

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-><F

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 19x10b/12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08km202-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		N	lemory	1						Pe	riphe	rals					
Device	Pins	Flash Program (bytes)	SRAM (bytes)	EE Data (bytes)	Voltage Range (V)	16-Bit Timer	16-Bit MCCP/SCCP	MSSP	UART	12-Bit A/D Channels	8-Bit DAC	Op Amp	Comparators	CTMU	RTCC	CLC	ICD BRKPT
						5V	Devic	es									
PIC24FV16KM204	44	16K	2K	512	2.0-5.5	1	3/2	2	2	22	2	2	3	Yes	Yes	2	3
PIC24FV16KM202	28	16K	2K	512	2.0-5.5	1	3/2	2	2	19	2	2	3	Yes	Yes	2	3
PIC24FV08KM204	44	8K	2K	512	2.0-5.5	1	3/2	2	2	22	2	2	3	Yes	Yes	2	3
PIC24FV08KM202	28	8K	2K	512	2.0-5.5	1	3/2	2	2	19	2	2	3	Yes	Yes	2	3
PIC24FV16KM104	44	16K	1K	512	2.0-5.5	1	1/1	1	1	22	—	_	1	Yes	_	1	3
PIC24FV16KM102	28	16K	1K	512	2.0-5.5	1	1/1	1	1	19	_	_	1	Yes	_	1	3
PIC24FV08KM102	28	8K	1K	512	2.0-5.5	1	1/1	1	1	19	_	_	1	Yes	_	1	3
PIC24FV08KM101	20	8K	1K	512	2.0-5.5	1	1/1	1	1	16	_	-	1	Yes	_	1	3
						3V	Devic	es									
PIC24F16KM204	44	16K	2K	512	1.8-3.6	1	3/2	2	2	22	2	2	3	Yes	Yes	2	3
PIC24F16KM202	28	16K	2K	512	1.8-3.6	1	3/2	2	2	19	2	2	3	Yes	Yes	2	3
PIC24F08KM204	44	8K	2K	512	1.8-3.6	1	3/2	2	2	22	2	2	3	Yes	Yes	2	3
PIC24F08KM202	28	8K	2K	512	1.8-3.6	1	3/2	2	2	19	2	2	3	Yes	Yes	2	3
PIC24F16KM104	44	16K	1K	512	1.8-3.6	1	1/1	1	1	22	_	—	1	Yes	—	1	3
PIC24F16KM102	28	16K	1K	512	1.8-3.6	1	1/1	1	1	19	_	_	1	Yes	_	1	3
PIC24F08KM102	28	8K	1K	512	1.8-3.6	1	1/1	1	1	19	—	—	1	Yes	—	1	3
PIC24F08KM101	20	8K	1K	512	1.8-3.6	1	1/1	1	1	16			1	Yes	_	1	3

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

Microchip's Worldwide Web site; http://www.microchip.com

Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

TABLE 1-5: PIC24FV16KM204 FAMILY PINOUT DESCRIPTION (CONTINUED)

			F					FV					
		I	Pin Numb	er				Pin Numb	er				
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	I/O	Buffer	Description
CN13	16	24	21	11	12	16	24	21	11	12	I	ST	Interrupt-on-Change Inputs
CN14	15	23	20	10	11	15	23	20	10	11	I	ST	Interrupt-on-Change Inputs
CN15	—	22	19	9	10	—	22	19	9	10	I	ST	Interrupt-on-Change Inputs
CN16	_	21	18	8	9	_	21	18	8	9	I	ST	Interrupt-on-Change Inputs
CN17	—	—		3	3	—		—	3	3	I	ST	Interrupt-on-Change Inputs
CN18	—	—		2	2	—		—	2	2	I	ST	Interrupt-on-Change Inputs
CN19	—	—		5	5	—		—	5	5	I	ST	Interrupt-on-Change Inputs
CN20	—	—		4	4	—		—	4	4	I	ST	Interrupt-on-Change Inputs
CN21	13	18	15	1	1	13	18	15	1	1	I	ST	Interrupt-on-Change Inputs
CN22	12	17	14	44	48	12	17	14	44	48	I	ST	Interrupt-on-Change Inputs
CN23	11	16	13	43	47	11	16	13	43	47	I	ST	Interrupt-on-Change Inputs
CN24	—	15	12	42	46	—	15	12	42	46	I	ST	Interrupt-on-Change Inputs
CN25	_	_		37	40	_		_	37	40	I	ST	Interrupt-on-Change Inputs
CN26	_	_		38	41	_		_	38	41	I	ST	Interrupt-on-Change Inputs
CN27	_	14	11	41	45	_	14	11	41	45	I	ST	Interrupt-on-Change Inputs
CN28	—	—		36	39	—		—	36	39	I	ST	Interrupt-on-Change Inputs
CN29	8	10	7	31	34	8	10	7	31	34	I	ST	Interrupt-on-Change Inputs
CN30	7	9	6	30	33	7	9	6	30	33	I	ST	Interrupt-on-Change Inputs
CN31	—	—		26	28	—		—	26	28	I	ST	Interrupt-on-Change Inputs
CN32	—	—		25	27	—		—	25	27	I	ST	Interrupt-on-Change Inputs
CN33	—	—		32	35	—		—	32	35	I	ST	Interrupt-on-Change Inputs
CN34	_	_	_	35	38	_		_	35	38	I	ST	Interrupt-on-Change Inputs
CN35	_	_	_	12	13	_		_	12	13	I	ST	Interrupt-on-Change Inputs
CN36	_	_	_	13	14	_		_	13	14	I	ST	Interrupt-on-Change Inputs
CTCMP	4	4	1	21	23	4	4	1	21	23	I	ANA	CTMU Comparator Input

Legend: ANA = Analog level input/output, ST = Schmitt Trigger input buffer, $I^2C^{TM} = I^2C/SMBus$ input buffer

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with Data Memory Space Addressing and makes it possible to access data in the program memory space.

