

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 19x10b/12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08km202t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

This document contains device-specific information for the following devices:

- PIC24FV08KM101 PIC24F08KM101
- PIC24FV08KM102
- PIC24F08KM102
 PIC24F16KM102
- PIC24FV16KM102
- PIC24FV16KM104 PIC24F16KM104
- PIC24FV08KM202 PIC24F08KM202
- PIC24FV08KM204 PIC24F08KM204
- PIC24FV16KM202
- PIC24F16KM202
- PIC24FV16KM204 PIC24F16KM204

The PIC24FV16KM204 family introduces many new analog features to the extreme low-power Microchip devices. This is a 16-bit microcontroller family with a broad peripheral feature set and enhanced computational performance. This family also offers a new migration option for those high-performance applications which may be outgrowing their 8-bit platforms, but do not require the numerical processing power of a Digital Signal Processor (DSC).

1.1 Core Features

1.1.1 16-BIT ARCHITECTURE

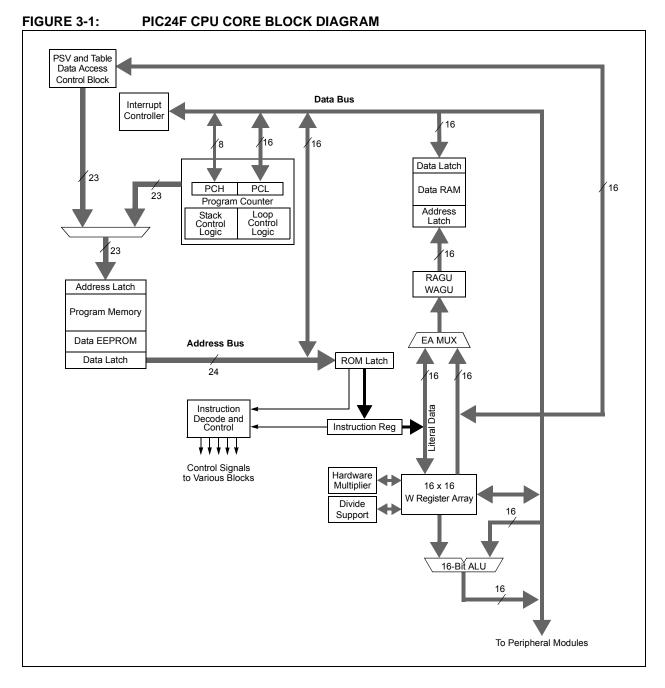
Central to all PIC24F devices is the 16-bit modified Harvard architecture, first introduced with Microchip's $dsPIC^{\textcircled{B}}$ Digital Signal Controllers. The PIC24F CPU core offers a wide range of enhancements, such as:

- 16-bit data and 24-bit address paths with the ability to move information between data and memory spaces
- Linear Addressing of up to 16 Mbytes (program space) and 16 Kbytes (data)
- A 16-element working register array with built-in software stack support
- A 17 x 17 hardware multiplier with support for integer math
- Hardware support for 32-bit by 16-bit division
- An instruction set that supports multiple addressing modes and is optimized for high-level languages, such as C
- Operational performance up to 16 MIPS

1.1.2 POWER-SAVING TECHNOLOGY

All of the devices in the PIC24FV16KM204 family incorporate a range of features that can significantly reduce power consumption during operation. Key features include:

- On-the-Fly Clock Switching, to allow the device clock to be changed under software control to the Timer1 source or the internal, low-power RC Oscillator during operation, allowing users to incorporate power-saving ideas into their software designs.
- Doze Mode Operation, when timing-sensitive applications, such as serial communications, require the uninterrupted operation of peripherals, the CPU clock speed can be selectively reduced, allowing incremental power savings without missing a beat.
- Instruction-Based Power-Saving Modes, to allow the microcontroller to suspend all operations or selectively shut down its core while leaving its peripherals active with a single instruction in software.


1.1.3 OSCILLATOR OPTIONS AND FEATURES

The PIC24FV16KM204 family offers five different oscillator options, allowing users a range of choices in developing application hardware. These include:

- Two Crystal modes using crystals or ceramic resonators.
- Two External Clock (EC) modes offering the option of a divide-by-2 clock output.
- Two Fast Internal Oscillators (FRCs), one with a nominal 8 MHz output and the other with a nominal 500 kHz output. These outputs can also be divided under software control to provide clock speed as low as 31 kHz or 2 kHz.
- A Phase Locked Loop (PLL) frequency multiplier, available to the external oscillator modes and the 8 MHz FRC Oscillator, which allows clock speeds of up to 32 MHz.
- A separate internal RC Oscillator (LPRC) with a fixed 31 kHz output, which provides a low-power option for timing-insensitive applications.

The internal oscillator block also provides a stable reference source for the Fail-Safe Clock Monitor (FSCM). This option constantly monitors the main clock source against a reference signal provided by the internal oscillator and enables the controller to switch to the internal oscillator, allowing for continued low-speed operation or a safe application shutdown.

NOTES:

Register(s) Name	Description
W0 through W15	Working Register Array
PC	23-Bit Program Counter
SR	ALU STATUS Register
SPLIM	Stack Pointer Limit Value Register
TBLPAG	Table Memory Page Address Register
PSVPAG	Program Space Visibility Page Address Register
RCOUNT	Repeat Loop Counter Register
CORCON	CPU Control Register

TABLE 4-29:	COMPARATOR REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMSTAT	630h	CMIDL	_	—	—		C3EVT ⁽¹⁾	C2EVT ⁽¹⁾	C1EVT	—	_	_	—	—	C3OUT ⁽¹⁾	C2OUT ⁽¹⁾	C1OUT	0000
CVRCON	632h	—	_	_	_	_	_	_	_	CVREN	CVROE	CVRSS	CVR4	CVR3	CVR2	CVR1	CVR0	0000
CM1CON	634h	CON	COE	CPOL	CLPWR		_	CEVT	COUT	EVPOL1	EVPOL0	_	CREF1	CREF0	—	CCH1	CCH0	0000
CM2CON ⁽¹⁾	636h	CON	COE	CPOL	CLPWR		—	CEVT	COUT	EVPOL1	EVPOL0	_	CREF1 ⁽¹⁾	CREF0	—	CCH1	CCH0	0000
CM3CON ⁽¹⁾	638h	CON	COE	CPOL	CLPWR		—	CEVT	COUT	EVPOL1	EVPOL0	_	CREF1 ⁽¹⁾	CREF0	—	CCH1	CCH0	0000

 $\label{eq:legend: second condition, u = unchanged, --= unimplemented, q = value depends on condition, r = reserved.$

Note 1: These registers and bits are available only on PIC24F(V)16KM2XX devices.

TABLE 4-30: BAND GAP BUFFER CONTROL REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
BUFCON0	670h		_		_		_	_		_					_	BUFREF1	BUFREF0	0001

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved.

6.0 DATA EEPROM MEMORY

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on data EEPROM, refer to the *"PIC24F Family Reference Manual"*, **"Data EEPROM"** (DS39720).

The data EEPROM memory is a Nonvolatile Memory (NVM), separate from the program and volatile data RAM. Data EEPROM memory is based on the same Flash technology as program memory, and is optimized for both long retention and a higher number of erase/write cycles.

The data EEPROM is mapped to the top of the user program memory space, with the top address at program memory address, 7FFE00h to 7FFFFh. The size of the data EEPROM is 256 words in PIC24FXXXXX devices.

The data EEPROM is organized as 16-bit-wide memory. Each word is directly addressable, and is readable and writable during normal operation over the entire VDD range.

Unlike the Flash program memory, normal program execution is not stopped during a data EEPROM program or erase operation.

The data EEPROM programming operations are controlled using the three NVM Control registers:

- NVMCON: Nonvolatile Memory Control Register
- NVMKEY: Nonvolatile Memory Key Register
- NVMADR: Nonvolatile Memory Address Register

6.1 NVMCON Register

The NVMCON register (Register 6-1) is also the primary control register for data EEPROM program/erase operations. The upper byte contains the control bits used to start the program or erase cycle and the flag bit to indicate if the operation was successfully performed. The lower byte of NVMCOM configures the type of NVM operation that will be performed.

6.2 NVMKEY Register

The NVMKEY is a write-only register that is used to prevent accidental writes or erasures of data EEPROM locations.

To start any programming or erase sequence, the following instructions must be executed first, in the exact order provided:

- 1. Write 55h to NVMKEY.
- 2. Write AAh to NVMKEY.

After this sequence, a write will be allowed to the NVMCON register for one instruction cycle. In most cases, the user will simply need to set the WR bit in the NVMCON register to start the program or erase cycle. Interrupts should be disabled during the unlock sequence.

The MPLAB® C30 C compiler provides a defined library procedure (builtin_write_NVM) to perform the unlock sequence. Example 6-1 illustrates how the unlock sequence can be performed with in-line assembly.

EXAMPLE 6-1: DATA EEPROM UNLOCK SEQUENCE

	rrupts For 5 instruc	ctions
asm volatile	("disi #5");	
//Issue Unlock	Sequence	
asm volatile	("mov #0x55, W0	\n"
	"mov W0, NVMKEY	\n"
	"mov #0xAA, W1	\n"
	"mov W1, NVMKEY	\n");
// Perform Wri	te/Erase operations	
asm volatile	("bset NVMCON, #WR	\n"
	"nop	\n"
	"nop	\n");

6.4.1.1 Data EEPROM Bulk Erase

To erase the entire data EEPROM (bulk erase), the address registers do not need to be configured because this operation affects the entire data EEPROM. The following sequence helps in performing a bulk erase:

- 1. Configure NVMCON to Bulk Erase mode.
- 2. Clear the NVMIF status bit and enable the NVM interrupt (optional).
- 3. Write the key sequence to NVMKEY.
- 4. Set the WR bit to begin the erase cycle.
- 5. Either poll the WR bit or wait for the NVM interrupt (NVMIF is set).

A typical bulk erase sequence is provided in Example 6-3.

6.4.2 SINGLE-WORD WRITE

To write a single word in the data EEPROM, the following sequence must be followed:

- Erase one data EEPROM word (as mentioned in the previous section) if the PGMONLY bit (NVMCON<12>) is set to '1'.
- 2. Write the data word into the data EEPROM latch.
- Program the data word into the EEPROM:
 Configure the NVMCON register to
 - program one EEPROM word (NVMCON<5:0> = 0001xx).
 - Clear the NVMIF status bit and enable the NVM interrupt (optional).
 - Write the key sequence to NVMKEY.
 - Set the WR bit to begin the erase cycle.
 - Either poll the WR bit or wait for the NVM interrupt (NVMIF is set).
 - To get cleared, wait until NVMIF is set.

A typical single-word write sequence is provided in Example 6-4.

EXAMPLE 6-3: DATA EEPROM BULK ERASE

// Set up NVMCON to bulk erase the data EEPROM NVMCON = 0×4050 ;

// Disable Interrupts For 5 Instructions
asm volatile ("disi #5");

// Issue Unlock Sequence and Start Erase Cycle
__builtin_write_NVM();

EXAMPLE 6-4: SINGLE-WORD WRITE TO DATA EEPROM

```
int __attribute__ ((space(eedata))) eeData = 0x1234;
                                                  // New data to write to EEPROM
  int newData;
                        _____
/*_____
The variable eeData must be a Global variable declared outside of any method
the code following this comment can be written inside the method that will execute the write
_ _ _ _ _
* /
  unsigned int offset;
  // Set up NVMCON to erase one word of data EEPROM
  NVMCON = 0 \times 4004;
  // Set up a pointer to the EEPROM location to be erased
  TBLPAG = __builtin_tblpage(&eeData); // Initialize EE Data page pointer
                                                 // Initizlize lower word of address
  offset = __builtin_tbloffset(&eeData);
  __builtin_tblwtl(offset, newData);
                                                 // Write EEPROM data to write latch
  asm volatile ("disi #5");
                                                  // Disable Interrupts For 5 Instructions
   __builtin_write_NVM();
                                                  // Issue Unlock Sequence & Start Write Cycle
  while(NVMCONbits.WR=1);
                                                  // Optional: Poll WR bit to wait for
                                                  // write sequence to complete
```

R/W-0	R-0, HSC	U-0	U-0	U-0	U-0	U-0	U-0	
ALTIVT	DISI	—	—	—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
—	—	—	—	—	INT2EP	INT1EP	INT0EP	
bit 7							bit 0	
Legend:		HSC = Hardw	are Settable/C	learable bit				
R = Readab	le bit	W = Writable b	oit	U = Unimplem	nented bit, read	d as '0'		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown		
bit 15	ALTIVT: Enat	ole Alternate Int	errupt Vector 7	Table bit				
		rnate Interrupt	•	,				
		ndard (default) I	•	r Table (IVT)				
bit 14	21011 2101	struction Status						
		ruction is active						
bit 13-3		ted: Read as '0						
bit 2	•	ernal Interrupt 2		Polarity Solact k	ait			
		s on the negativ	-		JIL			
	•	s on the positive	•					
bit 1		ernal Interrupt 1	•	Polarity Select b	oit			
	1 = Interrupt i	s on the negativ	ve edge	-				
	0 = Interrupt is on the positive edge							
bit 0	INTOEP: Exte	ernal Interrupt 0	Edge Detect F	Polarity Select b	oit			
		s on the negativ	U U					
	0 = Interrupt i	s on the positive	e edge					

REGISTER 8-4: INTCON2: INTERRUPT CONTROL REGISTER 2

9.3 Control Registers

The operation of the oscillator is controlled by three Special Function Registers (SFRs):

- OSCCON
- CLKDIV
- OSCTUN

The OSCCON register (Register 9-1) is the main control register for the oscillator. It controls clock source switching and allows the monitoring of clock sources.

The Clock Divider register (Register 9-2) controls the features associated with Doze mode, as well as the postscaler for the FRC Oscillator.

The FRC Oscillator Tune register (Register 9-3) allows the user to fine-tune the FRC Oscillator over a range of approximately $\pm 5.25\%$. Each bit increment or decrement changes the factory calibrated frequency of the FRC Oscillator by a fixed amount.

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER

U-0	R-0, HSC	R-0, HSC	R-0, HSC	U-0	R/W-x ⁽¹⁾	R/W-x ⁽¹⁾	R/W-x ⁽¹⁾
—	COSC2	COSC1	COSC0	—	NOSC2	NOSC1	NOSC0
bit 15							bit 8

R/SO-0, HSC	U-0	R-0, HSC ⁽²⁾	U-0	R/CO-0, HS	R/W-0 ⁽³⁾	R/W-0	R/W-0
CLKLOCK	—	LOCK	—	CF	SOSCDRV	SOSCEN	OSWEN
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit				
HS = Hardware Settable bit	CO = Clearable Only bit	SO = Settable Only bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15	Unimplemented: Read as '0'
bit 14-12	COSC<2:0>: Current Oscillator Selection bits
	 111 = 8 MHz Fast RC Oscillator with Postscaler (FRCDIV) 110 = 500 kHz Low-Power Fast RC Oscillator (FRC) with Postscaler (LPFRCDIV) 101 = Low-Power RC Oscillator (LPRC) 100 = Secondary Oscillator (SOSC) 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL) 010 = Primary Oscillator (XT, HS, EC) 001 = 8 MHz FRC Oscillator with Postscaler and PLL module (FRCPLL) 000 = 8 MHz FRC Oscillator (FRC)
bit 11	Unimplemented: Read as '0'
bit 10-8	NOSC<2:0>: New Oscillator Selection bits ⁽¹⁾
	 111 = 8 MHz Fast RC Oscillator with Postscaler (FRCDIV) 110 = 500 kHz Low-Power Fast RC Oscillator (FRC) with Postscaler (LPFRCDIV) 101 = Low-Power RC Oscillator (LPRC) 100 = Secondary Oscillator (SOSC) 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL) 010 = Primary Oscillator (XT, HS, EC) 001 = 8 MHz FRC Oscillator with Postscaler and PLL module (FRCPLL) 000 = 8 MHz FRC Oscillator (FRC)
Note 1:	Reset values for these bits are determined by the FNOSCx Configuration bits.
2:	This bit also resets to '0' during any valid clock switch or whenever a non-PLL Clock mode is selected.

3: When SOSC is selected to run from a digital clock input, rather than an external crystal (SOSCSRC = 0), this bit has no effect.

10.2.2 IDLE MODE

Idle mode includes these features:

- · The CPU will stop executing instructions.
- · The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.6 "Selective Peripheral Module Control").
- If the WDT or FSCM is enabled, the LPRC will also remain active.

The device will wake from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- Any device Reset
- A WDT time-out

On wake-up from Idle, the clock is reapplied to the CPU and instruction execution begins immediately, starting with the instruction following the PWRSAV instruction or the first instruction in the ISR.

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction will be held off until entry into Sleep or Idle mode has completed. The device will then wake-up from Sleep or Idle mode.

10.2.3.1 Power-on Resets (PORs)

VDD voltage is monitored to produce PORs. When a true POR occurs, the entire device is reset.

10.3 Ultra Low-Power Wake-up

The Ultra Low-Power Wake-up (ULPWU) on pin, RB0, allows a slow falling voltage to generate an interrupt without excess current consumption.

To use this feature:

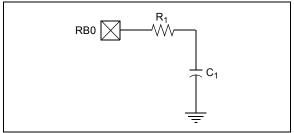
- 1. Charge the capacitor on RB0 by configuring the RB0 pin to an output and setting it to '1'.
- 2. Stop charging the capacitor by configuring RB0 as an input.
- 3. Discharge the capacitor by setting the ULPEN and ULPSINK bits in the ULPWCON register.
- 4. Configure Sleep mode.
- 5. Enter Sleep mode.

When the voltage on RB0 drops below VIL, the device wakes up and executes the next instruction.

This feature provides a low-power technique for periodically waking up the device from Sleep mode.

The time-out is dependent on the discharge time of the RC circuit on RB0.

When the ULPWU module wakes the device from Sleep mode, the ULPWUIF bit (IFS5<0>) is set. Software can check this bit upon wake-up to determine the wake-up source.


See Example 10-2 for initializing the ULPWU module.

EXAMPLE 10-2: ULTRA LOW-POWER WAKE-UP INITIALIZATION

```
//********
// 1. Charge the capacitor on RBO
TRISBbits.TRISB0 = 0;
  LATBbits.LATB0 = 1;
  for(i = 0; i < 10000; i++) Nop();</pre>
//2. Stop Charging the capacitor
   on RBO
11
//*******************************
  TRISBbits.TRISB0 = 1;
//3. Enable ULPWU Interrupt
IFS5bits.ULPWUIF = 0;
IEC5bits.ULPWUIE = 1;
IPC21bits.ULPWUIP = 0x7;
//*********************************
//4. Enable the Ultra Low Power
11
   Wakeup module and allow
11
  capacitor discharge
ULPWCONbits.ULPEN = 1;
  ULPWCONbit.ULPSINK = 1;
//5. Enter Sleep Mode
 11
  Sleep();
//for sleep, execution will
//resume here
```

A series resistor, between RB0 and the external capacitor provides overcurrent protection for the AN2/ULPWU/RB0 pin and enables software calibration of the time-out (see Figure 10-1).

FIGURE 10-1: SERIES RESISTOR

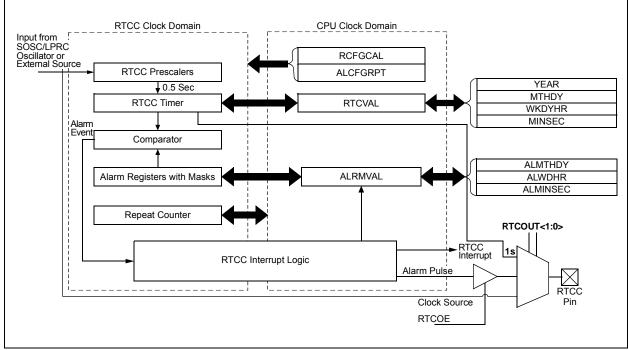
A timer can be used to measure the charge time and discharge time of the capacitor. The charge time can then be adjusted to provide the desired delay in Sleep. This technique compensates for the affects of temperature, voltage and component accuracy. The peripheral can also be configured as a simple, programmable Low-Voltage Detect (LVD) or temperature sensor.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0				
TON	—	TSIDL	—	—	_	TECS1 ⁽¹⁾	TECS0 ⁽¹⁾				
bit 15		•	-		•		bit				
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0				
—	TGATE	TCKPS1	TCKPS0	—	TSYNC	TCS					
bit 7							bit				
Legend:											
R = Readabl	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown					
bit 15	TON: Timer1	On bit									
	1 = Starts 16- 0 = Stops 16-										
bit 14	•	ted: Read as '	0'								
bit 13	TSIDL: Timer	1 Stop in Idle I	Mode bit								
			eration when c ation in Idle mo	levice enters Ic de	lle mode						
bit 12-10		ted: Read as '									
bit 9-8	TECS<1:0>:	Timer1 Extend	ed Clock Seled	ct bits ⁽¹⁾							
	11 = Reserved; do not use										
	10 = Timer1 uses the LPRC as the clock source 01 = Timer1 uses the External Clock (EC) from T1CK										
				r (SOSC) as the	e clock source						
bit 7	Unimplemen	ted: Read as '	0'								
bit 6			Accumulation	Enable bit							
	When TCS =										
	When TCS = $\frac{1}{2}$										
		<u></u> ne accumulatio	n is enabled								
		ne accumulatio									
bit 5-4		: Timer1 Input	Clock Prescale	e Select bits							
	11 = 1:256 10 = 1:64										
	01 = 1:8										
	00 = 1:1										
bit 3	-	ted: Read as '									
bit 2			ock Input Sync	hronization Sel	ect bit						
	When TCS = 1 = Synchron	<u>1:</u> nizes External	Clock input								
	0 = Does no	t synchronize I	External Clock	input							
	When TCS =										
	-	Clock Source	Select bit								
bit 1											
bit 1	1 = Timer1 cl 0 = Internal c		selected by TE	CS<1:0>							

16.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Real-Time Clock and Calendar, refer to the "PIC24F Family Reference Manual", "Real-Time Clock and Calendar (RTCC)" (DS39696).

The RTCC provides the user with a Real-Time Clock and Calendar (RTCC) function that can be calibrated.


Key features of the RTCC module are:

- · Operates in Sleep and Retention Sleep modes
- · Selectable clock source
- Provides hours, minutes and seconds using 24-hour format
- · Visibility of one half second period
- Provides calendar weekday, date, month and year
- Alarm-configurable for half a second, one second, 10 seconds, one minute, 10 minutes, one hour, one day, one week, one month or one year
- · Alarm repeat with decrementing counter
- · Alarm with indefinite repeat chime
- Year 2000 to 2099 leap year correction

- · BCD format for smaller software overhead
- Optimized for long term battery operation
- User calibration of the 32.768 kHz clock crystal/32K INTRC frequency with periodic auto-adjust
- · Optimized for long term battery operation
- · Fractional second synchronization
- Calibration to within ±2.64 seconds error per month
- · Calibrates up to 260 ppm of crystal error
- Ability to periodically wake-up external devices without CPU intervention (external power control)
- · Power control output for external circuit control
- · Calibration takes effect every 15 seconds
- · Runs from any one of the following:
 - External Real-Time Clock of 32.768 kHz
 - Internal 31.25 kHz LPRC Clock
 - 50 Hz or 60 Hz External Input

16.1 RTCC Source Clock

The user can select between the SOSC crystal oscillator, LPRC internal oscillator or an external 50 Hz/60 Hz power line input as the clock reference for the RTCC module. This gives the user an option to trade off system cost, accuracy and power consumption, based on the overall system needs.

FIGURE 16-1: RTCC BLOCK DIAGRAM

REGISTER 19-1: AD1CON1: A/DA/D CONTROL REGISTER 1 (CONTINUED)

- bit 3
 Unimplemented: Read as '0'

 bit 2
 ASAM: A/D Sample Auto-Start bit

 1 = Sampling begins immediately after the last conversion; SAMP bit is auto-set

 0 = Sampling begins when the SAMP bit is manually set

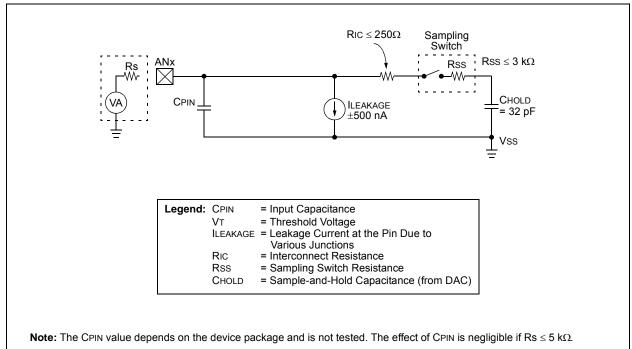
 bit 1
 SAMP: A/D Sample Enable bit

 1 = A/D Sample-and-Hold amplifiers are sampling
 0 = A/D Sample-and-Hold amplifiers are holding
- bit 0 DONE: A/D Conversion Status bit
 - 1 = A/D conversion cycle has completed
 - 0 = A/D conversion cycle has not started or is in progress
- **Note 1:** This version of the TMR1 Trigger allows A/D conversions to be triggered from TMR1 while the device is operating in Sleep mode. The SSRC<3:0> = 0101 option allows conversions to be triggered in Run or Idle modes only.

19.2 A/D Sampling Requirements

The analog input model of the 12-bit A/D Converter is shown in Figure 19-2. The total sampling time for the A/D is a function of the holding capacitor charge time.

For the A/D Converter to meet its specified accuracy, the Charge Holding Capacitor (CHOLD) must be allowed to fully charge to the voltage level on the analog input pin. The Source Impedance (Rs), the Interconnect Impedance (Rsc) and the Internal Sampling Switch Impedance (Rss) combine to directly affect the time required to charge CHOLD. The combined impedance of the analog sources must, therefore, be small enough to fully charge the holding capacitor within the chosen sample time. To minimize the effects of pin leakage currents on the accuracy of the A/D Converter, the maximum recommended source impedance, Rs, is $2.5 \text{ k}\Omega$. After the analog input channel is selected (changed), this sampling function


must be completed prior to starting the conversion. The internal holding capacitor will be in a discharged state prior to each sample operation.

At least 1 TAD time period should be allowed between conversions for the sample time. For more details, see **Section 27.0 "Electrical Characteristics"**.

EQUATION 19-1: A/D CONVERSION CLOCK PERIOD

$$TAD = TCY (ADCS + 1)$$

 $ADCS = \frac{TAD}{TCY} - 1$

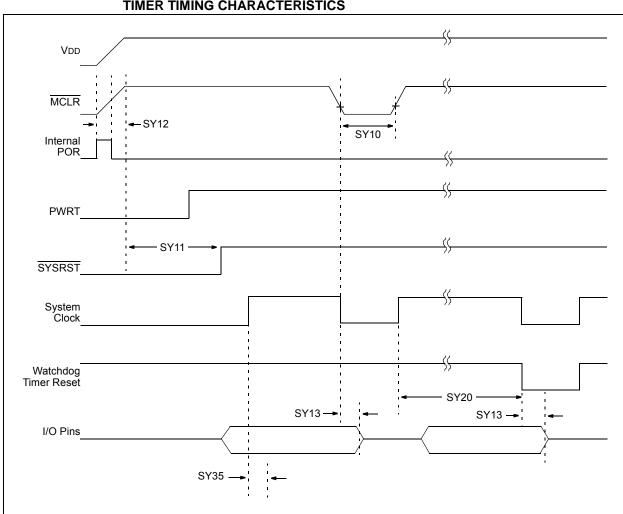

Note: Based on Tcy = 2/Fosc; Doze mode and PLL are disabled.

FIGURE 19-2: 12-BIT A/D CONVERTER ANALOG INPUT MODEL

REGISTER 24-2: CTMUCON1H: CTMU CONTROL 1 HIGH REGISTER (CONTINUED)

- bit 6 EDG2POL: Edge 2 Polarity Select bit 1 = Edge 2 is programmed for a positive edge 0 = Edge 2 is programmed for a negative edge bit 5-2 EDG2SEL<3:0>: Edge 2 Source Select bits 1111 = Edge 2 source is the Comparator 3 output 1110 = Edge 2 source is the Comparator 2 output 1101 = Edge 2 source is the Comparator 1 output 1100 = Unimplemented; do not use 1011 = Edge 2 source is CLC1 1010 = Edge 2 source is the MCCP2 Compare Event (CCP2IF) 1001 = Unimplemented; do not use 1000 = Edge 2 source is CTED13 0111 = Edge 2 source is CTED12 0110 = Edge 2 source is CTED11⁽²⁾ 0101 = Edge 2 source is CTED10 0100 = Edge 2 source is CTED9⁽²⁾ 0011 = Edge 2 source is CTED1 0010 = Edge 2 source is CTED2 0001 = Edge 2 source is the MCCP1 Compare Event (CCP1IF) 0000 = Edge 2 source is Timer1
- bit 1-0 Unimplemented: Read as '0'
- Note 1: Edge sources, CTED7 and CTED8, are not available on 28-pin and 20-pin devices.
 - 2: Edge sources, CTED3, CTED9 and CTED11, are not available on 20-pin devices.

FIGURE 27-8: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING CHARACTERISTICS

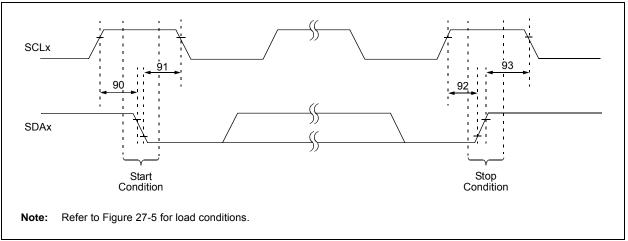

Param. No.	Symbol	Characteris	tic	Min	Max	Units	Conditions
100	Тнідн	Clock High Time	100 kHz mode	4.0	-	μS	Must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	-	μS	Must operate at a minimum of 10 MHz
			MSSPx module	1.5 TCY		_	
101	TLOW	Clock Low Time	100 kHz mode	4.7	—	μS	Must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	—	μS	Must operate at a minimum of 10 MHz
			MSSPx module	1.5 TCY	—	_	
102	TR	SDAx and SCLx Rise Time	100 kHz mode	—	1000	ns	
		400 kHz mode	20 + 0.1 CB	300	ns	CB is specified to be from 10 to 400 pF	
103 TF	TF	SDAx and SCLx Fall Time	100 kHz mode	—	300	ns	
		400 kHz mode	20 + 0.1 CB	300	ns	CB is specified to be from 10 to 400 pF	
90 Tsu:sta	TSU:STA	Start Condition Setup Time	100 kHz mode	4.7		μS	Only relevant for Repeated
			400 kHz mode	0.6	_	μS	Start condition
91 TH	THD:STA	Start Condition Hold Time	100 kHz mode	4.0	—	μS	After this period, the first clock
			400 kHz mode	0.6	—	μS	pulse is generated
106	THD:DAT	Data Input Hold Time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μS	
107 TSU:DAT	TSU:DAT	Data Input Setup Time	100 kHz mode	250	—	ns	(Note 2)
			400 kHz mode	100	—	ns	
92 Tsu:sto	Tsu:sto	Stop Condition Setup Time	100 kHz mode	4.7	—	μS	
			400 kHz mode	0.6	—	μS	
109 TA	ΤΑΑ	Output Valid from Clock	100 kHz mode	—	3500	ns	(Note 1)
			400 kHz mode	—	—	ns	
110	TBUF	Bus Free Time	100 kHz mode	4.7	—	μS	Time the bus must be free before
			400 kHz mode	1.3	—	μS	a new transmission can start
D102	Св	Bus Capacitive Loading		—	400	pF	

TABLE 27-34: I²C[™] BUS DATA REQUIREMENTS (SLAVE MODE)

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCLx to avoid unintended generation of Start or Stop conditions.

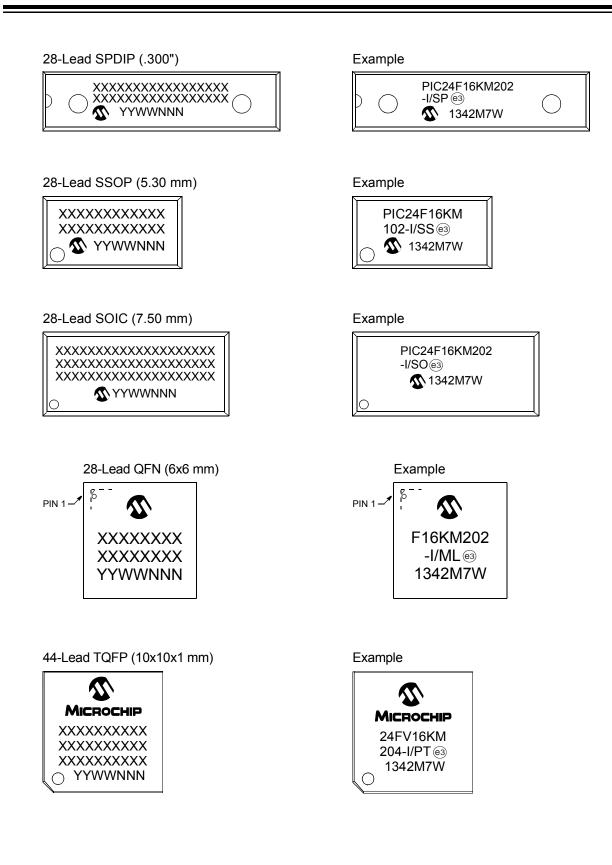

2: A Fast mode I²C[™] bus device can be used in a Standard mode I²C bus system, but the requirement, TSU:DAT ≥ 250 ns, must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCLx signal. If such a device does stretch the LOW period of the SCLx signal, it must output the next data bit to the SDAx line, TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCLx line is released.

FIGURE 27-17: MSSPx I²C[™] BUS START/STOP BITS TIMING WAVEFORMS

TABLE 27-35:	I ² C [™] BUS START/STOP BITS REQUIREMENTS (MASTER MODE)
--------------	--

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
90	TSU:STA Star	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)		ns	Only relevant for
Set	Setup Time	400 kHz mode	2(Tosc)(BRG + 1)			Repeated Start condition	
91	THD:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	After this period, the
	Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_		first clock pulse is generated	
92	Tsu:sto	SU:STO Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	
	Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	—			
93	THD:STO	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	—	ns	
Но	Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_			

Μ

Master Synchronous Serial Port (MSSP)	159
Microchip Internet Web Site	332
MPLAB Assembler, Linker, Librarian	262
MPLAB ICD 3 In-Circuit Debugger	263
MPLAB PM3 Device Programmer	263
MPLAB REAL ICE In-Circuit Emulator System	263
MPLAB X Integrated Development	
Environment Software	261
MPLAB X SIM Software Simulator	263
MPLIB Object Librarian	262
MPLINK Object Linker	262
N	
Near Data Space	

0

127
127
122
123
122
122
128

P Packagir

Packaging	
Details	300
Marking	
PICkit 3 In-Circuit Debugger/Programmer	
Power-Saving	135
Power-Saving Features	
Clock Frequency, Clock Switching	131
Coincident Interrupts	132
Instruction-Based Modes	131
Idle	132
Sleep	131
Retention Regulator (RETREG)	134
Selective Peripheral Control	
Ultra Low-Power Wake-up (ULPWU)	
Voltage Regulator-Based	134
Retention Sleep Mode	134
Run Mode	134
Sleep Mode	134
Product Identification System	
Program and Data Memory	
Access Using Table Instructions	65
Program Space Visibility	66
Program and Data Memory Spaces	
Interfacing, Addressing	63
Program Memory	
Address Space	41
Configuration Word Addresses	
Program Space	
Memory Map	41
Program Verification	
R	
Real-Time Clock and Calendar (RTCC)	181
Register Maps	
A/D	59
ANSEL	
Band Gap Buffer Control	
CLC1-2	

Clock Control	
Comparator	
CPU Core	
CTMU	
DAC1	
DAC2	
ICN	
Interrupt Controller	
MCCP1	
MCCP2	
MCCP3 MSSP1 (I ² C/SPI)	51
MSSP1 (I ⁻ C/SPI) MSSP2 (I ² C/SPI)	
NVM	
Op Amp 1	
Op Amp 2	
Pad Configuration	
PMD	
PORTA	
PORTB	
PORTC	
Real-Time Clock and Calendar	
SCCP4	
SCCP5	
Timer1	
UART1	55
UART2	
Ultra Low-Power Wake-up	62
Registers	
AD1CHITH (A/D Scan Compare Hit,	
High Word)	219
AD1CHITL (A/D Scan Compare Hit,	
Low Word)	
AD1CHS (A/D Sample Select)	
AD1CON1 (A/D Control 1)	
AD1CON2 (A/D Control 2)	
AD1CON3 (A/D Control 3)	
AD1CON5 (A/D Control 5)	217
AD1CSSH (A/D Input Scan Select, High Word)	
AD1CSSL (A/D Input Scan Select, Low Word)	
AD1CTMENH (CTMU Enable, High Word)	
AD1CTMENL (CTMU Enable, Low Word)	
ALCFGRPT (Alarm Configuration)	186
ALMINSEC (Alarm Minutes and	400
Seconds Value)	
ALMTHDY (Alarm Month and Day Value)	
ALWDHR (Alarm Weekday and Hours Value)	
AMPxCON (Op Amp x Control)	
ANSA (PORTA Analog Selection) ANSB (PORTB Analog Selection)	
ANSE (PORTE Analog Selection)	
BUFCON0 (Internal Voltage Reference	155
Control 0)	232
CCPxCON1H (CCPx Control 1 High)	
CCPxCON1L (CCPx Control 1 Low)	
CCPxCON2H (CCPx Control 2 High)	
CCPxCON2L (CCPx Control 2 Low)	
CCPxCON3H (CCPx Control 3 High)	
CCPxCON3L (CCPx Control 3 Low)	
CCPxSTATL (CCPx Status)	
CLCxCONH (CLCx Control High)	
CLCxCONL (CLCx Control Low)	
CLCxGLSH (CLCx Gate Logic Input Select High)	
CLCxGLSL (CLCx Gate Logic Input Select Low)	202
CLCxSEL (CLCx Input MUX Select)	
CLKDIV (Clock Divider)	125

NOTES: