER 1

R/W-0	U-0						
NSTDIS	—	—	—	—	—	—	—
bit 15 bit 8							

U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0
—	—	—	MATHERR	ADDRERR	STKERR	OSCFAIL	—
bit 7							bit 0

Legend:		HS = Hardware Settable bi	t				
R = Readabl	e bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			
bit 15	1 = Interru	Interrupt Nesting Disable bit Ipt nesting is disabled					
bit 14-5		ipt nesting is enabled nented: Read as '0'					
bit 4	MATHERI 1 = Overfl	R: Arithmetic Error Trap Status t ow trap has occurred ow trap has not occurred	bit				
bit 3	ADDRERR: Address Error Trap Status bit 1 = Address error trap has occurred 0 = Address error trap has not occurred						
bit 2	1 = Stack	Stack Error Trap Status bit error trap has occurred error trap has not occurred					
bit 1	1 = Oscilla	Oscillator Failure Trap Status t ator failure trap has occurred ator failure trap has not occurred					
bit 0	Unimplen	nented: Read as '0'					

9.0 OSCILLATOR CONFIGURATION


Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on oscillator configuration, refer to the *"PIC24F Family Reference Manual"*, **"Oscillator with 500 kHz Low-Power FRC"** (DS39726).

The oscillator system for the PIC24FV16KM204 family of devices has the following features:

 A total of five external and internal oscillator options as clock sources, providing 11 different clock modes.

- On-chip 4x Phase Locked Loop (PLL) to boost internal operating frequency on select internal and external oscillator sources.
- Software-controllable switching between various clock sources.
- Software-controllable postscaler for selective clocking of CPU for system power savings.
- System frequency range declaration bits for External Clock (EC) mode. When using an EC source, the current consumption is reduced by setting the declaration bits to the expected frequency range.
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown.

A simplified diagram of the oscillator system is shown in Figure 9-1.

FIGURE 9-1: PIC24FXXXXX FAMILY CLOCK DIAGRAM

REGISTER 11-2: ANSB: PORTB ANALOG SELECTION REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	U-0	U-0	R/W-1	R/W-1
ANSB15	ANSB14	ANSB13	ANSB12	—		ANSB9	ANSB8
bit 15							bit 8

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
ANSB7	ANSB6 ⁽¹⁾	ANSB5 ⁽¹⁾	ANSB4	ANSB3 ⁽¹⁾	ANSB2	ANSB1	ANSB0
bit 7							bit 0

Legend

Legena:				
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-12 **ANSB<15:12>:** Analog Select Control bits 1 = Digital input buffer is not active (use for analog input)

- 0 = Digital input buffer is active
- bit 11-10 Unimplemented: Read as '0'
- bit 9-0 ANSB<9:0>: Analog Select Control bits⁽¹⁾
 - 1 = Digital input buffer is not active (use for analog input)
 - 0 = Digital input buffer is active
- Note 1: The ANSB<6:5,3> bits are not available on 20-pin devices.

REGISTER 11-3: ANSC: PORTC ANALOG SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1
—	—	—	—	—	ANSC2 ^(1,2)	ANSC1 ^(1,2)	ANSC0 ^(1,2)
bit 7							bit 0
Legend:							

Logona.			
R = Readable bit	= Readable bit W = Writable bit U = Unimplemented bit, read as '0'		, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

bit 2-0 ANSC<2:0>: Analog Select Control bits^(1,2)

- 1 = Digital input buffer is not active (use for analog input)
- 0 = Digital input buffer is active

Note 1: These bits are not implemented in 20-pin devices.

2: These bits are not implemented in 28-pin devices.