4.1.2 HARD MEMORY VECTORS

All PIC24F devices reserve the addresses between 00000h and 000200h for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user at 000000h with the actual address for the start of code at 000002h.

PIC24F devices also have two Interrupt Vector Tables, located from 000004h to 0000FFh, and 000104h to 0001FFh. These vector tables allow each of the many device interrupt sources to be handled by separate ISRs. **Section 8.1 "Interrupt Vector Table (IVT)**" discusses the Interrupt Vector Tables in more detail.

4.1.3 DATA EEPROM

In the PIC24FV16KM204 family, the data EEPROM is mapped to the top of the user program memory space, starting at address, 7FFE00, and expanding up to address, 7FFFF.

The data EEPROM is organized as 16-bit-wide memory and 256 words deep. This memory is accessed using Table Read and Write operations similar to the user code memory.

4.1.4 DEVICE CONFIGURATION WORDS

Table 4-1 provides the addresses of the device Configuration Words for the PIC24FV16KM204 family. Their location in the memory map is displayed in Figure 4-1.

Refer to **Section 25.1** "**Configuration Bits**" for more information on device Configuration Words.

TABLE 4-1: DEVICE CONFIGURATION WORDS FOR PIC24FXXXXX FAMILY DEVICES

Configuration Word	Configuration Word Addresses
FBS	F80000
FGS	F80004
FOSCSEL	F80006
FOSC	F80008
FWDT	F8000A
FPOR	F8000C
FICD	F8000E

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION msw most significant word least significant word PC Address (Isw Address) Address 16 8 Λ 23 000000h 000001h 00000000 0000000 000002h 000003h 000004h 00000000 000005h 0000000 000006h 000007h Instruction Width Program Memory Phantom' Byte (read as '0')

TABLE 4-21: PORTA REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11 ^(4,5)	Bit 10 ^(4,5)	Bit 9 ^(4,5)	Bit 8 ^(4,5)	Bit 7 ⁽⁴⁾	Bit 6 ⁽³⁾	Bit 5 ⁽²⁾	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	2C0h		_	_	_	TRISA11	TRISA10	TRISA9	TRISA8	TRISA7	TRISA6	_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	0FDF ⁽¹⁾
PORTA	2C2h	-	—	—		RA11	RA10	RA9	RA8	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx
LATA	2C4h	-	—	—		LATA11	LATA10	LATA9	LATA8	LATA7	LATA6	_	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
ODCA	2C6h	_	—	_	_	ODA11	ODA10	ODA9	ODA8	ODA7	ODA6	_	ODA4	ODA3	ODA2	ODA1	ODA0	0000

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved.

Note 1: Reset value depends on the device type; the PIC24F16KM204 value is shown.

2: These bits are only available when MCLRE (FPOR<7>) = 0.

3: These bits are not implemented in FV devices.

4: These bits are not implemented in 20-pin devices.

5: These bits are not implemented in 28-pin devices.

TABLE 4-22: PORTB REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11 ⁽²⁾	Bit 10 ⁽²⁾	Bit 9	Bit 8	Bit 7	Bit 6 ⁽²⁾	Bit 5 ⁽²⁾	Bit 4	Bit 3 ⁽²⁾	Bit 2	Bit 1	Bit 0	All Resets
TRISB	2C8h	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	_{FFFF} (1)
PORTB	2CAh	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	2CCh	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	2CEh	ODB15	ODB14	ODB13	ODB12	ODB11	ODB10	ODB9	ODB8	ODB7	ODB6	ODB5	ODB4	ODB3	ODB2	ODB1	ODB0	0000

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved.

Note 1: Reset value depends on the device type; the PIC24F16KM204 value is shown.

2: These bits are not implemented in 20-pin devices.

TABLE 4-23: PORTC REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9 ^(2,3)	Bit 8 ^(2,3)	Bit 7 ^(2,3)	Bit 6 ^(2,3)	Bit 5 ^(2,3)	Bit 4 ^(2,3)	Bit 3 ^(2,3)	Bit 2 ^(2,3)	Bit 1 ^(2,3)	Bit 0 ^(2,3)	All Resets
TRISC	2D0h		_		_	—	_	TRISC9	TRISC8	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	03FF ⁽¹⁾
PORTC	2D2h	—	_	_	-	—	_	RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx
LATTC	2D4h	—	_	_	-	—	_	LATC9	LATC8	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xxxx
ODCC	2D6h	_	_	—	-	—	_	ODC9	ODC8	ODC7	ODC6	ODC5	ODC4	ODC3	ODC2	ODC1	ODC0	0000

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition, r = reserved.

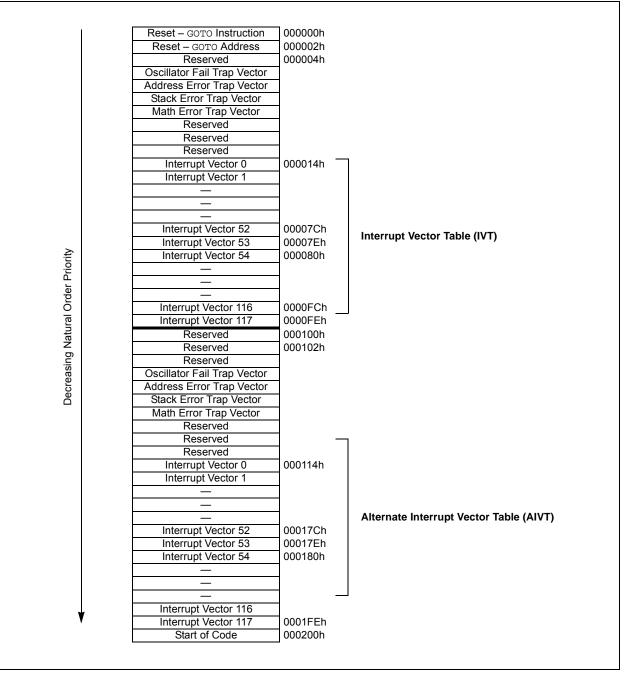
Note 1: Reset value depends on the device type; the PIC24F16KM204 value is shown.

2: These bits are not implemented in 20-pin devices.

3: These bits are not implemented in 28-pin devices.

REGISTER 5-1: NVMCON: FLASH MEMORY CONTROL REGISTER

R/SO-0, HC	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
WR	WREN	WRERR	PGMONLY ⁽⁴⁾	—	—	—	—
bit 15							bit 8


U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	ERASE	NVMOP5 ⁽¹⁾	NVMOP4 ⁽¹⁾	NVMOP3 ⁽¹⁾	NVMOP2 ⁽¹⁾	NVMOP1 ⁽¹⁾	NVMOP0 ⁽¹⁾
bit 7							bit 0

Legend:	SO = Settable Only bit	HC = Hardware Clearable b	it
-n = Value at POR	'1' = Bit is set	R = Readable bit	W = Writable bit
'0' = Bit is cleared	x = Bit is unknown	U = Unimplemented bit, rea	d as '0'

bit 15	WR: Write Control bit
	1 = Initiates a Flash memory program or erase operation; the operation is self-timed and the bit is
	cleared by hardware once the operation is complete
	0 = Program or erase operation is complete and inactive
bit 14	WREN: Write Enable bit
	1 = Enables Flash program/erase operations
	0 = Inhibits Flash program/erase operations
bit 13	WRERR: Write Sequence Error Flag bit
	1 = An improper program or erase sequence attempt, or termination has occurred (bit is set automatically
	on any set attempt of the WR bit)
	0 = The program or erase operation completed normally
bit 12	PGMONLY: Program Only Enable bit ⁽⁴⁾
bit 11-7	Unimplemented: Read as '0'
bit 6	ERASE: Erase/Program Enable bit
	 1 = Performs the erase operation specified by the NVMOP<5:0> bits on the next WR command 0 = Performs the program operation specified by the NVMOP<5:0> bits on the next WR command
bit 5-0	NVMOP<5:0>: Programming Operation Command Byte bits ⁽¹⁾
	Erase Operations (when ERASE bit is '1'):
	1010xx = Erase entire boot block (including code-protected boot block) ⁽²⁾
	1001xx = Erase entire memory (including boot block, configuration block, general block) ⁽²⁾
	011010 = Erase 4 rows of Flash memory ⁽³⁾
	011001 = Erase 2 rows of Flash memory ⁽³⁾
	011000 = Erase 1 row of Flash memory ⁽³⁾
	0101xx = Erase entire configuration block (except code protection bits)
	0100xx = Erase entire data EEPROM ⁽⁴⁾
	0011xx = Erase entire general memory block programming operations
	0001xx = Write 1 row of Flash memory (when ERASE bit is '0') ⁽³⁾
Note 1:	All other combinations of NVMOP<5:0> are no operation.
2:	Available in ICSP™ mode only. Refer to the device programming specification.
2.	The address in the Table Deinter decides which rows will be created

- 3: The address in the Table Pointer decides which rows will be erased.
- 4: This bit is used only while accessing data EEPROM.

FIGURE 8-1: PIC24F INTERRUPT VECTOR TABLE

U-0 U-0 U-0 U-0 U-0 U-0 U-0 - <t< th=""><th>REGISTER</th><th>9-2: CLKL</th><th>DIV: CLOCK L</th><th></th><th>6151EK</th><th></th><th></th><th></th></t<>	REGISTER	9-2: CLKL	DIV: CLOCK L		6151EK			
bit 15 bit 1 U-0 U-0 U-0 U-0 U-0 U-0 - - - - - - bit 7 bit 10 U-0 U-0 U-0 U-0 Egend: R Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 RO: Recover on Interrupt bit 1 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 0 = Interrupts have no effect on the DOZEN bit bit 14-12 DOZE DOZE 2:0: CPU and Peripheral Clock Ratio Select bits 111 = 1:28 110 = 1:4 101 = 1:28 100 = 1:16 112 100 = 1:16 011 = 1:1 DOZE 2:0: CPU and peripheral clock ratio are set to 1:1 111 = 13:25 kHz (divide-by-26) 110 = 125 kHz (divide-by-32) 100 = 2:0: CPU and peripheral clock ratio are set to 1:1 111 = 31:25 kHz (divide-by-32) 101 = 250 kHz (divide-by-30) 101 = 250 kHz (divide-by-30) 101 = 250 kHz (divide-by-30) 101 = 250 kHz (divide-by-30) 101 = 250 kHz (divide-by-30) 101 = 250 kHz (divide-by-30) 101 = 156 kHz (d	R/W-0	R/W-0	R/W-1	R/W-1		R/W-0	R/W-0	R/W-1
U-0 U-0 U-0 U-0 U-0 U-0 U-0 -	ROI	DOZE2	DOZE1	DOZE0	DOZEN ⁽¹⁾	RCDIV2	RCDIV1	RCDIV0
- -	bit 15							bit 8
- -	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 ROI: Recover on Interrupt bit 1 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 0 = Interrupts have no effect on the DOZEN bit bit 14-12 DOZE-2:0-: CPU and Peripheral Clock Ratio Select bits 111 = 1:128 110 = 1:64 110 = 1:132 100 = 1:16 011 = 1:3 100 = 1:16 011 = 1:2 000 = 1:1 bit 11 DOZEN: Doze Enable bit ⁽¹⁾ 1 = DOZE-2:0-> bits specify the CPU and peripheral clock ratio 0 = CPU and peripheral clock ratio are set to 1:1 bit 10-8 RCDIV-2:0->: FRC Postscaler Select bits When COSC-2:0-> (OSCCON<14:12>) = 111: 111 = 31.25 kHz (divide-by-256) 110 = 125 kHz (divide-by-2) 100 = 500 kHz (divide-by-2) 100 = 2 MHz (divide-by-2) - default 001 = 4 MHz (divide-by-2) - default 001 = 4 MHz (divide-by-2) 100 = 8 MHz (divide-by-2) 100 = 15 kHz (divide-by-2) 100 = 15 kHz (divide-by-2) 100 = 125 kHz (divide-by-	0-0	0-0	0-0	0-0	0-0	0-0	0-0	0-0
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 ROI: Recover on Interrupt bit 1 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 0 = Interrupts have no effect on the DOZEN bit bit 14-12 DOZE-2:0>: CPU and Peripheral Clock Ratio Select bits 111 = 1:128 101 = 1:64 101 = 1:32 100 = 1:16 001 = 1:1 000 = 1:11 DOZEN: Doze Enable bit ⁽¹⁾ 1 = DOZE<2:0>: Dits specify the CPU and peripheral clock ratio 0 = CPU and peripheral clock ratio are set to 1:1 bit 10 DOZEN: Doze Enable bit ⁽¹⁾ 1 = DOZE 1 = 1:2 000 = 1:1 111 = 31.25 kHz (divide-by-256) 1 = 250 kHz (divide-by-256) 111 = 31.25 kHz (divide-by-256) 1 = 255 kHz (divide-by-32) 100 = 500 kHz (divide-by-32) 1 = 1 = 255 kHz (divide-by-32) 100 = 2 MHz (divide-by-41) 1 = 1 = 152 kHz (divide-by-32) 100 = 2 MHz (divide-by-32) 1 = 1 = 15 kHz (divide-by-32) 110 = 15.62 kHz (divide-by-256) 1 = 1 = 12 + 12 (divide-by-41) 111 = 1.5 kHz (divide-by-42) 1 = 1 = 1 = 1.5 kHz (divide-by-22) - default 100 = 8 MHz (divide-by-42) = 110: </td <td>bit 7</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>bit 0</td>	bit 7							bit 0
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 ROI: Recover on Interrupt bit 1 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 0 = Interrupts have no effect on the DOZEN bit bit 14-12 DOZE-2:0>: CPU and Peripheral Clock Ratio Select bits 111 = 1:128 101 = 1:64 101 = 1:32 100 = 1:16 001 = 1:1 000 = 1:11 DOZEN: Doze Enable bit ⁽¹⁾ 1 = DOZE<2:0>: Dits specify the CPU and peripheral clock ratio 0 = CPU and peripheral clock ratio are set to 1:1 bit 10 DOZEN: Doze Enable bit ⁽¹⁾ 1 = DOZE 1 = 1:2 000 = 1:1 111 = 31.25 kHz (divide-by-256) 1 = 250 kHz (divide-by-256) 111 = 31.25 kHz (divide-by-256) 1 = 255 kHz (divide-by-32) 100 = 500 kHz (divide-by-32) 1 = 1 = 255 kHz (divide-by-32) 100 = 2 MHz (divide-by-41) 1 = 1 = 152 kHz (divide-by-32) 100 = 2 MHz (divide-by-32) 1 = 1 = 15 kHz (divide-by-32) 110 = 15.62 kHz (divide-by-256) 1 = 1 = 12 + 12 (divide-by-41) 111 = 1.5 kHz (divide-by-42) 1 = 1 = 1 = 1.5 kHz (divide-by-22) - default 100 = 8 MHz (divide-by-42) = 110: </td <td>Logondu</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Logondu							
<pre>in = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 ROI: Recover on Interrupt bit 1 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 0 = Interrupts have no effect on the DOZEN bit bit 14-12 DOZE-2:0>: CPU and Peripheral Clock Ratio Select bits 111 = 1:128 110 = 1:64 101 = 1:32 100 = 1:1 001 = 1:4 001 = 1:2 000 = 1:1 bit 11 DOZEN: Doze Enable bit⁽¹⁾ 1 = DOZE-2:0> bits specify the CPU and peripheral clock ratio 0 = CPU and peripheral clock ratio are set to 1:1 bit 10-8 RCDIVe2:0>: FRC Postscaler Select bits When COSC<2:0> (OSCCON(14:12>) = 111: 111 = 31.25 kHz (divide-by-266) 110 = 125 kHz (divide-by-4) 011 = 150 kHz (divide-by-4) 011 = 150 kHz (divide-by-4) 011 = 15.8 kHz (divide-by-4) 011 = 15.8 kHz (divide-by-4) 101 = 15.62 kHz (divide-by-256) 110 = 7.81 kHz (divide-by-4) 011 = 62.5 kHz (divide-by-4) 011 = 25 kHz (divide-by-4) 011 = 15.62 kHz (divide-by-4) 011 = 25 kHz (divide-by-4) 011 = 25 kHz (divide-by-4) 011 = 15.62 kHz (divide-by-4) 011 = 15.62 kHz (divide-by-4) 011 = 02.5 kHz (divide-by-4) 011 = 15.62 kHz (divide-by-4) 011 = 15.62 kHz (divide-by-4) 011 = 02.5 kHz (divide-by-4) 011 = 1.5 kHz (divide-by-4) 011 = 0.5 kHz (divide</pre>	-	le bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
bit 15 ROI: Recover on Interrupt bit 1 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 0 = Interrupts have no effect on the DOZEN bit DOZE-2:00: CPU and Peripheral Clock Ratio Select bits 111 = 1:128 110 = 1:64 101 = 1:32 100 = 1:16 011 = 1:8 010 = 1:4 001 = 1:2 000 = 1:1 bit 11 DOZEN: Doze Enable bit ⁽¹⁾ 1 = DOZE-2:00: bits specify the CPU and peripheral clock ratio 0 = CPU and peripheral clock ratio are set to 1:1 bit 10-8 RCDV-2:00: FRC Postscaler Select bits When COSC-2:00: (OSCCON<14:12>) = 111: 111 = 31.25 kHz (divide-by-256) 110 = 125 kHz (divide-by-256) 110 = 125 kHz (divide-by-32) 100 = 500 kHz (divide-by-29) 011 = 1 MHz (divide-by-2) - default 000 = 8 MHz (divide-by-2) - default 101 = 25 kHz (divide-by-26) 110 = 7.81 kHz (divide-by-32) 100 = 7.81 kHz (divide-by-32) 100 = 125 kHz (divide-by-2) - default 001 = 125 kHz (divide-by-2) - default 001 = 125 kHz (divide-by-32) 100 = 125 kHz (divide-by-32) 100 = 125 kHz (divide-by-32) 100 = 125 kHz (divide-by-32) 100 = 7.81 kHz (divide-by-32) 100 = 125 kHz (divide-by-4) 011 = 62.5 kHz (divide-by-4) 011 = 50.5 kHz (divide-by-4) 011 = 15.5 kHz (divide-by-4) 011 = 15.5 kHz (divide-by-4) 011 = 62.5 kHz (divide-by-4) 011 = 6					-			nown
$\begin{array}{llllllllllllllllllllllllllllllllllll$		1 = Interrupts 0 = Interrupts	s clear the DOZ s have no effect	EN bit, and re t on the DOZE	N bit	d peripheral cl	ock ratio to 1:1	
1 = DOZE<2:0> bits specify the CPU and peripheral clock ratio 0 = CPU and peripheral clock ratio are set to 1:1 bit 10-8 $RCDIV<2:0>: FRC Postscaler Select bits When COSC<2:0> (OSCCON<14:12>) = 111: 111 = 31.25 kHz (divide-by-256) 110 = 125 kHz (divide-by-264) 101 = 250 kHz (divide-by-32) 100 = 500 kHz (divide-by-32) 100 = 500 kHz (divide-by-4) 011 = 1 MHz (divide-by-4) 010 = 2 MHz (divide-by-2) - default 000 = 8 MHz (divide-by-2) 100 = 8 MHz (divide-by-2) = 110: 111 = 1.95 kHz (divide-by-256) 110 = 7.81 kHz (divide-by-256) 110 = 7.81 kHz (divide-by-32) 100 = 31.25 kHz (divide-by-3) 100 = 31.25 kHz (divide-by-4) 011 = 125 kHz (divide-by-4) 010 = 125 kHz (divide-by-4) 010 = 125 kHz (divide-by-2) - default 000 = 500 kHz (divide-by-1)$		111 = 1:128 110 = 1:64 101 = 1:32 100 = 1:16 011 = 1:8 010 = 1:4 001 = 1:2						
bit 10-8 RCDIV-2:0>: FRC Postscaler Select bits When COSC<2:0> (OSCCON<14:12>) = 111: 111 = 31.25 kHz (divide-by-256) 110 = 125 kHz (divide-by-64) 101 = 250 kHz (divide-by-32) 100 = 500 kHz (divide-by-16) 011 = 1 MHz (divide-by-8) 010 = 2 MHz (divide-by-8) 010 = 2 MHz (divide-by-2) – default 000 = 8 MHz (divide-by-2) – default 000 = 8 MHz (divide-by-1) When COSC<2:0> (OSCCON<14:12>) = 110: 111 = 1.95 kHz (divide-by-26) 110 = 7.81 kHz (divide-by-32) 100 = 31.25 kHz (divide-by-32) 100 = 31.25 kHz (divide-by-8) 011 = 62.5 kHz (divide-by-8) 010 = 125 kHz (divide-by-4) 011 = 250 kHz (divide-by-2) – default 000 = 500 kHz (divide-by-1)	bit 11	1 = DOZE<2	:0> bits specify			ratio		
	bit 10-8	When COSC 111 = 31.25 K 110 = 125 K 101 = 250 K 100 = 500 K 011 = 1 MHz 010 = 2 MHz 001 = 4 MHz 000 = 8 MHz When COSC 111 = 1.95 K 100 = 7.81 K 101 = 15.62 K 100 = 31.25 K 011 = 62.5 K 010 = 125 K 001 = 250 K	<2:0> (OSCCO kHz (divide-by-2 dz (divide-by-2 dz (divide-by-32 dz (divide-by-32 dz (divide-by-32) (divide-by-4) (divide-by-4) (divide-by-2) - (divide-by-2) - (divide-by-2) - (divide-by-2) - (divide-by-2) - (divide-by-3) dz (divide-by-4) dz (divide-by-4) dz (divide-by-2)	<u>N<14:12>) = 1</u> 256))) default <u>N<14:12>) = 1</u> 56) 4) 32) 16)	-			
	bit 7-0)'				

REGISTER 9-2: CLKDIV: CLOCK DIVIDER REGISTER

Note 1: This bit is automatically cleared when the ROI bit is set and an interrupt occurs.

9.4 Clock Switching Operation

With few limitations, applications are free to switch between any of the four clock sources (POSC, SOSC, FRC and LPRC) under software control and at any time. To limit the possible side effects that could result from this flexibility, PIC24F devices have a safeguard lock built into the switching process.

Note: The Primary Oscillator mode has three different submodes (XT, HS and EC), which are determined by the POSCMDx Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch between the different primary submodes without reprogramming the device.

9.4.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in the FOSC Configuration register must be programmed to '0'. (Refer to **Section 25.0** "**Special Features**" for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and FSCM function are disabled; this is the default setting.

The NOSCx control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSCx bits (OSCCON<14:12>) will reflect the clock source selected by the FNOSCx Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled; it is held at '0' at all times.

9.4.2 OSCILLATOR SWITCHING SEQUENCE

At a minimum, performing a clock switch requires this basic sequence:

- 1. If desired, read the COSCx bits (OSCCON<14:12>) to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- 3. Write the appropriate value to the NOSCx bits (OSCCON<10:8>) for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically, as follows:

- 1. The clock switching hardware compares the COSCx bits with the new value of the NOSCx bits. If they are the same, then the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.
- If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and CF (OSCCON<3>) bits are cleared.
- The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware will wait until the OST expires. If the new source is using the PLL, then the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- 5. The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSCx bits value is transferred to the COSCx bits.
- The old clock source is turned off at this time, with the exception of LPRC (if WDT, FSCM or RTCC with LPRC as a clock source is enabled) or SOSC (if SOSCEN remains enabled).

Note 1: The processor will continue to execute code throughout the clock switching sequence. Timing-sensitive code should not be executed during this time.

2: Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.

10.5 Doze Mode

Generally, changing clock speed and invoking one of the power-saving modes are the preferred strategies for reducing power consumption. There may be circumstances, however, where this is not practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed may introduce communication errors, while using a power-saving mode may stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default.

It is also possible to use Doze mode to selectively reduce power consumption in event driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption. Meanwhile, the CPU Idles, waiting for something to invoke an interrupt routine. Enabling the automatic return to full-speed CPU operation on interrupts is enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

10.6 Selective Peripheral Module Control

Idle and Doze modes allow users to substantially reduce power consumption by slowing or stopping the CPU clock. Even so, peripheral modules still remain clocked, and thus, consume power. There may be cases where the application needs what these modes do not provide: the allocation of power resources to CPU processing with minimal power consumption from the peripherals.

PIC24F devices address this requirement by allowing peripheral modules to be selectively disabled, reducing or eliminating their power consumption. This can be done with two control bits:

- The Peripheral Enable bit, generically named, "XXXEN", located in the module's main control SFR.
- The Peripheral Module Disable (PMD) bit, generically named, "XXXMD", located in one of the PMDx Control registers.

Both bits have similar functions in enabling or disabling its associated module. Setting the PMDx bits for a module, disables all clock sources to that module, reducing its power consumption to an absolute minimum. In this state, the control and status registers associated with the peripheral will also be disabled, so writes to those registers will have no effect, and read values will be invalid. Many peripheral modules have a corresponding PMDx bit.

In contrast, disabling a module by clearing its XXXEN bit, disables its functionality, but leaves its registers available to be read and written to. Power consumption is reduced, but not by as much as when the PMDx bits are used. Most peripheral modules have an enable bit; exceptions include capture, compare and RTCC.

To achieve more selective power savings, peripheral modules can also be selectively disabled when the device enters Idle mode. This is done through the control bit of the generic name format, "XXXIDL". By default, all modules that can operate during Idle mode will do so. Using the disable on Idle feature disables the module while in Idle mode, allowing further reduction of power consumption during Idle mode, enhancing power savings for extremely critical power applications.

REGISTER 11-2: ANSB: PORTB ANALOG SELECTION REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	U-0	U-0	R/W-1	R/W-1
ANSB15	ANSB14	ANSB13	ANSB12	—		ANSB9	ANSB8
bit 15							bit 8

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
ANSB7	ANSB6 ⁽¹⁾	ANSB5 ⁽¹⁾	ANSB4	ANSB3 ⁽¹⁾	ANSB2	ANSB1	ANSB0
bit 7							bit 0

Legend

Legena:				
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-12 **ANSB<15:12>:** Analog Select Control bits 1 = Digital input buffer is not active (use for analog input)

- 0 = Digital input buffer is active
- bit 11-10 Unimplemented: Read as '0'
- bit 9-0 ANSB<9:0>: Analog Select Control bits⁽¹⁾
 - 1 = Digital input buffer is not active (use for analog input)
 - 0 = Digital input buffer is active
- Note 1: The ANSB<6:5,3> bits are not available on 20-pin devices.

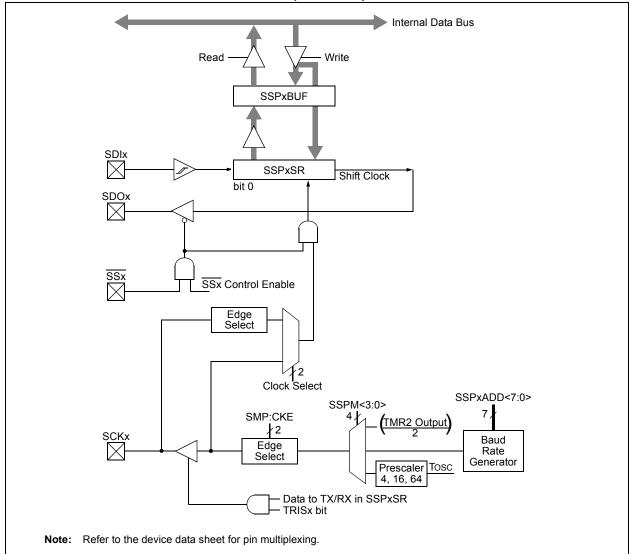
REGISTER 11-3: ANSC: PORTC ANALOG SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1
—	—	—	—	—	ANSC2 ^(1,2)	ANSC1 ^(1,2)	ANSC0 ^(1,2)
bit 7							bit 0
Legend:							

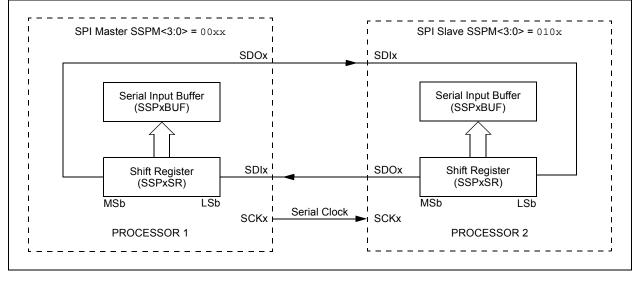
Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

bit 2-0 ANSC<2:0>: Analog Select Control bits^(1,2)


- 1 = Digital input buffer is not active (use for analog input)
- 0 = Digital input buffer is active

Note 1: These bits are not implemented in 20-pin devices.


2: These bits are not implemented in 28-pin devices.

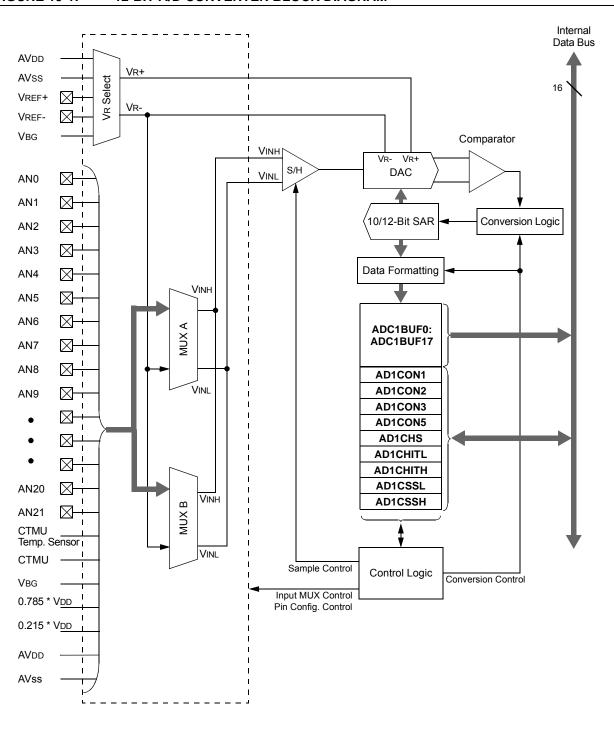

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
TON		TSIDL	—	_	—	TECS1 ⁽¹⁾	TECS0 ⁽¹⁾
bit 15		•	-				bit
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
—	TGATE	TCKPS1	TCKPS0	—	TSYNC	TCS	—
bit 7							bit
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15	TON: Timer1	On bit					
	1 = Starts 16- 0 = Stops 16-						
bit 14	Unimplemen	ted: Read as '	0'				
bit 13	TSIDL: Timer	1 Stop in Idle I	Node bit				
			eration when o ation in Idle mo	device enters lo ode	lle mode		
bit 12-10	Unimplemen	ted: Read as '	0'				
bit 9-8			ed Clock Seled	ct bits ⁽¹⁾			
	11 = Reserve	•	as the sleek s	0.1700			
			as the clock s al Clock (EC)				
				r (SOSC) as th	e clock source		
bit 7	Unimplemen	ted: Read as '	0'				
bit 6			Accumulation	Enable bit			
	When TCS =						
	When TCS = $\frac{1}{2}$						
		<u>o.</u> ne accumulatio	n is enabled				
	0 = Gated tim	ne accumulatio	n is disabled				
bit 5-4	TCKPS<1:0>	: Timer1 Input	Clock Prescale	e Select bits			
	11 = 1:256						
	10 = 1:64 01 = 1:8						
	00 = 1:1						
bit 3	Unimplemen	ted: Read as '	0'				
bit 2	TSYNC: Time	er1 External Cl	ock Input Sync	hronization Se	lect bit		
	<u>When TCS =</u>	<u>1:</u> nizes External	Clock input				
			External Clock	input			
	When TCS =	-					
	This bit is igno	ored.					
bit 1		Clock Source					
			selected by TE	CS<1:0>			
	0 = Internal c						
bit 0	Unimplemen	tod. Dood oo .	Ω'				

FIGURE 19-1: 12-BIT A/D CONVERTER BLOCK DIAGRAM

R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
ADON		ADSIDL		_	MODE12	FORM1	FORM0
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0, HSC	R/C-0, HSC
SSRC3	SSRC2	SSRC1	SSRC0	—	ASAM	SAMP	DONE
bit 7		·			·		bit
Legend:		C = Clearable	bit	U = Unimpler	mented bit, read	d as '0'	
R = Readable	bit	W = Writable	bit	HSC = Hardv	vare Settable/C	learable bit	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15		Operating Mode	hit				
		verter is operat					
	0 = A/D Conv		ing				
bit 14	Unimplemen	ted: Read as '	כ'				
bit 13	ADSIDL: A/D	Stop in Idle Mo	ode bit				
				device enters le	dle mode		
		s module opera		ode			
bit 12-11	Unimplemen	ted: Read as '	כ'				
bit 10		-Bit A/D Operat	ion Mode bit				
	1 = 12-bit A/[0 = 10-bit A/[
bit 9-8	FORM<1:0>:	Data Output F	ormat bits (see	e the following t	formats)		
	10 = Absolute 01 = Decimal	al result, signe e fractional resu result, signed, e decimal resul	ult, unsigned, l right justified				
bit 7-4		Sample Clock					
	1111 = Rese	•					
	•						
	•						
	1101 = Rese						
				arts conversion		vorsion	
					and starts con and starts con		
					and starts con		
				arts conversion			
					sion (auto-conv and starts conve		
				arts conversion			
				tarts conversior			
					and starts con		
	0010 = MCCI	P1 Compare Ev	vent (CCP1IF)	ends sampling	and starts con	version	
		event ends sar					

REGISTER 19-1: AD1CON1: A/DA/D CONTROL REGISTER 1

Note 1: This version of the TMR1 Trigger allows A/D conversions to be triggered from TMR1 while the device is operating in Sleep mode. The SSRC<3:0> = 0101 option allows conversions to be triggered in Run or Idle modes only.

REGISTER 19-5: AD1CHS: A/D SAMPLE SELECT REGISTER (CONTINUED)

- bit 7-5 **CH0NA<2:0>:** Sample A Channel 0 Negative Input Select bits The same definitions as for CHONB<2:0>.
- bit 4-0 **CH0SA<4:0>:** Sample A Channel 0 Positive Input Select bits The same definitions as for CHONA<4:0>.
- Note 1: This is implemented on 44-pin devices only.
 - 2: This is implemented on 28-pin and 44-pin devices only.
 - 3: The band gap value used for this input is 2x or 4x the internal VBG, which is selected when PVCFG<1:0> = 1x.

REGISTER 19-6: AD1CHITH: A/D SCAN COMPARE HIT REGISTER (HIGH WORD)⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CHH23	CHH22	CHH21	CHH20 ⁽²⁾	CHH19 ⁽²⁾	CHH18	CHH17	CHH16
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

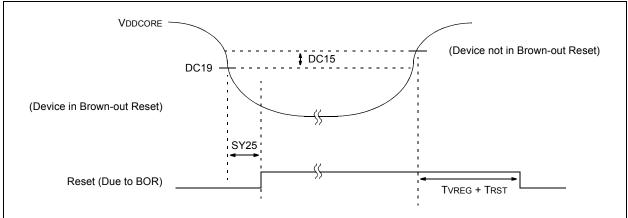
bit 15-8 Unimplemented: Read as '0'.

bit 7-0 CHH<23:16>: A/D Compare Hit bits⁽²⁾

If CM<1:0> = 11:

1 = A/D Result Buffer x has been written with data or a match has occurred

0 = A/D Result Buffer x has not been written with data

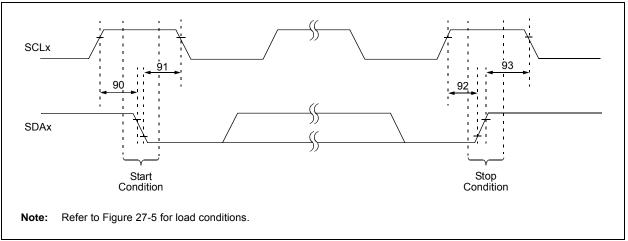

For All Other Values of CM<1:0>:

- 1 = A match has occurred on A/D Result Channel x
- 0 = No match has occurred on A/D Result Channel x

Note 1: Unimplemented channels are read as '0'.

2: The CHH<20:19> bits are not implemented in 20-pin devices.

FIGURE 27-9: BROWN-OUT RESET CHARACTERISTICS


TABLE 27-25:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET TIMING REQUIREMENTS

AC CH	AC CHARACTERISTICS			rd Operating temp	-	$\begin{array}{l} \mbox{ditions: 1.8V to 3.6V (PIC24F16KM204)} \\ \mbox{ 2.0V to 5.5V (PIC24FV16KM204)} \\ \mbox{ -40^{\circ}C \leq TA \leq +85^{\circ}C for Industrial} \\ \mbox{ -40^{\circ}C \leq TA \leq +125^{\circ}C for Extended} \end{array}$		
Param No.	Symbol	Characteristic	Min.	Typ ⁽¹⁾	Max.	Units	Conditions	
SY10	TmcL	MCLR Pulse Width (low)	2	—	_	μs		
SY11	TPWRT	Power-up Timer Period	50	64	90	ms		
SY12	TPOR	Power-on Reset Delay	1	5	10	μS		
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	_	—	100	ns		
SY20	TWDT	Watchdog Timer Time-out	0.85	1.0	1.15	ms	1.32 prescaler	
		Period	3.4	4.0	4.6	ms	1:128 prescaler	
SY25	TBOR	Brown-out Reset Pulse Width	1	—	—	μS		
SY35	TFSCM	Fail-Safe Clock Monitor Delay	—	2.0	2.3	μS		
SY45	TRST	Internal State Reset Time	—	5	_	μS		
SY50	Tvreg	On-Chip Voltage Regulator Output Delay	—	10	_	μS	(Note 2)	
SY55	TLOCK	PLL Start-up Time	_	100		μs		
SY65	Tost	Oscillator Start-up Time	—	1024	_	Tosc		
SY71	Трм	Program Memory Wake-up Time	—	1	_	μS	Sleep wake-up with PMSLP = 0	
SY72	Tlvr	Low-Voltage Regulator Wake-up Time	—	250	_	μS		

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: This applies to PIC24FV16KMXXX devices only.

FIGURE 27-17: MSSPx I²C[™] BUS START/STOP BITS TIMING WAVEFORMS

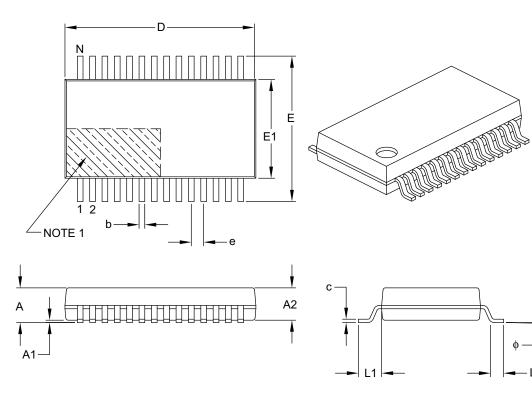


TABLE 27-35:	I ² C [™] BUS START/STOP BITS REQUIREMENTS (MASTER MODE)
--------------	--

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
90	TSU:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)		ns	Only relevant for
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)			Repeated Start condition
91	THD:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	After this period, the
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_		first clock pulse is generated
92	Tsu:sto	Stop Condition	100 kHz mode	de 2(Tosc)(BRG + 1) — ns			
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	—		
93	THD:STO	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_		

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

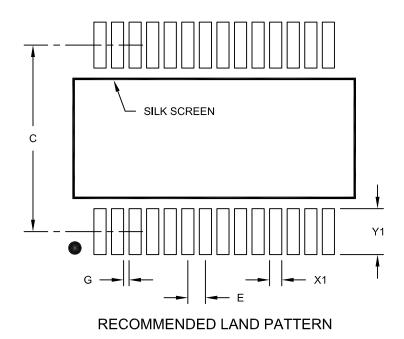
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Number of Pins	Ν	28		
Pitch	е	0.65 BSC		
Overall Height	А	-	-	2.00
Molded Package Thickness	A2	1.65	1.75	1.85
Standoff	A1	0.05	-	_
Overall Width	E	7.40	7.80	8.20
Molded Package Width	E1	5.00	5.30	5.60
Overall Length	D	9.90	10.20	10.50
Foot Length	L	0.55	0.75	0.95
Footprint	L1	1.25 REF		
Lead Thickness	С	0.09	-	0.25
Foot Angle	φ	0°	4°	8°
Lead Width	b	0.22	-	0.38

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.


- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimensio	Dimension Limits		NOM	MAX	
Contact Pitch	E		0.65 BSC		
Contact Pad Spacing	С		7.20		
Contact Pad Width (X28)	X1			0.45	
Contact Pad Length (X28)	Y1			1.75	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A