REGISTER 13-6: CCPxCON3H: CCPx CONTROL 3 HIGH REGISTERS

bit 15 U-0 R/W-0 R/W 0 R/	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0				
U-0 U-0 R/W-0 R/W	OETRIG	OSCNT2	OSCNT1	OSCNT0		OUTM2 ⁽¹⁾	OUTM1 ⁽¹⁾	OUTM0 ⁽¹⁾				
- POLACE POLBOF ⁽¹⁾ PSSACE1 PSSACE0 PSSBDF1 ⁽¹⁾ PSSBDF1 ⁽¹⁾ bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 OETRIG: CCPx Dead-Time Select bit 1 = For Triggered mode (TRIGEN = 1): Module does not drive enabled output pins until triggered 0 = Normal output pin operation bit 14-12 OSCNT-2:0>: One-Shot Event Count bits 111 = Extend one-shot event by 7 time base periods (6 time base periods total) 100 = Extend one-shot event by 5 time base periods (6 time base periods total) 101 = Extend one-shot event by 2 time base periods (6 time base periods total) 011 = Extend one-shot event by 2 time base periods (6 time base periods total) 010 = Extend one-shot event by 2 time base periods (2 time base periods total) 011 = Extend one-shot event by 2 time base periods (2 time base periods total) 011 = Extend one-shot event by 2 time base periods (2 time base periods total) 010 = D textend one-shot event by 2 time base periods (2 time base periods total) 010 = D textend one-shot event by 2 time base periods (2 time base periods total) 011 = Extend one-shot event by 2 time base periods (2 time base periods total)	bit 15							bit 8				
- POLACE POLBOF ⁽¹⁾ PSSACE1 PSSACE0 PSSBDF1 ⁽¹⁾ PSSBDF1 ⁽¹⁾ bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 OETRIG: CCPx Dead-Time Select bit 1 = For Triggered mode (TRIGEN = 1): Module does not drive enabled output pins until triggered 0 = Normal output pin operation bit 14-12 OSCNT-2:0>: One-Shot Event Count bits 111 = Extend one-shot event by 7 time base periods (6 time base periods total) 100 = Extend one-shot event by 5 time base periods (6 time base periods total) 101 = Extend one-shot event by 2 time base periods (6 time base periods total) 011 = Extend one-shot event by 2 time base periods (6 time base periods total) 010 = Extend one-shot event by 2 time base periods (2 time base periods total) 011 = Extend one-shot event by 2 time base periods (2 time base periods total) 011 = Extend one-shot event by 2 time base periods (2 time base periods total) 010 = D textend one-shot event by 2 time base periods (2 time base periods total) 010 = D textend one-shot event by 2 time base periods (2 time base periods total) 011 = Extend one-shot event by 2 time base periods (2 time base periods total)												
bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 OETRIG: CCPx Dead-Time Select bit 1 = For Triggered mode (TRIGEN = 1): Module does not drive enabled output pins until triggered 0 = Normal output pin operation 111 = Extend one-shot event by 7 time base periods (8 time base periods total) 101 = Extend one-shot event by 5 time base periods (6 time base periods total) 100 = Extend one-shot event by 4 time base periods (5 time base periods total) 101 = Extend one-shot event by 3 time base periods (6 time base periods total) 011 = Extend one-shot event by 4 time base periods (6 time base periods total) 010 = Extend one-shot event by 1 time base periods (2 time base periods total) 011 = Extend one-shot event by 1 time base periods (2 time base periods total) 010 = Extend one-shot event by 1 time base periods (2 time base periods total) 001 = Extend one-shot event by 1 time base periods (2 time base periods total) 010 = Extend one-shot event by 1 time base periods (2 time base periods total) 001 = Extend one-shot event by 1 time base periods (2 time base periods total) 010 = Extend one-shot event by 1 time base periods (2 time base periods total) 001 = Extend one-shot event by 1 time base periods (2 time base periods total) 010 = D totatend one-shot event by 1 time bas	U-0	<u>U-0</u>	(1		R/W-0				
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 OETRIG: CCPx Dead-Time Select bit 1 = For Triggered mode (TRIGEN = 1): Module does not drive enabled output pins until triggered 0 = Normal output pin operation bit 14-12 OSCNT-2:0>: One-Shot Event Count bits 111 = Extend one-shot event by 7 time base periods (8 time base periods total) 100 = Extend one-shot event by 7 time base periods (7 time base periods total) 101 = Extend one-shot event by 5 time base periods (7 time base periods total) 102 = Extend one-shot event by 5 time base periods (6 time base periods total) 103 = Extend one-shot event by 2 time base periods (4 time base periods total) 104 = Extend one-shot event by 2 time base periods (3 time base periods total) 105 = Extend one-shot event by 2 time base periods (3 time base periods total) 106 = Extend one-shot event by 1 time base periods (3 time base periods total) 107 = Extend one-shot event by 2 time base periods (3 time base periods total) 108 = Extend one-shot event by 1 time base period (2 time base periods total) 109 = Do not extend one-shot trigger event 111 Unimplemented: Read as '0' 112 = Reserved 113 = Reserved 114 = Reserved 115 = OULACE: CCPX Output mode, reverse 115 = POLACE: CCPX Output mode 116 = FUSh-Pull Output mode 117 = Reserved 118 = Reserved 119 = Output pin polarity is active-low 119 = Output pin polarity is active-low 119 = Output pin polarity is active-low 119 = Output pin polarity is active-low 120 = Output pin polarity is active-low 131 = DEBDF: CCPX Output Pins, OCXA, OCXC and OCXE, Polarity Control bit 132 = Pins are driven inactive when a shutdown event occurs 132 = Pins are driven inactive when a shutdown event occurs 133 = Pins are driven inactive when a shutdown event occurs 134 = Pins are driven inactive when a shutdown event occurs 135 = Pins are driven inactive when a shutdown event occurs 135 = Pins are driven inactive			POLACE	POLBDF	PSSACE1	PSSACE0	PSSBDF1()	PSSBDF0 ⁽¹⁾				
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 OETRIG: CCPx Dead-Time Select bit 1 = For Triggered mode (TRIGEN = 1): Module does not drive enabled output pins until triggered bit 14 OSCNT<2:0>: One-Shot Event Count bits 11 = Extend one-shot event by 7 time base periods (8 time base periods total) 100 = Extend one-shot event by 5 time base periods (6 time base periods total) 100 = Extend one-shot event by 5 time base periods (6 time base periods total) 010 = Extend one-shot event by 3 time base periods (6 time base periods total) 010 = Extend one-shot event by 3 time base periods (3 time base periods total) 010 = Extend one-shot event by 1 time base periods (3 time base periods total) 010 = Extend one-shot event by 1 time base periods (1 time base periods total) 010 = Extend one-shot event by 1 time base periods (1 time base periods total) 010 = Extend one-shot frigger event bit 10-8 OUTM OUTM OUTM OUTM OUTM 010 = Dutput Scan mode 111 = Reserved 111 = Reserved<	bit 7							bit C				
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 OETRIG: CCPx Dead-Time Select bit 1 = For Triggered mode (TRIGEN = 1): Module does not drive enabled output pins until triggered bit 14 OSCNT<2:0>: One-Shot Event Count bits 11 = Extend one-shot event by 7 time base periods (8 time base periods total) 100 = Extend one-shot event by 5 time base periods (6 time base periods total) 100 = Extend one-shot event by 5 time base periods (6 time base periods total) 010 = Extend one-shot event by 3 time base periods (6 time base periods total) 010 = Extend one-shot event by 3 time base periods (3 time base periods total) 010 = Extend one-shot event by 1 time base periods (3 time base periods total) 010 = Extend one-shot event by 1 time base periods (1 time base periods total) 010 = Extend one-shot event by 1 time base periods (1 time base periods total) 010 = Extend one-shot frigger event bit 10-8 OUTM OUTM OUTM OUTM OUTM 010 = Dutput Scan mode 111 = Reserved 111 = Reserved<	Legend:											
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 OETRIG: CCPx Dead-Time Select bit 1 = For Triggered mode (TRIGEN = 1): Module does not drive enabled output pins until triggered 0 = Normal output pin operation bit 14-12 OSCNT-2:0>: One-Shot Event Count bits 111 = Extend one-shot event by 6 time base periods (8 time base periods total) 100 = Extend one-shot event by 5 time base periods (6 time base periods total) 101 = Extend one-shot event by 4 time base periods (5 time base periods total) 101 = Extend one-shot event by 3 time base periods (1 time base periods total) 000 = Extend one-shot event by 3 time base periods (2 time base periods total) 001 = Extend one-shot event by 3 time base periods (2 time base periods total) 001 = Extend one-shot event by 1 time base periods (2 time base periods total) 001 = Extend one-shot event by 1 time base periods (2 time base periods total) 001 = Extend one-shot event by 1 time base periods (2 time base periods total) 001 = Extend one-shot event by 2 time base periods (2 time base periods total) 001 = Extend one-shot event by 1 time base periods (2 time base periods total) 000 = Do not extend one-shot event by 6 time base periods (3 time base periods total) 001 = Extend one-shot event by 6 time base periods (2 time base periods total) 010 = Output Scan mode 101 = Output Scan mode 101 = Output Scan mode 101 = Noush DC Output mode, reverse 101 =	-	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'					
 bit 15 OETRIG: CCPx Dead-Time Select bit 1 = For Triggered mode (TRIGEN = 1): Module does not drive enabled output pins until triggered 0 = Normal output pin operation bit 14-12 OSCNT-2:0: One-Shot Event Count bits 111 = Extend one-shot event by 6 time base periods (8 time base periods total) 101 = Extend one-shot event by 5 time base periods (6 time base periods total) 101 = Extend one-shot event by 5 time base periods (6 time base periods total) 101 = Extend one-shot event by 3 time base periods (6 time base periods total) 101 = Extend one-shot event by 3 time base periods (3 time base periods total) 010 = Extend one-shot event by 1 time base periods (3 time base periods total) 010 = Extend one-shot event by 1 time base periods (3 time base periods total) 010 = Extend one-shot event by 1 time base periods (3 time base periods total) 010 = Extend one-shot event by 1 time base periods (3 time base periods total) 010 = Extend one-shot event by 1 time base periods (3 time base periods total) 010 = Extend one-shot ovent by 1 time base periods (3 time base periods total) 010 = Do not extend one-shot Trigger event 011 = Reserved 111 = Reserved 112 = Reserved 113 = Reserved 114 = Reserved 115 = Bush DC Output mode, forward 100 = Bush DC Output mode 011 = Push-Pull Output mode 012 = Half-Bridge Output mode 013 = Push-Pull Output mode 014 = PolLACE: CCPX Output Pins, OCXA, OCXC and OCXE, Polarity Control bit 1 = Output pin polarity is active-low 0 =	-n = Value at	POR	'1' = Bit is set		-			iown				
 1 = For Triggered mode (TRIGEN = 1): Module does not drive enabled output pins until triggered 0 = Normal output pin operation bit 14-12 OSCNT<2:0:: One-Shot Event Count bits 111 = Extend one-shot event by 7 time base periods (8 time base periods total) 101 = Extend one-shot event by 5 time base periods (6 time base periods total) 101 = Extend one-shot event by 5 time base periods (6 time base periods total) 102 = Extend one-shot event by 3 time base periods (6 time base periods total) 103 = Extend one-shot event by 2 time base periods (5 time base periods total) 104 = Extend one-shot event by 2 time base periods (2 time base periods total) 105 = Extend one-shot event by 2 time base periods (2 time base periods total) 106 = Extend one-shot Trigger event 107 = Extend one-shot Trigger event 108 OUTM 109 = Do not extend one-shot Trigger event 110 = Brush DC Output mode, forward 101 = Brush DC Output mode, forward 101 = Brush DC Output mode, forward 100 = Brush DC Output mode, reverse 101 = Reserved 101 = Push-Pull Output mode 101 = Push-Pull Output mode 111 = Output pin polarity is active-low 0 = Dutput pin polarity is active-low 0 = Pins are driven inactive when a shutdown event occurs 0 = Pins		-						-				
 1 = For Triggered mode (TRIGEN = 1): Module does not drive enabled output pins until triggered 0 = Normal output pin operation bit 14-12 OSCNT<2:0:: One-Shot Event Count bits 111 = Extend one-shot event by 7 time base periods (8 time base periods total) 101 = Extend one-shot event by 5 time base periods (6 time base periods total) 101 = Extend one-shot event by 5 time base periods (6 time base periods total) 102 = Extend one-shot event by 3 time base periods (6 time base periods total) 103 = Extend one-shot event by 2 time base periods (5 time base periods total) 104 = Extend one-shot event by 2 time base periods (2 time base periods total) 105 = Extend one-shot event by 2 time base periods (2 time base periods total) 106 = Extend one-shot Trigger event 107 = Extend one-shot Trigger event 108 OUTM 109 = Do not extend one-shot Trigger event 110 = Brush DC Output mode, forward 101 = Brush DC Output mode, forward 101 = Brush DC Output mode, forward 100 = Brush DC Output mode, reverse 101 = Reserved 101 = Push-Pull Output mode 101 = Push-Pull Output mode 111 = Output pin polarity is active-low 0 = Dutput pin polarity is active-low 0 = Pins are driven inactive when a shutdown event occurs 0 = Pins	bit 15	OETRIG: CC	Px Dead-Time	Select bit								
 0 = Normal output pin operation 0 = Normal output pin operation 0 = SCNT <2:0>: One-Shot Event Count bits 111 = Extend one-shot event by 7 time base periods (8 time base periods total) 101 = Extend one-shot event by 5 time base periods (6 time base periods total) 101 = Extend one-shot event by 5 time base periods (6 time base periods total) 101 = Extend one-shot event by 3 time base periods (5 time base periods total) 101 = Extend one-shot event by 2 time base periods (5 time base periods total) 101 = Extend one-shot event by 2 time base periods (3 time base periods total) 100 = D on to extend one-shot Trigger event 001 = D on to extend one-shot Trigger event 001 = D on to extend one-shot Trigger event 001 = Brush DC Output Mode Control bits⁽¹⁾ 111 = Reserved 100 = Output Scan mode 101 = Brush DC Output mode, forward 100 = Brush DC Output mode, forward 100 = Brush DC Output mode 101 = Push-Pull Output mode 001 = Steerable Single Output mode 001 = Output pin polarity is active-low 0 = Pins are driven active w		1 = For Trigg	ered mode (TF	RIGEN = 1): Mo	dule does not	drive enabled	output pins until	l triggered				
 111 = Extend one-shot event by 7 time base periods (8 time base periods total) 110 = Extend one-shot event by 6 time base periods (7 time base periods total) 101 = Extend one-shot event by 4 time base periods (6 time base periods total) 100 = Extend one-shot event by 4 time base periods (6 time base periods total) 101 = Extend one-shot event by 4 time base periods (3 time base periods total) 101 = Extend one-shot event by 2 time base periods (3 time base periods total) 101 = Extend one-shot event by 2 time base periods (3 time base periods total) 101 = Extend one-shot event by 1 time base periods (3 time base periods total) 101 = Extend one-shot event by 1 time base period (2 time base periods total) 101 = Extend one-shot event by 1 time base period (2 time base periods total) 101 = Extend one-shot event by 1 time base period (2 time base periods total) 101 = Extend one-shot event by 1 time base period (2 time base periods total) 101 = Extend one-shot event by 1 time base period (2 time base periods total) 111 = Reserved 112 = Dutput pin polarity is active-low 113 = Output Pins, OCXA, OCXC and OCXE, Polarity Control bit 114 = Output pin polarity is active-low 12 = Output pin polarity is active-low 13 = Output pin polarity is active-low <l< td=""><td></td><td colspan="10"></td></l<>												
 110 = Extend one-shot event by 6 time base periods (7 time base periods total) 101 = Extend one-shot event by 5 time base periods (5 time base periods total) 100 = Extend one-shot event by 4 time base periods (5 time base periods total) 101 = Extend one-shot event by 2 time base periods (2 time base periods total) 101 = Extend one-shot event by 1 time base periods (2 time base periods total) 100 = Do not extend one-shot Trigger event 111 Unimplemented: Read as '0' 111 = Reserved 111 = Reserved 111 = Reserved 110 = Brush DC Output mode, forward 100 = Brush DC Output mode, forward 100 = Steerable Single Output mode 001 = Push-Puil Output mode 001 = Exterd exterved 002 = Steerable Single Output mode 003 = Steerable Single Output mode 004 = Output pin polarity is active-low 0 = Output pin polarity is active-logh 11 = Pins are driven active when a shutdown event occurs 0 = Pins are driven active when a shutdown event occurs 0 = Pins are driven active when a shutdown event occurs 0 = Pins are driven active when a shutdown event occurs 10 = Pins are driven active when a shutdown event occurs 0 = Pins are driven active when a shutdown event occurs 0 = Pins are driven active when a shutdown event occurs 0 = Pins are driven active when a shutdown event occurs 	bit 14-12	OSCNT<2:0>	: One-Shot Ev	ent Count bits								
 101 = Extend one-shot event by 5 time base periods (6 time base periods total) 100 = Extend one-shot event by 4 time base periods (5 time base periods total) 011 = Extend one-shot event by 2 time base periods (3 time base periods total) 010 = Extend one-shot event by 2 time base periods (3 time base periods total) 011 = Extend one-shot event by 2 time base periods (3 time base periods total) 011 = Extend one-shot event by 1 time base periods (3 time base periods total) 011 = Extend one-shot event by 1 time base periods (3 time base periods total) 011 = Extend one-shot event by 1 time base periods (3 time base periods total) 011 = Extend one-shot event by 1 time base periods (3 time base periods total) 011 = Extend one-shot event by 1 time base periods (3 time base periods total) 011 = Extend one-shot event by 1 time base periods (3 time base periods total) 011 = Extend one-shot event by 2 time base periods (3 time base periods total) 011 = Extend one-shot event by 2 time base periods (3 time base periods total) 011 = Dot ot extend one-shot event by 2 time base periods (3 time base periods total) 011 = Brush DC Output Mode Control bits⁽¹⁾ 111 = Reserved 111 = Reserved 110 = Output Scan mode 101 = Brush DC Output mode, forward 100 = Brush DC Output mode 010 = Half-Bridge Output mode 010 = Half-Bridge Output mode 011 = Push-Pull Output pins, OCXA, OCXC and OCXE, Polarity Control bit 1 = Output pin polarity is active-low 0 = Output pin polarity is active-low 0 = Output pin polarity is active-low 0 = Output pin polarity is active-logh 0 = Output pin polarity is active-logh 0 = Dins are driven active when a shutdown event occurs 0 =												
 100 = Extend one-shot event by 4 time base periods (5 time base periods total) 011 = Extend one-shot event by 3 time base periods (4 time base periods total) 010 = Extend one-shot event by 1 time base periods (2 time base periods total) 000 = Do not extend one-shot Trigger event bit 11 Unimplemented: Read as '0' bit 10-8 OUTM<2:0>: PWMx Output Mode Control bits⁽¹⁾ 111 = Reserved 110 = Output Scan mode 110 = Brush DC Output mode, forward 100 = Brush DC Output mode, reverse 011 = Reserved 010 = Half-Bridge Output mode 000 = Steerable Single Output mode 000 = Steerable Single Output Pins, OCXA, OCXC and OCXE, Polarity Control bit 1 = Output pin polarity is active-low 0 = Dutput pin polarity is active-low 0 = Dutput pin polarity is active-low 0 = Dutput pin polarity is active-low 0 = Output pin polarity is active-low 0 = Dutput pin polarity is active-low 0 = Dutput pin polarity is active-low 0 = Output pin polarity is active-low 0 = Dutput pin polarity is active-low 0 = Dutput pin polarity is active-low 0 = Dutput pin set active when a shutdown event occurs 0 = Pins are driven active when a shutdown event occurs 0 = Pins are driven active when a shutdown event occurs 0 = Pins are driven active when a shutdown event occurs 0 = Pins are driven active when a shutdown event occurs 0 = Pins are driven inactive when a shutdown event occurs 0 = Pins		110 = Extend one-shot event by 6 time base periods (7 time base periods total)										
 11 = Extend one-shot event by 3 time base periods (4 time base periods total) 10 = Extend one-shot event by 2 time base periods (3 time base periods total) 11 = Extend one-shot Trigger event bit 11 Unimplemented: Read as '0' bit 10-8 OUTM<2:0>: PWMx Output Mode Control bits⁽¹⁾ 11 = Reserved 10 = Output Scan mode 10 = Brush DC Output mode, forward 100 = Brush DC Output mode, reverse 011 = Reserved 010 = Half-Bridge Output mode 011 = Reserved 010 = Steerable Single Output mode 011 = Output pin polarity is active-low 011 = Pins are driven active when a shutdown event occurs 011 = Pins are driven active when a shutdown event occurs 011 = Pins are driven active when a shutdown event occurs 011 = Pins are driven active when a shutdown event occurs 011 = Pins are driven active when a shutdown event occurs 												
 100 = Extend one-shot event by 2 time base periods (3 time base periods total) 001 = Extend one-shot event by 1 time base period (2 time base periods total) 000 = Do not extend one-shot Trigger event bit 11 Unimplemented: Read as '0' DUTM-2:0>: PWMx Output Mode Control bits⁽¹⁾ 111 = Reserved 100 = Output Scan mode 101 = Brush DC Output mode, forward 100 = Brush DC Output mode, reverse 011 = Reserved 010 = Half-Bridge Output mode 001 = Push-Pull Output mode 000 = Steerable Single Output mode 000 = Steerable Single Output mode 011 = Output pins, OCXA, OCXC and OCXE, Polarity Control bit 1 = Output pin polarity is active-low 0 = Dins are driven active when a shutdown event occurs 0 = Pins are driven active when a shutdown event occurs 0 = Pins are driven active when a shutdown event occurs 0 =												
001 = Extend one-shot event by 1 time base period (2 time base periods total) 000 = Do not extend one-shot Trigger event bit 11 Unimplemented: Read as '0' bit 10-8 OUTM<2:0>: PWMx Output Mode Control bits ⁽¹⁾ 111 = Reserved 110 = Output Scan mode 101 = Dutput Scan mode 101 = Brush DC Output mode, forward 100 = Brush DC Output mode, forward 100 = Brush DC Output mode 011 = Reserved 010 = Half-Bridge Output mode 010 = Half-Bridge Output mode 000 = Steerable Single Output mode 001 = Push-Pull Output prins, OCXA, OCXC and OCXE, Polarity Control bit 1 1 = Output pin polarity is active-low 0 0 = Dins are driven ac		010 = Extend one-shot event by 2 time base periods (3 time base periods total)										
bit 11 Unimplemented: Read as '0' bit 10-8 OUTM<2:0>: PWMx Output Mode Control bits ⁽¹⁾ 111 = Reserved 110 = Output Scan mode 101 = Brush DC Output mode, forward 100 = Brush DC Output mode, reverse 011 = Reserved 010 = Half-Bridge Output mode 010 = Half-Bridge Output mode 001 = Push-Pull Output mode 000 = Steerable Single Output mode 000 = Steerable Single Output mode 000 = Steerable Single Output mode 000 = Steerable Single Output mode bit 7-6 Unimplemented: Read as '0' bit 5 POLACE: CCPx Output Pins, OCxA, OCxC and OCxE, Polarity Control bit 1 = Output pin polarity is active-low 0 = Output pin polarity is active-low 0 = Output pin polarity is active-low 0 = Output pin polarity is active-low 0 = Output pin polarity is active-low 0 = Output pin polarity is active-low 0 = Output pin polarity is active-low 0 = Output pin polarity is active-low 0 = Output pin polarity is active-low 0 = Output pin polarity is active-low 0 = Output pin polarity is active-low 0 = Output pin polarity is active-low 0 = Output pin polarity is active-low 0 = Output pin polarity is active-low 0 = Dins are driven active when a shutdown event occurs 0 = Pins are driven inactive		001 = Extend one-shot event by 1 time base period (2 time base periods total)										
bit 10-8 OUTM-2:0>: PWMx Output Mode Control bits ⁽¹⁾ 111 = Reserved 110 = Output Scan mode 101 = Brush DC Output mode, forward 100 = Brush DC Output mode, reverse 011 = Reserved 010 = Half-Bridge Output mode 010 = Half-Bridge Output mode 001 = Push-Pull Output mode 000 = Steerable Single Output mode 000 = Steerable Single Output mode 000 = Steerable Single Output mode 000 = Steerable Single Output mode bit 7-6 Unimplemented: Read as '0' bit 5 POLACE: CCPx Output Pins, OCXA, OCxC and OCxE, Polarity Control bit 1 = Output pin polarity is active-low 0 = Output pin polarity is active-low 0 = Output pin polarity is active-low 0 = Output pin polarity is active-low 0 = Output pin polarity is active-low 0 = Output pin polarity is active-low 0 = Output pin polarity is active-low 0 = Output pin polarity is active-low 0 = Output pin polarity is active-low 0 = Output pin polarity is active-low 0 = Output pin polarity is active-low 0 = Output pin polarity is active-low 0 = Pins are driven active when a shutdown event occurs 10 = Pins are driven active when a shutdown event occurs 0 = Pins are driven active when a shutdown event occurs 0 = Pins are driven active when a shutdown event occurs		000 = Do no	t extend one-sl	not Trigger eve	nt							
 111 = Reserved 110 = Output Scan mode 101 = Brush DC Output mode, forward 100 = Brush DC Output mode, reverse 011 = Reserved 010 = Half-Bridge Output mode 001 = Push-Pull Output mode 000 = Steerable Single Output mode 000 = Steerable Single Output mode 000 = Steerable Single Output mode 011 = Output pin polarity is active-low 0 = Pins are driven a shutdown event occurs 1 = Pins are driven active when a shutdown event occurs 0 = Pins are driven inactive when a shutdown event occurs 0 = Pins are driven active when a shutdown event occurs 0 = Pins are driven active when a shutdown event occurs 0 = Pins are driven active when a shutdown event occurs 0 = Pins are driven active when a shutdown event occurs 0 = Pins are driven active when a shutdown event occurs 0 = Pins are driven active when a shutdown event occurs 0 = Pins are driven active when a shutdown event occurs 0 = Pins are driven active when a shutdown event occurs 0 = Pins are driven active when a shutdown event occurs 	bit 11	•										
 110 = Output Scan mode 101 = Brush DC Output mode, forward 100 = Brush DC Output mode, reverse 011 = Reserved 010 = Half-Bridge Output mode 001 = Push-Pull Output mode 000 = Steerable Single Output Pins, OCXA, OCXC and OCXE, Polarity Control bit 1 = Output pin polarity is active-low 0 = Output pin polarity is active-logic 0 = Output pin polarity is active-logic 0 = Pins are driven active when a shutdown event occurs 1 = Pins are driven inactive when a shutdown event occurs 0 = Pins are tri-stated when a shutdown event occurs 0 = Pins are driven active when a shutdown event occurs 1 = Pins are driven active when a shutdown event occurs 0 = Pins are driven active when a shutdown event occurs 1 = Pins are driven active when a shutdown event occurs 0 = Pins are driven active when a shutdown event occurs 0 = Pins are driven active when a shutdown event occurs 	bit 10-8	OUTM<2:0>: PWMx Output Mode Control bits ⁽¹⁾										
 101 = Brush DC Output mode, forward 100 = Brush DC Output mode, reverse 011 = Reserved 010 = Half-Bridge Output mode 001 = Push-Pull Output mode 000 = Steerable Single Output mode 000 = Steerable Single Output mode 000 = Steerable Single Output mode bit 7-6 Unimplemented: Read as '0' bit 5 POLACE: CCPx Output Pins, OCxA, OCxC and OCxE, Polarity Control bit 1 = Output pin polarity is active-low 0 = Output pin polarity is active-high bit 4 POLBDF: CCPx Output Pins, OCxB, OCxD and OCxF, Polarity Control bit⁽¹⁾ 1 = Output pin polarity is active-low 0 = Pins are driven active when a shutdown event occurs 0 = Pins are driven inactive when a shutdown event occurs 0 = Pins are driven active when a shutdown event occurs 0 = Pins are driven active when a shutdown event occurs 1 = Pins are driven active when a shutdown event occurs 0 = Pins are driven inactive when a shutdown event occurs 1 = Pins are driven inactive when a shutdown event occurs 0 = Pins are driven inactive when a shutdown event occurs 												
100 = Brush DC Output mode, reverse 011 = Reserved 010 = Half-Bridge Output mode 001 = Push-Pull Output mode 000 = Steerable Single Output mode 000 = Steerable Single Output mode bit 7-6 Unimplemented: Read as '0' bit 5 POLACE: CCPx Output Pins, OCxA, OCxC and OCxE, Polarity Control bit 1 = Output pin polarity is active-low 0 0 = Output pin sective hen a shutdown event occurs 11 = Pins are driven active when a shutdown event occurs 0 = Pins are tri-stated when a shutdown event occurs 0x = Pins are driven active when a shutdown event occurs 10 = Pins are driven active when a shutdo				de ferrierd								
011 = Reserved 010 = Half-Bridge Output mode 001 = Push-Pull Output mode 000 = Steerable Single Output mode bit 7-6 Unimplemented: Read as '0' POLACE: CCPx Output Pins, OCxA, OCxC and OCxE, Polarity Control bit 1 = Output pin polarity is active-low 0 = Output pin polarity is active-high bit 4 POLBDF: CCPx Output Pins, OCxB, OCxD and OCxF, Polarity Control bit ⁽¹⁾ 1 = Output pin polarity is active-low 0 = Pins are driven active when a shutdown event occurs 10 = Pins are driven inactive when a shutdown event occurs 0x = Pins are driven active when a shutdown event occurs 10 = Pins are driven active when a shutdown event occurs												
001 = Push-Pull Output mode 000 = Steerable Single Output mode bit 7-6 Unimplemented: Read as '0' bit 5 POLACE: CCPx Output Pins, OCxA, OCxC and OCxE, Polarity Control bit 1 = Output pin polarity is active-low 0 = Output pin polarity is active-high bit 4 POLBDF: CCPx Output Pins, OCxB, OCxD and OCxF, Polarity Control bit ⁽¹⁾ 1 = Output pin polarity is active-low 0 = Output pin polarity is active-low 0 = Output pin polarity is active-low 0 = Output pin polarity is active-low 0 = Output pin polarity is active-low 0 = Output pin polarity is active-low 0 = Output pin polarity is active-low 0 = Output pin polarity is active-low 0 = Output pin polarity is active-low 0 = Output pin polarity is active-low 0 = Output pin polarity is active-low 0 = Output pin polarity is active-low 0 = Output pin polarity is active-low 0 = Output pin polarity is active-low 0 = Pins are driven active when a shutdown event occurs 0x = Pins are driven inactive when a shutdown event occurs 0x = Pins are driven inactive when a shutdown event occurs 0x = Pins are driven active when a shutdown event occurs 11 = Pins are driven active when a shutdown event occurs 10 = Pins are driven inactive when a shutdown event occurs 10 = Pins are driven inactive when a shutdown event oc		•										
 bit 7-6 Unimplemented: Read as '0' poLACE: CCPx Output Pins, OCxA, OCxC and OCxE, Polarity Control bit = Output pin polarity is active-low = Output pin polarity is active-high bit 4 poLBDF: CCPx Output Pins, OCxB, OCxD and OCxF, Polarity Control bit⁽¹⁾ = Output pin polarity is active-high bit 4 poLBDF: CCPx Output Pins, OCxB, OCxD and OCxF, Polarity Control bit⁽¹⁾ = Output pin polarity is active-low = Output pin polarity is active-low = Output pin polarity is active-high bit 3-2 pSSACE<1:0>: PWMx Output Pins, OCxA, OCxC and OCxE, Shutdown State Control bits = Pins are driven active when a shutdown event occurs = Pins are tri-stated when a shutdown event occurs = Pins are driven active when a shutdown event occurs = Pins are driven active when a shutdown event occurs = Pins are driven active when a shutdown event occurs = Pins are driven active when a shutdown event occurs = Pins are driven active when a shutdown event occurs = Pins are driven active when a shutdown event occurs = Pins are driven active when a shutdown event occurs = Pins are driven active when a shutdown event occurs = Pins are driven active when a shutdown event occurs = Pins are driven inactive when a shutdown event occurs = Pins are driven inactive when a shutdown event occurs = Pins are driven inactive when a shutdown event occurs = Pins are driven ina		010 = Half-Br	ridge Output m	ode								
 bit 7-6 Unimplemented: Read as '0' bit 5 POLACE: CCPx Output Pins, OCxA, OCxC and OCxE, Polarity Control bit 1 = Output pin polarity is active-low 0 = Output pin polarity is active-high bit 4 POLBDF: CCPx Output Pins, OCxB, OCxD and OCxF, Polarity Control bit⁽¹⁾ 1 = Output pin polarity is active-low 0 = Output pin polarity is active-low 0 = Output pin polarity is active-high bit 3-2 PSSACE<1:0>: PWMx Output Pins, OCxA, OCxC and OCxE, Shutdown State Control bits 11 = Pins are driven active when a shutdown event occurs 0 = Pins are tri-stated when a shutdown event occurs 0 x = Pins are tri-stated when a shutdown event occurs 10 = Pins are driven active when a shutdown event occurs 11 = Pins are driven active when a shutdown event occurs 0 x = Pins are tri-stated when a shutdown event occurs 10 = Pins are driven active when a shutdown event occurs 11 = Pins are driven active when a shutdown event occurs 12 = Pins are driven active when a shutdown event occurs 13 = Pins are driven active when a shutdown event occurs 14 = Pins are driven active when a shutdown event occurs 15 = Pins are driven active when a shutdown event occurs 16 = Pins are driven active when a shutdown event occurs 17 = Pins are driven inactive when a shutdown event occurs 18 = Pins are driven active when a shutdown event occurs 19 = Pins are driven inactive when a shutdown event occurs 10 = Pins are driven inactive when a shutdown event occurs 10 = Pins are driven inactive when a shutdown event occurs 10 = Pins are driven inactive when a shutdown event occurs 19 = Pins are driven inactive when a shutdown event occurs 10 = Pins are driven inactive when a shutdown event occurs 10 = Pins are driven inactive when a shutdown event occurs 10 = Pins are driven inactive when a shutdown event occurs 10 = Pins are driven inactive when a shutdown event occurs 10 = Pins are driven inactive when a shutdown event occurs 10 = Pins are driven inactive when a shutdown event occurs 10 = Pins ar		001 = Push-Pull Output mode										
bit 5 POLACE: CCPx Output Pins, OCxA, OCxC and OCxE, Polarity Control bit 1 = Output pin polarity is active-low 0 = Output pin polarity is active-high bit 4 POLBDF: CCPx Output Pins, OCxB, OCxD and OCxF, Polarity Control bit ⁽¹⁾ 1 = Output pin polarity is active-low 0 = Output pin polarity is active-high bit 3-2 PSSACE<1:0>: PWMx Output Pins, OCxA, OCxC and OCxE, Shutdown State Control bits 11 = Pins are driven active when a shutdown event occurs 0 = Pins are driven inactive when a shutdown event occurs bit 1-0 PSSBDF<1:0>: PWMx Output Pins, OCxB, OCxD, and OCxF, Shutdown State Control bits ⁽¹⁾ 11 = Pins are driven active when a shutdown event occurs 0x = Pins are tri-stated when a shutdown event occurs bit 1-0 PSSBDF<1:0>: PWMx Output Pins, OCxB, OCxD, and OCxF, Shutdown State Control bits ⁽¹⁾ 11 = Pins are driven active when a shutdown event occurs 10 = Pins are driven active when a shutdown event occurs 10 = Pins are driven active when a shutdown event occurs 10 = Pins are driven inactive when a shutdown event occurs		000 = Steera l	ble Single Outp	out mode								
 1 = Output pin polarity is active-low 0 = Output pin polarity is active-high bit 4 POLBDF: CCPx Output Pins, OCxB, OCxD and OCxF, Polarity Control bit⁽¹⁾ 1 = Output pin polarity is active-low 0 = Output pin polarity is active-high bit 3-2 PSSACE<1:0>: PWMx Output Pins, OCxA, OCxC and OCxE, Shutdown State Control bits 11 = Pins are driven active when a shutdown event occurs 10 = Pins are driven inactive when a shutdown event occurs 0x = Pins are tri-stated when a shutdown event occurs bit 1-0 PSSBDF<1:0>: PWMx Output Pins, OCxB, OCxD, and OCxF, Shutdown State Control bits⁽¹⁾ 11 = Pins are driven active when a shutdown event occurs bit 1-0 PSSBDF<1:0>: PWMx Output Pins, OCxB, OCxD, and OCxF, Shutdown State Control bits⁽¹⁾ 11 = Pins are driven active when a shutdown event occurs 10 = Pins are driven active when a shutdown event occurs 	bit 7-6	-										
 0 = Output pin polarity is active-high bit 4 POLBDF: CCPx Output Pins, OCxB, OCxD and OCxF, Polarity Control bit⁽¹⁾ 1 = Output pin polarity is active-low 0 = Output pin polarity is active-high bit 3-2 PSSACE<1:0>: PWMx Output Pins, OCxA, OCxC and OCxE, Shutdown State Control bits 1 = Pins are driven active when a shutdown event occurs 0 = Pins are driven inactive when a shutdown event occurs 0 = Pins are tri-stated when a shutdown event occurs bit 1-0 PSSBDF<1:0>: PWMx Output Pins, OCxB, OCxD, and OCxF, Shutdown State Control bits⁽¹⁾ Pins are driven active when a shutdown event occurs D = Pins are driven active when a shutdown event occurs D = Pins are driven active when a shutdown event occurs D = Pins are driven active when a shutdown event occurs D = Pins are driven active when a shutdown event occurs D = Pins are driven active when a shutdown event occurs D = Pins are driven active when a shutdown event occurs	bit 5		-		C and OCxE, P	olarity Control	bit					
bit 4 POLBDF: CCPx Output Pins, OCxB, OCxD and OCxF, Polarity Control bit ⁽¹⁾ 1 = Output pin polarity is active-low 0 = Output pin polarity is active-high bit 3-2 PSSACE<1:0>: PWMx Output Pins, OCxA, OCxC and OCxE, Shutdown State Control bits 11 = Pins are driven active when a shutdown event occurs 10 = Pins are driven inactive when a shutdown event occurs 0x = Pins are tri-stated when a shutdown event occurs 0x = Pins are tri-stated when a shutdown event occurs bit 1-0 PSSBDF<1:0>: PWMx Output Pins, OCxB, OCxD, and OCxF, Shutdown State Control bits ⁽¹⁾ 11 = Pins are driven active when a shutdown event occurs 11 = Pins are driven active when a shutdown event occurs bit 1-0 PSSBDF<1:0>: PWMx Output Pins, OCxB, OCxD, and OCxF, Shutdown State Control bits ⁽¹⁾ 11 = Pins are driven active when a shutdown event occurs 10 = Pins are driven inactive when a shutdown event occurs 10 = Pins are driven inactive when a shutdown event occurs 10 = Pins are driven inactive when a shutdown event occurs												
 1 = Output pin polarity is active-low 0 = Output pin polarity is active-high bit 3-2 PSSACE<1:0>: PWMx Output Pins, OCxA, OCxC and OCxE, Shutdown State Control bits 11 = Pins are driven active when a shutdown event occurs 10 = Pins are driven inactive when a shutdown event occurs 0x = Pins are tri-stated when a shutdown event occurs bit 1-0 PSSBDF<1:0>: PWMx Output Pins, OCxB, OCxD, and OCxF, Shutdown State Control bits⁽¹⁾ 11 = Pins are driven active when a shutdown event occurs 10 = Pins are driven active when a shutdown event occurs 	bit 4			-) and OCxF P	olarity Control b	_{Dit} (1)					
 0 = Output pin polarity is active-high bit 3-2 PSSACE<1:0>: PWMx Output Pins, OCxA, OCxC and OCxE, Shutdown State Control bits 11 = Pins are driven active when a shutdown event occurs 10 = Pins are driven inactive when a shutdown event occurs 0x = Pins are tri-stated when a shutdown event occurs bit 1-0 PSSBDF<1:0>: PWMx Output Pins, OCxB, OCxD, and OCxF, Shutdown State Control bits⁽¹⁾ 11 = Pins are driven active when a shutdown event occurs 10 = Pins are driven active when a shutdown event occurs 10 = Pins are driven active when a shutdown event occurs 10 = Pins are driven inactive when a shutdown event occurs 10 = Pins are driven inactive when a shutdown event occurs 10 = Pins are driven inactive when a shutdown event occurs												
 11 = Pins are driven active when a shutdown event occurs 10 = Pins are driven inactive when a shutdown event occurs 0x = Pins are tri-stated when a shutdown event occurs bit 1-0 PSSBDF<1:0>: PWMx Output Pins, OCxB, OCxD, and OCxF, Shutdown State Control bits⁽¹⁾ 11 = Pins are driven active when a shutdown event occurs 10 = Pins are driven inactive when a shutdown event occurs 												
 10 = Pins are driven inactive when a shutdown event occurs 0x = Pins are tri-stated when a shutdown event occurs bit 1-0 PSSBDF<1:0>: PWMx Output Pins, OCxB, OCxD, and OCxF, Shutdown State Control bits⁽¹⁾ 11 = Pins are driven active when a shutdown event occurs 10 = Pins are driven inactive when a shutdown event occurs 	bit 3-2	PSSACE<1:0)>: PWMx Outp	out Pins, OCxA	, OCxC and O	CxE, Shutdowr	State Control	bits				
0x = Pins are tri-stated when a shutdown event occurs bit 1-0 PSSBDF<1:0>: PWMx Output Pins, OCxB, OCxD, and OCxF, Shutdown State Control bits ⁽¹⁾ 11 = Pins are driven active when a shutdown event occurs 10 = Pins are driven inactive when a shutdown event occurs		11 = Pins are	driven active	when a shutdov	vn event occur	s						
bit 1-0 PSSBDF<1:0>: PWMx Output Pins, OCxB, OCxD, and OCxF, Shutdown State Control bits ⁽¹⁾ 11 = Pins are driven active when a shutdown event occurs 10 = Pins are driven inactive when a shutdown event occurs						urs						
11 = Pins are driven active when a shutdown event occurs10 = Pins are driven inactive when a shutdown event occurs								(4)				
10 = Pins are driven inactive when a shutdown event occurs	bit 1-0						n State Control I	bits ⁽¹⁾				
ux = Pius ale in a nigh-impedance siale when a shufdown event occurs												
		$\mathbf{U}\mathbf{x} = \mathbf{P} \mathbf{I} \mathbf{n} \mathbf{s} \mathbf{a} \mathbf{r} \mathbf{e}$	in a nign-impe	cuance state wr	ien a snutdowi	i eveni occurs						

Note 1: These bits are implemented in MCCPx modules only.

1 = AN6(1) 0 = AN5 ⁽²⁾ 1 = AN4 0 = AN3 1 = AN2 0 = AN1 1 = AN0 0 = AVss 10SB<4:0>: 111 = Unin 110 = AVb 101 = AVs	S(3)	annel 0 Negati Positive Input	'0' = Bit is clea	bits	x = Bit is unkn	CH0SB0 bit 8 R/W-0 CH0SA0 bit 0
CH0NA1 CH0NB<2:0>:1 1 = AN6 ⁽¹⁾ 0 = AN5 ⁽²⁾ 1 = AN4 0 = AN3 1 = AN2 0 = AN1 1 = AN0 0 = AVss 10SB<4:0>:1 111 = Unin 110 = AVD1 101 = AVss	CH0NA0 W = Writable I '1' = Bit is set : Sample B Cha : S/H Amplifier mplemented, do D(3) S(3)	CH0SA4 bit annel 0 Negati Positive Input	CH0SA3 U = Unimplem '0' = Bit is clea ve Input Select	CH0SA2 hented bit, read ared bits	CH0SA1 I as '0' x = Bit is unkn	R/W-0 CH0SA0 bit (
CH0NA1 CH0NB<2:0>:1 1 = AN6 ⁽¹⁾ 0 = AN5 ⁽²⁾ 1 = AN4 0 = AN3 1 = AN2 0 = AN1 1 = AN0 0 = AVss 10SB<4:0>:1 111 = Unin 110 = AVD1 101 = AVss	CH0NA0 W = Writable I '1' = Bit is set : Sample B Cha : S/H Amplifier mplemented, do D(3) S(3)	CH0SA4 bit annel 0 Negati Positive Input	CH0SA3 U = Unimplem '0' = Bit is clea ve Input Select	CH0SA2 hented bit, read ared bits	CH0SA1 I as '0' x = Bit is unkn	CH0SA0 bit (
CH0NA1 CH0NB<2:0>:1 1 = AN6 ⁽¹⁾ 0 = AN5 ⁽²⁾ 1 = AN4 0 = AN3 1 = AN2 0 = AN1 1 = AN0 0 = AVss 10SB<4:0>:1 111 = Unin 110 = AVD1 101 = AVss	CH0NA0 W = Writable I '1' = Bit is set : Sample B Cha : S/H Amplifier mplemented, do D(3) S(3)	CH0SA4 bit annel 0 Negati Positive Input	CH0SA3 U = Unimplem '0' = Bit is clea ve Input Select	CH0SA2 hented bit, read ared bits	CH0SA1 I as '0' x = Bit is unkn	CH0SA0 bit (
IONB<2:0>: 1 = AN6 ⁽¹⁾ 0 = AN5 ⁽²⁾ 1 = AN4 0 = AN3 1 = AN2 0 = AN1 1 = AN0 0 = AVss IOSB<4:0>: 111 = Unin 110 = AVD 101 = AVss	W = Writable I '1' = Bit is set : Sample B Cha : S/H Amplifier nplemented, do D(3) S(3)	bit annel 0 Negati Positive Input	U = Unimplem '0' = Bit is clea ve Input Select	nented bit, read ared bits	x = Bit is unkn	bit (
IONB<2:0>: 1 = AN6 ⁽¹⁾ 0 = AN5 ⁽²⁾ 1 = AN4 0 = AN3 1 = AN2 0 = AN1 1 = AN0 0 = AVss IOSB<4:0>: 111 = Unin 110 = AVD 101 = AVss	'1' = Bit is set : Sample B Cha : S/H Amplifier nplemented, do D(3) S(3)	annel 0 Negati Positive Input	'0' = Bit is clea	bits	x = Bit is unkn	iown
IONB<2:0>: 1 = AN6 ⁽¹⁾ 0 = AN5 ⁽²⁾ 1 = AN4 0 = AN3 1 = AN2 0 = AN1 1 = AN0 0 = AVss IOSB<4:0>: 111 = Unin 110 = AVD 101 = AVss	'1' = Bit is set : Sample B Cha : S/H Amplifier nplemented, do D(3) S(3)	annel 0 Negati Positive Input	'0' = Bit is clea	bits	x = Bit is unkn	iown
IONB<2:0>: 1 = AN6 ⁽¹⁾ 0 = AN5 ⁽²⁾ 1 = AN4 0 = AN3 1 = AN2 0 = AN1 1 = AN0 0 = AVss IOSB<4:0>: 111 = Unin 110 = AVD 101 = AVss	: Sample B Cha : S/H Amplifier nplemented, do D ⁽³⁾ S ⁽³⁾	Positive Input	'0' = Bit is clea	bits	x = Bit is unkn	iown
1 = AN6(1) 0 = AN5 ⁽²⁾ 1 = AN4 0 = AN3 1 = AN2 0 = AN1 1 = AN0 0 = AVss 10SB<4:0>: 111 = Unin 110 = AVb 101 = AVs	: S/H Amplifier nplemented, do _D (3) _S (3)	Positive Input			Setting bits	
111 = Unin 110 = AVD 101 = AVs	nplemented, do _D (3) _S (3)	-	Select for MUX	B Multiplexer S	Setting bits	
011 = Low 010 = Inter 000-11001 001 = No c 111 = No c 100 = Char 010 = Char 001 = Char 001 = Char 001 = Char 001 = Char 100 = Char 111 = Char 100 = Char 101 = Char	rer guardband r rnal Band Gap L = Unimplement channels are co channels are co channels are co channels are co s not require the nnel 0 positive nnel 0 positive	Reference (Vented, do not us onnected, all in onnected, all in onnected, all in e correspondir input is AN21 input is AN20 input is AN19 input is AN19 input is AN17 input is AN17	D) G)(3) e puts are floating puts are floating outs are floating g CTMEN22 (# 2) 2)	(used for CTN (used for CTN	MU) IU temperature	sensor input;
	010 = Inte 000-11001 001 = No (111 = No (110 = No (101 = Cha 100 = Cha 001 = Cha 001 = Cha 001 = Cha 001 = Cha 101 = Cha 101 = Cha 101 = Cha 101 = Cha 001 = Cha 001 = Cha 001 = Cha 001 = Cha 001 = Cha 001 = Cha	 010 = Internal Band Gap 000-11001 = Unimplement 001 = No channels are conditional to channels are conditional to channels are condoes not require th 101 = Channel 0 positive 101 = Channel 0 positive 001 = Channel 0 positive 111 = Channel 0 positive 112 = Channel 0 positive 113 = Channel 0 positive 114 = Channel 0 positive 115 = Channel 0 positive 116 = Channel 0 positive 117 = Channel 0 positive 118 = Channel 0 positive 119 = Channel 0 positive 110 = Channel 0 positive 111 = Channel 0 positive 112 = Channel 0 positive 113 = Channel 0 positive 114 = Channel 0 positive 115 = Channel 0 positive 116 = Channel 0 positive 117 = Channel 0 positive 118 = Channel 0 positive 119 = Channel 0 positive 110 = Channel 0 positive 111 = Channel 0 positive 112 = Channel 0 positive 113 = Channel 0 positive 114 = Channel 0 positive 115 = Channel 0 positive 115 = Channel 0 positive 116 = Channel 0 positive 117 = Channel 0 positive 118 = Channel 0 positive 119 = Channel 0 positive 110 = Channel 0 positive 111 = Channel 0 positive<	 010 = Internal Band Gap Reference (VB 000-11001 = Unimplemented, do not us 001 = No channels are connected, all in 111 = No channels are connected, all in does not require the correspondin 101 = Channel 0 positive input is AN21 100 = Channel 0 positive input is AN20 011 = Channel 0 positive input is AN19 010 = Channel 0 positive input is AN19 001 = Channel 0 positive input is AN17⁽¹⁾ 001 = Channel 0 positive input is AN8⁽¹⁾ 111 = Channel 0 positive input is AN8⁽¹⁾ 111 = Channel 0 positive input is AN7⁽¹⁾ 110 = Channel 0 positive input is AN8⁽¹⁾ 	 111 = No channels are connected, all inputs are floating does not require the corresponding CTMEN22 (A 101 = Channel 0 positive input is AN21 100 = Channel 0 positive input is AN20 011 = Channel 0 positive input is AN19 010 = Channel 0 positive input is AN19 010 = Channel 0 positive input is AN18⁽²⁾ 001 = Channel 0 positive input is AN17⁽²⁾ 001 = Channel 0 positive input is AN8⁽¹⁾ 111 = Channel 0 positive input is AN8⁽¹⁾ 111 = Channel 0 positive input is AN6⁽¹⁾ 110 = Channel 0 positive input is AN6⁽¹⁾ 101 = Channel 0 positive input is AN5⁽²⁾ 100 = Channel 0 positive input is AN4 011 = Channel 0 positive input is AN3 010 = Channel 0 positive input is AN3 011 = Channel 0 positive input is AN3 012 = Channel 0 positive input is AN3 013 = Channel 0 positive input is AN4 014 = Channel 0 positive input is AN4 015 = Channel 0 positive input is AN3 016 = Channel 0 positive input is AN3 017 = Channel 0 positive input is AN3 018 = Channel 0 positive input is AN3 019 = Channel 0 positive input is AN3 010 = Channel 0 positive input is AN3 010 = Channel 0 positive input is AN3 011 = Channel 0 positive input is AN3 	 010 = Internal Band Gap Reference (VBG)⁽³⁾ 000-11001 = Unimplemented, do not use 001 = No channels are connected, all inputs are floating (used for CTI 111 = No channels are connected, all inputs are floating (used for CTM does not require the corresponding CTMEN22 (AD1CTMENH 101 = Channel 0 positive input is AN21 100 = Channel 0 positive input is AN20 011 = Channel 0 positive input is AN19 010 = Channel 0 positive input is AN19 010 = Channel 0 positive input is AN19 001 = Channel 0 positive input is AN17⁽²⁾ 001 = Channel 0 positive input is AN17⁽¹⁾ 111 = Channel 0 positive input is AN6⁽¹⁾ 111 = Channel 0 positive input is AN5⁽²⁾ 100 = Channel 0 positive input is AN4 011 = Channel 0 positive input is AN4 011 = Channel 0 positive input is AN4 011 = Channel 0 positive input is AN17⁽²⁾ 	 010 = Internal Band Gap Reference (VBG)⁽³⁾ 000-11001 = Unimplemented, do not use 001 = No channels are connected, all inputs are floating (used for CTMU) 111 = No channels are connected, all inputs are floating (used for CTMU) 110 = No channels are connected, all inputs are floating (used for CTMU temperature does not require the corresponding CTMEN22 (AD1CTMENH<6>) bit) 101 = Channel 0 positive input is AN21 100 = Channel 0 positive input is AN19 010 = Channel 0 positive input is AN19 010 = Channel 0 positive input is AN18⁽²⁾ 001 = Channel 0 positive input is AN17⁽²⁾ 001 = Channel 0 positive input is AN8⁽¹⁾ 111 = Channel 0 positive input is AN8⁽¹⁾ 112 = Channel 0 positive input is AN8⁽¹⁾ 113 = Channel 0 positive input is AN8⁽¹⁾ 114 = Channel 0 positive input is AN8⁽¹⁾ 115 = Channel 0 positive input is AN8⁽¹⁾ 116 = Channel 0 positive input is AN8⁽¹⁾ 117 = Channel 0 positive input is AN8⁽¹⁾ 118 = Channel 0 positive input is AN8⁽¹⁾ 119 = Channel 0 positive input is AN8⁽¹⁾ 111 = Channel 0 positive input is AN8⁽¹⁾ 112 = Channel 0 positive input is AN8⁽¹⁾ 113 = Channel 0 positive input is AN8⁽¹⁾ 114 = Channel 0 positive input is AN8⁽¹⁾ 115 = Channel 0 positive input is AN8⁽¹⁾ 116 = Channel 0 positive input is AN8⁽²⁾ 117 = Channel 0 positive input is AN8⁽²⁾ 118 = Channel 0 positive input is AN4 119 = Channel 0 positive input is AN3 110 = Channel 0 positive input is AN3 111 = Channel 0 positive input is AN3 112 = Channel 0 positive input is AN3 114 = Channel 0 positive input is AN3 115 = Channel 0 positive input is AN3 115 = Channel 0 positive input is AN1 115 = Channel 0 positive input is AN1 115 = Channel 0 positive input is AN1 116 = Channe

3: The band gap value used for this input is 2x or 4x the internal VBG, which is selected when PVCFG<1:0> = 1x.

REGISTER 19-5: AD1CHS: A/D SAMPLE SELECT REGISTER

DS30003030B-page 218

REGISTER 19-7: AD1CHITL: A/D SCAN COMPARE HIT REGISTER (LOW WORD)⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CHH15	CHH14	CHH13	CHH12	CHH11	CHH10	CHH9	CHH8 ^(2,3)			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CHH7 ^(2,3)	CHH6 ^(2,3)	CHH5 ⁽²⁾	CHH4	CHH3	CHH2	CHH1	CHH0			
bit 7					·		bit 0			
Legend:										
R = Readable	e bit	W = Writable b	pit	U = Unimplemented bit, read as '0'						
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown				
bit 15-0	CHH<15:0>:	A/D Compare H	lit bits ^(2,3)							
	<u>If CM<1:0> = 11:</u>									
	1 = A/D Result Buffer x has been written with data or a match has occurred									

0 = A/D Result Buffer x has not been written with data

For All Other Values of CM<1:0>:

1 = A match has occurred on A/D Result Channel x

0 = No match has occurred on A/D Result Channel x

Note 1: Unimplemented channels are read as '0'.

2: The CHH<8:5> bits are not implemented in 20-pin devices.

3: The CHH<8:6> bits are not implemented in 28-pin devices.

The WDT, prescaler and postscaler are reset:

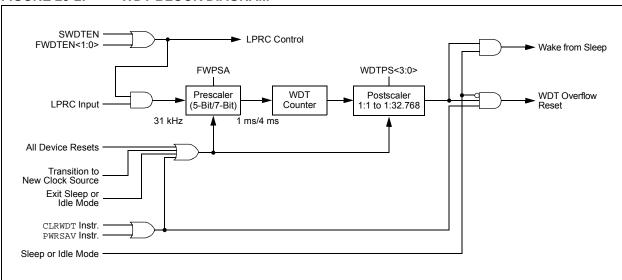
- On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSCx bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

If the WDT is enabled in hardware (FWDTEN<1:0> = 11), it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bit (RCON<3:2>) will need to be cleared in software after the device wakes up.

The WDT Flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

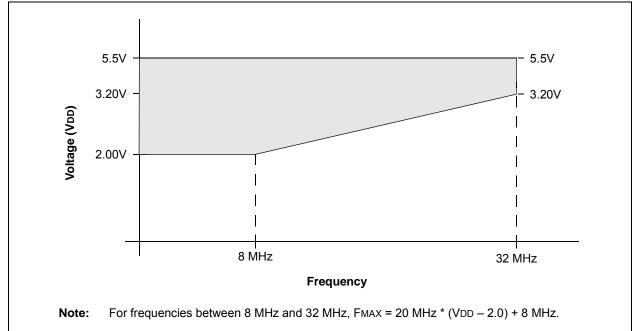
Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

25.3.1 WINDOWED OPERATION

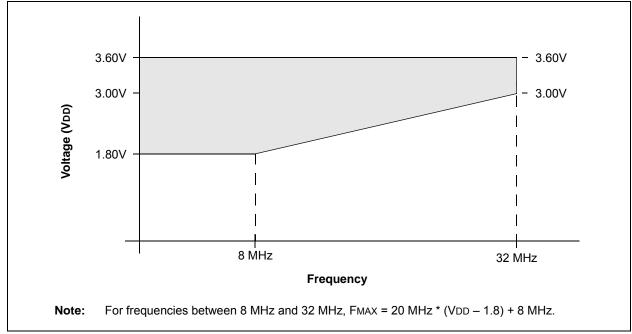

The Watchdog Timer has an optional Fixed Window mode of operation. In this Windowed mode, CLRWDT instructions can only reset the WDT during the last 1/4 of the programmed WDT period. A CLRWDT instruction executed before that window causes a WDT Reset, similar to a WDT time-out.

Windowed WDT mode is enabled by programming the Configuration bit, WINDIS (FWDT<6>), to '0'.

25.3.2 CONTROL REGISTER


The WDT is enabled or disabled by the FWDTEN<1:0> Configuration bits. When both of the FWDTEN<1:0> Configuration bits are set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN<1:0> Configuration bits have been programmed to '10'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user to enable the WDT for critical code segments, and disable the WDT during non-critical segments, for maximum power savings. When the FWDTEN<1:0> bits are set to '01', the WDT is only enabled in Run and Idle modes, and is disabled in Sleep. Software control of the SWDTEN bit (RCON<5>) is disabled with this setting.


FIGURE 25-2: WDT BLOCK DIAGRAM

27.1 DC Characteristics

FIGURE 27-2: PIC24F16KM204 FAMILY VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)

TABLE 27-1: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
Operating Junction Temperature Range	TJ	-40	_	+140	°C
Operating Ambient Temperature Range	TA	-40	_	+125	°C
$\begin{array}{l} \mbox{Power Dissipation} \\ \mbox{Internal Chip Power Dissipation:} \\ \mbox{PINT} = \mbox{VDD } x \ (\mbox{IDD} - \Sigma \ \mbox{IOH}) \\ \mbox{I/O Pin Power Dissipation:} \\ \mbox{PI/O} = \Sigma \ (\{\mbox{VDD} - \mbox{VOH} \} \ x \ \mbox{IOH}) + \Sigma \ (\mbox{VOL } x \ \mbox{IOL}) \end{array}$	PD	PD PINT + PI/O			W
Maximum Allowed Power Dissipation	PDMAX	(TJ — TA)/θJA			W

TABLE 27-2: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Notes
Package Thermal Resistance, 20-Pin PDIP	θја	62.4	_	°C/W	1
Package Thermal Resistance, 28-Pin SPDIP	θJA	60	_	°C/W	1
Package Thermal Resistance, 20-Pin SSOP	θја	108	-	°C/W	1
Package Thermal Resistance, 28-Pin SSOP	θJA	71	—	°C/W	1
Package Thermal Resistance, 20-Pin SOIC	θJA	75	_	°C/W	1
Package Thermal Resistance, 28-Pin SOIC	θJA	80.2	_	°C/W	1
Package Thermal Resistance, 20-Pin QFN	θJA	43	—	°C/W	1
Package Thermal Resistance, 28-Pin QFN	θJA	32	_	°C/W	1
Package Thermal Resistance, 44-Pin QFN	θJA	29	_	°C/W	1
Package Thermal Resistance, 44-Pin TQFP	θJA	40	—	°C/W	1
Package Thermal Resistance, 48-Pin UQFN	θJA	41	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

TABLE 27-3: DC CHARACTERISTICS: TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHA	Standard Operating Conditions				is: 1.8V to 3.6V (PIC24F16KMXXX) 2.0V to 5.5V (PIC24FV16KMXXX) $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended		
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DC10	Vdd	Supply Voltage	1.8	—	3.6	V	For PIC24F devices
			2.0	_	5.5	V	For PIC24FV devices
DC12	Vdr	RAM Data Retention	1.6	_	—	V	For PIC24F devices
		Voltage ⁽²⁾	1.8	—	—	V	For PIC24FV devices
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	Vss	—	0.7	V	
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.05	_	—	V/ms	0-3.3V in 0.1s 0-2.5V in 60 ms

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: This is the limit to which VDD can be lowered without losing RAM data.

TABLE 27-4: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS

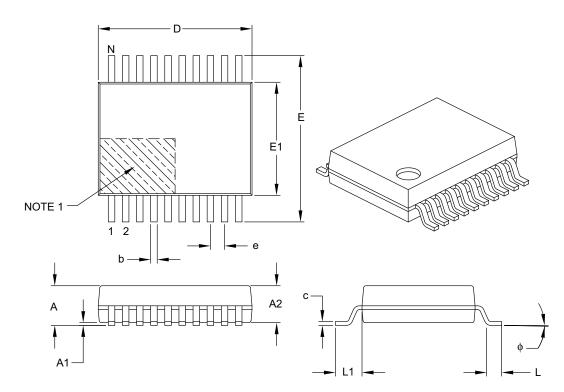
	Standard Operating Conditions: 1.8V to 3.6V (PIC24F16KM204)2.0V to 5.5V (PIC24FV16KM204)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended									
Param No.	Symbol	Chara	octeristic	Min	Тур	Max	Units	Conditions		
DC18	Vhlvd	HLVD Voltage on	HLVDL<3:0> = 0000 ⁽²⁾	_	—	1.90	V			
		VDD Transition	HLVDL<3:0> = 0001	1.88	-	2.13	V			
			HLVDL<3:0> = 0010	2.09	-	2.35	V			
			HLVDL<3:0> = 0011	2.25		2.53	V			
			HLVDL<3:0> = 0100	2.35	-	2.62	V			
			HLVDL<3:0> = 0101	2.55	_	2.84	V			
			HLVDL<3:0> = 0110	2.80		3.10	V			
			HLVDL<3:0> = 0111	2.95	-	3.25	V			
			HLVDL<3:0> = 1000	3.09	-	3.41	V			
			HLVDL<3:0> = 1001	3.27	—	3.59	V			
			HLVDL<3:0> = 1010 ⁽¹⁾	3.46		3.79	V			
			HLVDL<3:0> = 1011 ⁽¹⁾	3.62		4.01	V			
			HLVDL<3:0> = 1100 ⁽¹⁾	3.91	—	4.26	V			
			HLVDL<3:0> = 1101 ⁽¹⁾	4.18		4.55	V			
			HLVDL<3:0> = 1110 ⁽¹⁾	4.49		4.87	V			

Note 1: These trip points should not be used on PIC24FXXKMXXX devices.

2: This trip point should not be used on PIC24FVXXKMXXX devices.

TABLE 27-5:BOR TRIP POINTS

Param No. Sym Cha			eristic	Min	Тур	Max	Units	Conditions	
DC15		BOR Hysteresis			5	_	mV		
DC19	DC19 BOR Voltage		BORV<1:0> = 00	—	_	_	_	Valid for LPBOR (Note 1)	
		Transition	BORV<1:0> = 01	2.90	3	3.38	V		
			BORV<1:0> = 10	2.53	2.7	3.07	V		
			BORV<1:0> = 11	1.75	1.85	2.05	V	(Note 2)	
			BORV<1:0> = 11	1.95	2.05	2.16	V	(Note 3)	


Note 1: LPBOR re-arms the POR circuit but does not cause a BOR.

2: This is valid for PIC24F (3.3V) devices.

3: This is valid for PIC24FV (5V) devices.

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimensio	Dimension Limits					
Number of Pins	Ν		20			
Pitch	е		0.65 BSC			
Overall Height	А	-	-	2.00		
Molded Package Thickness	A2	1.65	1.75	1.85		
Standoff	A1	0.05	_	_		
Overall Width	E	7.40	7.80	8.20		
Molded Package Width	E1	5.00	5.30	5.60		
Overall Length	D	6.90	7.20	7.50		
Foot Length	L	0.55	0.75	0.95		
Footprint	L1	1.25 REF				
Lead Thickness	с	0.09	_	0.25		
Foot Angle	φ	0°	4°	8°		
Lead Width	b	0.22	-	0.38		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-072B

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (February 2013)

Original data sheet for the PIC24FV16KM204 family of devices.

Revision B (July 2013)

Updates all references to PGCx and PGDx pin functions throughout the document to PGECx and PGEDx.

Updates **Section 4.0 "Memory Organization"** to change bit 12 in the following registers to reserved ("r" designation):

- CCP1CON1L (Table 4-8)
- CCP2CON1L (Table 4-9)
- CCP3CON1L (Table 4-10)
- CCP4CON1L (Table 4-11)
- CCP5CON1L (Table 4-12)

Updates Section 13.0 "Capture/Compare/PWM/ Timer Modules (MCCP and SCCP)":

- Replaces bit 12 of CCPxCON1L (CCPSLP) and its description with a reserved bit
- Removes references to asynchronous operation in Sleep mode (and in other occurrences throughout the document)
- Modifies Section 13.1 "Time Base Generator" to add synchronous operation limitations; adds Table 13-1 to list valid clock options for all operating modes
- Removes the system clock as a time base input option
- Removes external input sources, comparators and CTMU as synchronization sources in Table 13-6; clarifies that other selected sources must be synchronous

Removes the input buffer from the band gap reference input in Figure 20-1.

Adds BUFCON0 register description (Register 20-2) to Section 20.0 "8-Bit Digital-to-Analog Converter (DAC)".

Changes references to internal band gap voltages (VBG, VBG/2 and BGBUF0) in Section 20.0 "8-Bit Digital-to-Analog Converter (DAC)" and Section 22.0 "Comparator Module" to BGBUF1.

Adds minimum VDD conditions for VBG specification in Table 27-15 (Internal Voltage Regulator Specifications).

Other minor typographical corrections throughout the document.

NOTES: