

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	38
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 22x10b/12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08km204-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-21: PORTA REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11 ^(4,5)	Bit 10 ^(4,5)	Bit 9 ^(4,5)	Bit 8 ^(4,5)	Bit 7 ⁽⁴⁾	Bit 6 ⁽³⁾	Bit 5 ⁽²⁾	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	2C0h		_	_	_	TRISA11	TRISA10	TRISA9	TRISA8	TRISA7	TRISA6	_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	0FDF ⁽¹⁾
PORTA	2C2h	-	—	—		RA11	RA10	RA9	RA8	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx
LATA	2C4h	-	—	—		LATA11	LATA10	LATA9	LATA8	LATA7	LATA6	_	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
ODCA	2C6h	_	_	_	_	ODA11	ODA10	ODA9	ODA8	ODA7	ODA6	_	ODA4	ODA3	ODA2	ODA1	ODA0	0000

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved.

Note 1: Reset value depends on the device type; the PIC24F16KM204 value is shown.

2: These bits are only available when MCLRE (FPOR<7>) = 0.

3: These bits are not implemented in FV devices.

4: These bits are not implemented in 20-pin devices.

5: These bits are not implemented in 28-pin devices.

TABLE 4-22: PORTB REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11 ⁽²⁾	Bit 10 ⁽²⁾	Bit 9	Bit 8	Bit 7	Bit 6 ⁽²⁾	Bit 5 ⁽²⁾	Bit 4	Bit 3 ⁽²⁾	Bit 2	Bit 1	Bit 0	All Resets
TRISB	2C8h	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	_{FFFF} (1)
PORTB	2CAh	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	2CCh	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	2CEh	ODB15	ODB14	ODB13	ODB12	ODB11	ODB10	ODB9	ODB8	ODB7	ODB6	ODB5	ODB4	ODB3	ODB2	ODB1	ODB0	0000

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved.

Note 1: Reset value depends on the device type; the PIC24F16KM204 value is shown.

2: These bits are not implemented in 20-pin devices.

TABLE 4-23: PORTC REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9 ^(2,3)	Bit 8 ^(2,3)	Bit 7 ^(2,3)	Bit 6 ^(2,3)	Bit 5 ^(2,3)	Bit 4 ^(2,3)	Bit 3 ^(2,3)	Bit 2 ^(2,3)	Bit 1 ^(2,3)	Bit 0 ^(2,3)	All Resets
TRISC	2D0h	_	_		_	—	_	TRISC9	TRISC8	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	03FF ⁽¹⁾
PORTC	2D2h	—	_	_	-	—	_	RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx
LATTC	2D4h	—	_	_	-	—	_	LATC9	LATC8	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xxxx
ODCC	2D6h	_	_	—	-	—	_	ODC9	ODC8	ODC7	ODC6	ODC5	ODC4	ODC3	ODC2	ODC1	ODC0	0000

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition, r = reserved.

Note 1: Reset value depends on the device type; the PIC24F16KM204 value is shown.

2: These bits are not implemented in 20-pin devices.

3: These bits are not implemented in 28-pin devices.

TABLE 4-25: A/D REGISTER MAP

File Name	-25: Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All
		2.1.10		2	2.4.12	2	20.10	2	2		2	2		2			2.10	Resets
ADC1BUF0	300h					A/D Da	ata Buffer 0	/Threshold	for Channel 0/	Threshold for	Channel 0 & 1	2 in Window	Compare					xxxx
ADC1BUF1	302h					A/D Da	ata Buffer 1	/Threshold	for Channel 1/	Threshold for	Channel 1 & 1	3 in Window	Compare					xxxx
ADC1BUF2	304h					A/D Da	ata Buffer 2	/Threshold	for Channel 2/	Threshold for	Channel 2 & 1	4 in Window	Compare					XXXX
ADC1BUF3	306h					A/D Da	ata Buffer 3	/Threshold	for Channel 3/	Threshold for	Channel 3 & 1	5 in Window	Compare					XXXX
ADC1BUF4	308h					A/D Da	ata Buffer 4	/Threshold	for Channel 4/	Threshold for	Channel 4 & 1	6 in Window	Compare					xxxx
ADC1BUF5	30Ah					A/D Da	ata Buffer 5	/Threshold	for Channel 5/	Threshold for	Channel 5 & 1	7 in Window	Compare					xxxx
ADC1BUF6	30Ch					A/D Da	ata Buffer 6	/Threshold	for Channel 6/	Threshold for	Channel 6 & 1	8 in Window	Compare					xxxx
ADC1BUF7	30Eh					A/D Da	ata Buffer 7	/Threshold	for Channel 7/	Threshold for	Channel 7 & 1	9 in Window	Compare					xxxx
ADC1BUF8	310h					A/D Da	ata Buffer 8	/Threshold	for Channel 8/	Threshold for	Channel 8 & 2	0 in Window	Compare					xxxx
ADC1BUF9	312h					A/D Da	ata Buffer 9	/Threshold	for Channel 9/	Threshold for	Channel 9 & 2	1 in Window	Compare					xxxx
ADC1BUF10	314h					A/D Data	a Buffer 10/	Threshold	for Channel 10	/Threshold for	r Channel 10 &	22 in Window	w Compare					xxxx
ADC1BUF11	316h					A/D Dat	a Buffer 11/	Threshold	for Channel 11	/Threshold for	Channel 11 &	23 in Window	v Compare					xxxx
ADC1BUF12	318h					A/D Dat	a Buffer 12	/Threshold	for Channel 12	2/Threshold fo	r Channel 0 &	12 in Window	v Compare					xxxx
ADC1BUF13	31Ah					A/D Dat	a Buffer 13	/Threshold	for Channel 13	3/Threshold fo	r Channel 1 &	13 in Window	v Compare					xxxx
ADC1BUF14	31Ch					A/D Dat	a Buffer 14	/Threshold	for Channel 14	4/Threshold fo	r Channel 2 &	14 in Window	v Compare					xxxx
ADC1BUF15	31Eh					A/D Dat	a Buffer 15	/Threshold	for Channel 1	5/Threshold fo	r Channel 3 &	15 in Window	v Compare					xxxx
ADC1BUF16	320h					A/D Dat	a Buffer 16	/Threshold	for Channel 1	6/Threshold fo	r Channel 4 &	16 in Window	v Compare					xxxx
ADC1BUF17	322h					A/D Dat	a Buffer 17	/Threshold	for Channel 1	7/Threshold fo	r Channel 5 &	17 in Window	v Compare					xxxx
ADC1BUF18	324h					A/D Dat	a Buffer 18	/Threshold	for Channel 18	8/Threshold fo	r Channel 6 &	18 in Window	v Compare					xxxx
ADC1BUF19	326h					A/D Dat	a Buffer 19	/Threshold	for Channel 19	9/Threshold fo	r Channel 7 &	19 in Window	v Compare					xxxx
ADC1BUF20	328h					A/D Dat	a Buffer 20	/Threshold	for Channel 20	0/Threshold fo	r Channel 8 &	20 in Window	v Compare					xxxx
ADC1BUF21	32Ah					A/D Dat	a Buffer 21	/Threshold	for Channel 2	1/Threshold fo	r Channel 9 &	21 in Window	v Compare					xxxx
ADC1BUF22	32Ch					A/D Data	a Buffer 22/	Threshold	for Channel 22	2/Threshold for	r Channel 10 &	22 in Window	w Compare					xxxx
ADC1BUF23	32Eh					A/D Data	a Buffer 23/	Threshold	for Channel 23	3/Threshold for	r Channel 11 &	23 in Window	w Compare					xxxx
AD1CON1	340h	ADON	_	ADSIDL	_	_	MODE12	FORM1	FORM0	SSRC3	SSRC2	SSRC1	SSRC0	_	ASAM	SAMP	DONE	0000
AD1CON2	342h	PVCFG1	PVCFG0	NVCFG0	_	BUFREGEN	CSCNA	_	_	BUFS	SMPI4	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS	0000
AD1CON3	344h	ADRC	EXTSAM		SAMC4	SAMC3	SAMC2	SAMC1	SAMC0	ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
AD1CHS	348h	CH0NB2	CH0NB1	CH0NB0	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0	CH0NA2	CH0NA1	CH0NA0	CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0	0000
AD1CSSH	34Eh	_	CSS30	CSS29	CSS28	CSS27	CSS26	_	_	CSS23	CSS22	CSS21	CSS20 ⁽¹⁾	CSS19 ⁽¹⁾	CSS18	CSS17	CSS16	0000
AD1CSSL	350h	CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8 ^(1,2)	CSS7 ^(1,2)	CSS6 ^(1,2)	CSS5 ⁽¹⁾	CSS4	CSS3	CSS2	CSS1	CSS0	0000
AD1CON5	354h	ASEN	LPEN	CTMREQ	BGREQ	r	_	ASINT1	ASINT0	_	_	—	_	WM1	WM0	CM1	CM0	0000
AD1CHITH	356h	_	—	—	—	_	_	—	—	CHH23	CHH22	CHH21	CHH20 ⁽¹⁾	CHH19 ⁽¹⁾	CHH18	CHH17	CHH16	0000
AD1CHITL	358h	CHH15	CHH14	CHH13	CHH12	CHH11	CHH10	CHH9	CHH8 ^(1,2)	CHH7 ^(1,2)	CHH6 ^(1,2)	CHH5 ⁽¹⁾	CHH4	CHH3	CHH2	CHH1	CHH0	0000
AD1CTMENH	360h	_	—	—	_	_	_	—	—	CTMEN23	CTMEN22	CTMEN21	CTMEN20 ⁽¹⁾	CTMEN19 ⁽¹⁾	CTMEN18	CTMEN17	CTMEN16	0000
AD1CTMENL	362h	CTMEN15	CTMEN14	CTMEN13	CTMEN12	CTMEN11	CTMEN10	CTMEN9	CTMEN8((1,2)	CTMEN7(1,2)	CTMEN6(1,2)	CTMEN5(1)	CTMEN4	CTMEN3	CTMEN2	CTMEN1	CTMEN0	0000

 $\label{eq:Legend: Legend: Legend: u = unchanged, --= unimplemented, q = value depends on condition, r = reserved.$

Note 1: These bits are not implemented in 20-pin devices.

2: These bits are not implemented in 28-pin devices.

5.5.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

The user can program one row of Flash program memory at a time by erasing the programmable row. The general process is:

- 1. Read a row of program memory (32 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase a row (see Example 5-1):
 - a) Set the NVMOPx bits (NVMCON<5:0>) to '011000' to configure for row erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the block to be erased into the TBLPAG and W registers.
 - c) Write 55h to NVMKEY.
 - d) Write AAh to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 32 instructions from data RAM into the program memory buffers (see Example 5-1).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOPx bits to '000100' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 55h to NVMKEY.
 - c) Write AAh to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as displayed in Example 5-5.

EXAMPLE 5-1:	ERASING A PROGRAM MEMORY ROW – ASSEMBLY LANGUAGE CODE

; Set up NVMCON fo	or row erase operation	
MOV #0x	x4058, WO ;	
MOV W0,	, NVMCON ;	Initialize NVMCON
; Init pointer to	row to be ERASED	
MOV #tk	<pre>blpage(PROG_ADDR), W0 ;</pre>	
MOV W0,	, TBLPAG ;	Initialize PM Page Boundary SFR
MOV #tk	<pre>bloffset(PROG_ADDR), W0 ;</pre>	Initialize in-page EA[15:0] pointer
TBLWTL W0,	, [WO] ;	Set base address of erase block
DISI #5	;	Block all interrupts
		for next 5 instructions
MOV #0×	x55, WO	
MOV W0,	, NVMKEY ;	Write the 55 key
MOV #0×	xAA, W1 ;	
MOV W1,	, NVMKEY ;	Write the AA key
BSET NVM	MCON, #WR ;	Start the erase sequence
NOP	;	Insert two NOPs after the erase
NOP	;	command is asserted

EXAMPLE 5-2: ERASING A PROGRAM MEMORY ROW – 'C' LANGUAGE CODE

```
// C example using MPLAB C30
                                                               // Variable located in Pgm Memory, declared as a
int __attribute__ ((space(auto_psv))) progAddr = 0x1234;
                                                               // global variable
   unsigned int offset;
//Set up pointer to the first memory location to be written
   TBLPAG = __builtin_tblpage(&progAddr);
                                                               // Initialize PM Page Boundary SFR
   offset = __builtin_tbloffset(&progAddr);
                                                               // Initialize lower word of address
    __builtin_tblwtl(offset, 0x0000);
                                                               // Set base address of erase block
                                                               // with dummy latch write
   NVMCON = 0 \times 4058;
                                                               // Initialize NVMCON
    asm("DISI #5");
                                                               // Block all interrupts for next 5 instructions
     _builtin_write_NVM();
                                                               \ensuremath{{//}} C30 function to perform unlock
                                                               // sequence and set WR
```

REGISTER 8-1: SR: ALU STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-0, HSC
—	—	—	—	—	—		DC ⁽¹⁾
bit 15							bit 8

R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC
IPL2 ^(2,3)	IPL1 ^(2,3)	IPL0 ^(2,3)	RA ⁽¹⁾	N ⁽¹⁾	OV ⁽¹⁾	Z ⁽¹⁾	C ⁽¹⁾
bit 7							bit 0

Legend:	HSC = Hardware Settable/0	Clearable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15-9 Unimplemented: Read as '0'

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(2,3)
	111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled
	110 = CPU Interrupt Priority Level is 6 (14)
	101 = CPU Interrupt Priority Level is 5 (13)
	100 = CPU Interrupt Priority Level is 4 (12)
	011 = CPU Interrupt Priority Level is 3 (11)
	010 = CPU Interrupt Priority Level is 2 (10)
	001 = CPU Interrupt Priority Level is 1 (9)
	000 = CPU Interrupt Priority Level is 0 (8)

Note 1: See Register 3-1 for the description of these bits, which are not dedicated to interrupt control functions.

- 2: The IPL<2:0> bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the Interrupt Priority Level if IPL3 = 1.
- 3: The IPLx Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

Note: Bit 8 and bits 4 through 0 are described in Section 3.0 "CPU".

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
NVMIE		AD1IE	U1TXIE	U1RXIE		_	CCT2IE
bit 15	+			•	•		bit
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
CCT1IE	CCP4IE	CCP3IE	<u> </u>	T1IE	CCP2IE	CCP1IE	INTOIE
bit 7				1.112			bit
Legend:							
R = Readabl		W = Writable		•	nented bit, read		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15	NVMIE: NVM	Interrupt Enat	ole bit				
	1 = Interrupt r	equest is enab	oled				
	0 = Interrupt r	request is not e	enabled				
bit 14	Unimplemen	ted: Read as '	0'				
bit 13	AD1IE: A/D C	Conversion Cor	nplete Interrup	t Enable bit			
		request is enat					
	-	request is not e					
bit 12			r Interrupt Ena	ble bit			
		request is enab					
L:1 44	-	request is not e					
bit 11			nterrupt Enable	e dit			
		request is enat request is not e					
bit 10-9	•	ted: Read as '					
bit 8	CCT2IE: Cap	ture/Compare	2 Timer Interru	pt Enable bit			
		request is enab					
bit 7	•	request is not e ture/Compare	nabled 1 Timer Interru	nt Enable bit			
	•	request is enat					
		request is not e					
bit 6	CCP4IE: Cap	ture/Compare	4 Event Interru	ipt Enable bit			
		equest is enab					
	-	request is not e					
bit 5	CCP3IE: Cap	ture/Compare	3 Event Interru	ipt Enable bit			
		equest is enab					
	-	equest is not e					
bit 4	-	ted: Read as '					
bit 3		Interrupt Enab					
		request is enat request is not e					
bit 2	-	-	2 Event Interru	unt Enchlo hit			
DIL Z	•	•		ipt Enable bit			
		request is enat request is not e					
bit 1	-	-	1 Event Interru	ipt Enable bit			
	-	equest is enab					
		equest is not e					
bit 0	INT0IE: Exter	nal Interrupt 0	Enable bit				
	1 = Interrupt r	equest is enab	oled				
		equest is not e	mahlad				

REGISTER 8-12: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
—	—	—	_	—	CCP5IP2	CCP5IP1	CCP5IP0
bit 15						- -	bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	—	—		—	INT1IP2	INT1IP1	INT1IP0
bit 7							bit 0
Legend:							
R = Readat	ole hit	W = Writable b	hit	II = Unimpler	nented bit, read	1 as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is cle		x = Bit is unkr	own
bit 15-11	Unimplemer	nted: Read as '0	'				
bit 10-8	CCP5IP<2:0	>: Capture/Com	pare 5 Event	Interrupt Priorit	y bits		
	111 = Interru	ipt is Priority 7 (ł	nighest priority	y interrupt)			
	•						
	•						
		pt is Priority 1					
		pt source is disa					
bit 7-3	Unimplemer	nted: Read as '0	'				
bit 2-0		: External Interru					
	111 = Interru	ipt is Priority 7 (h	nighest priority	y interrupt)			
	•						
	•						
		pt is Priority 1	- la la al				
	000 = interru	pt source is disa	adied				

REGISTER 8-24: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5

REGISTER 8-27: IPC10: INTERRUPT PRIORITY CONTROL REGISTER 10

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		—	—	—	—	—
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	CCT5IP2	CCT5IP1	CCT5IP0		_	—	—
bit 7							bit 0

Legend:				
R = Readable bit -n = Value at POR		W = Writable bit	U = Unimplemented bit	, read as '0'
		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15-7	Unimpler	mented: Read as '0'		
bit 6-4	CCT5IP<	2:0>: Capture/Compare 5 Ti	imer Interrupt Priority bits	
	111 = Inte	errupt is Priority 7 (highest p	riority interrupt)	
	•			
	•			
	•			
	001 = Inte	errupt is Priority 1		

- 000 = Interrupt source is disabled
- bit 3-0 Unimplemented: Read as '0'

9.3 Control Registers

The operation of the oscillator is controlled by three Special Function Registers (SFRs):

- OSCCON
- CLKDIV
- OSCTUN

The OSCCON register (Register 9-1) is the main control register for the oscillator. It controls clock source switching and allows the monitoring of clock sources.

The Clock Divider register (Register 9-2) controls the features associated with Doze mode, as well as the postscaler for the FRC Oscillator.

The FRC Oscillator Tune register (Register 9-3) allows the user to fine-tune the FRC Oscillator over a range of approximately $\pm 5.25\%$. Each bit increment or decrement changes the factory calibrated frequency of the FRC Oscillator by a fixed amount.

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER

U-0	R-0, HSC	R-0, HSC	R-0, HSC	U-0	R/W-x ⁽¹⁾	R/W-x ⁽¹⁾	R/W-x ⁽¹⁾
—	COSC2	COSC1	COSC0	—	NOSC2	NOSC1	NOSC0
bit 15							bit 8

R/SO-0, HSC	U-0	R-0, HSC ⁽²⁾	U-0	R/CO-0, HS	R/W-0 ⁽³⁾	R/W-0	R/W-0
CLKLOCK	—	LOCK	—	CF	SOSCDRV	SOSCEN	OSWEN
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit				
HS = Hardware Settable bit	CO = Clearable Only bit	CO = Clearable Only bit SO = Settable Only bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'		
-n = Value at POR	'1' = Bit is set '0' = Bit is cleared x = Bit is unknown				

bit 15	Unimplemented: Read as '0'
bit 14-12	COSC<2:0>: Current Oscillator Selection bits
	 111 = 8 MHz Fast RC Oscillator with Postscaler (FRCDIV) 110 = 500 kHz Low-Power Fast RC Oscillator (FRC) with Postscaler (LPFRCDIV) 101 = Low-Power RC Oscillator (LPRC) 100 = Secondary Oscillator (SOSC) 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL) 010 = Primary Oscillator (XT, HS, EC) 001 = 8 MHz FRC Oscillator with Postscaler and PLL module (FRCPLL) 000 = 8 MHz FRC Oscillator (FRC)
bit 11	Unimplemented: Read as '0'
bit 10-8	NOSC<2:0>: New Oscillator Selection bits ⁽¹⁾
	 111 = 8 MHz Fast RC Oscillator with Postscaler (FRCDIV) 110 = 500 kHz Low-Power Fast RC Oscillator (FRC) with Postscaler (LPFRCDIV) 101 = Low-Power RC Oscillator (LPRC) 100 = Secondary Oscillator (SOSC) 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL) 010 = Primary Oscillator (XT, HS, EC) 001 = 8 MHz FRC Oscillator with Postscaler and PLL module (FRCPLL) 000 = 8 MHz FRC Oscillator (FRC)
Note 1:	Reset values for these bits are determined by the FNOSCx Configuration bits.
2:	This bit also resets to '0' during any valid clock switch or whenever a non-PLL Clock mode is selected.

3: When SOSC is selected to run from a digital clock input, rather than an external crystal (SOSCSRC = 0), this bit has no effect.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	TUN5 ⁽¹⁾	TUN4 ⁽¹⁾	TUN3 ⁽¹⁾	TUN2 ⁽¹⁾	TUN1 ⁽¹⁾	TUN0 ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	nown
bit 15-6	Unimplement	ted: Read as 'd)'				
bit 5-0	TUN<5:0>: FI	RC Oscillator T	uning bits ⁽¹⁾				
		ximum frequen	cy deviation				
	011110						
	•						
	•						
	000001						
	000000 = Ce	nter frequency,	oscillator is ru	nning at factory	calibrated free	quency	
	111111						
	•						
	•						
	100001						
		nimum frequen	cv deviation				

Note 1: Increments or decrements of TUN<5:0> may not change the FRC frequency in equal steps over the FRC tuning range and may not be monotonic.

REGISTER 9-3: OSCTUN: FRC OSCILLATOR TUNE REGISTER

13.1 Time Base Generator

The Timer Clock Generator (TCG) generates a clock for the module's internal time base, using one of the clock signals already available on the microcontroller. This is used as the time reference for the module in its three major modes. The internal time base is shown in Figure 13-2.

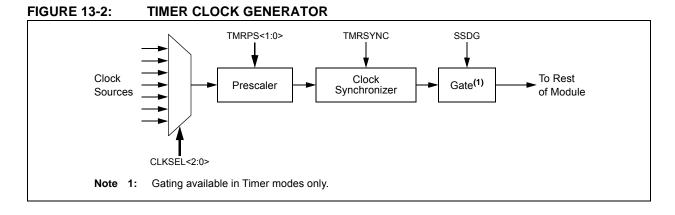

There are eight inputs available to the clock generator, which are selected using the CLKSEL<2:0> bits (CCPxCON1L<10:8>). Available sources include the FRC and LPRC, the Secondary Oscillator, and the TCLKI External Clock inputs. The system clock is the default source (CLKSEL<2:0> = 000). On PIC24FV16KM204 family devices, clock sources to the MCCPx module must be synchronized with the system clock; as a result, when clock sources are selected, clock input timing restrictions or module operating restrictions may exist. Table 13-1 describes which time base sources are valid for the various operating modes.

TABLE 13-1: VALID TIMER OPTIONS FOR MCCPx/SCCPx MODES

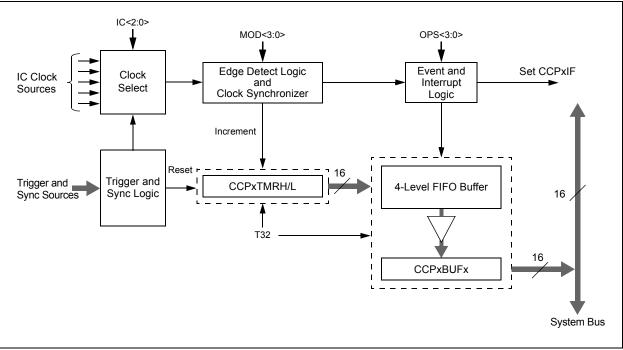
CLKSEL	Tir	ner	Input	Output
<2:0> ⁽¹⁾	Sync ⁽²⁾ Async ⁽³⁾		Capture	Compare
111	Х	_	_	_
110	Х			—
101	Х	_	-	—
011	Х	_	-	—
010	Х			—
001	Х	_	—	_
₀₀₀ (4)	—	Х	Х	Х

Note 1: See Register 13-1 for the description of the time base sources.

- 2: Synchronous Operation: TMRSYNC (CCPxCON1L<11>) = 1 and TRIGEN (CCPxCON1H<7>) = 0.
- Asynchronous Operation: (TMRSYNC = 0) or Triggered mode (TRIGEN = 1).
- 4: When CLKSEL<2:0> = 000, the TMRSYNC bit must be cleared.

DS30003030B-page 144

13.4 Input Capture Mode


Input Capture mode is used to capture a timer value from an independent timer base upon an event on an input pin or other internal Trigger source. The input capture features are useful in applications requiring frequency (time period) and pulse measurement. Figure 13-6 depicts a simplified block diagram of Input Capture mode. Input Capture mode uses a dedicated 16/32-bit, synchronous, up counting timer for the capture function. The timer value is written to the FIFO when a capture event occurs. The internal value may be read (with a synchronization delay) using the CCPxTMRH/L register.

To use Input Capture mode, the CCSEL bit (CCPxCON1L<4>) must be set. The T32 and the MOD<3:0> bits are used to select the proper Capture mode, as shown in Table 13-4.

MOD<3:0> (CCPxCON1L<3:0>)	T32 (CCPxCON1L<5>)	Operating Mode			
0000	0	Edge Detect (16-bit capture)			
0000	1	Edge Detect (32-bit capture)			
0001	0	Every Rising (16-bit capture)			
0001	1	Every Rising (32-bit capture)			
0010	0	Every Falling (16-bit capture)			
0010	1	Every Falling (32-bit capture)			
0011	0	Every Rise/Fall (16-bit capture)			
0011	1	Every Rise/Fall (32-bit capture)			
0100	0	Every 4th Rising (16-bit capture)			
0100	1	Every 4th Rising (32-bit capture)			
0101	0	Every 16th Rising (16-bit capture)			
0101	1	Every 16th Rising (32-bit capture)			

TABLE 13-4: INPUT CAPTURE MODES

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
OENSYNC		OCFEN ⁽¹⁾	OCEEN ⁽¹⁾	OCDEN ⁽¹⁾	OCCEN ⁽¹⁾	OCBEN ⁽¹⁾	OCAEN
bit 15							bit
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ICGSM1	ICGSM0	_	AUXOUT1	AUXOUT0	ICS2	ICS1	ICS0
bit 7						1	bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	1 as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	1 = Update b	Dutput Enable S by output enable by output enable	e bits occurs or	n the next Time	Base Reset or	rollover	
bit 14	Unimplemen	ted: Read as ')'				
bit 13-8	1 = OCx pin 0 = OCx pin		the CCPx moded by the CCP	dule and produc		compare or PWI e to the port log	
bit 7-6	ICGSM<1:0>	: Input Capture	Gating Source	Mode Control	bits		
	01 = One-Sh 00 = Level-Se	ot mode: Falling ot mode: Rising	edge from gat A high level fr	ting source ena om gating sour	bles future cap	pture events (IC oture events (IC future capture	DIS = 0)
bit 5	Unimplemen	ted: Read as ')'				
bit 4-3	AUXOUT<1:0	0>: Auxiliary Oເ	tput Signal on	Event Selectio	n bits		
	10 = Signal c	pture or output output is defined ise rollover eve d	l by module op)	
bit 2-0	111 = Unuse 110 = CLC2 101 = CLC1 100 = Unuse 011 = Comp 010 = Comp 001 = Comp	output output		3			

REGISTER 13-4: CCPxCON2H: CCPx CONTROL 2 HIGH REGISTERS

Note 1: OCFEN through OCBEN (bits<13:9>) are implemented in MCCPx modules only.

REGISTER 14-3: SSPxCON1: MSSPx CONTROL REGISTER 1 (SPI MODE)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—			—	—	—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPOV ⁽¹⁾	SSPEN ⁽²⁾	CKP	SSPM3 ⁽³⁾	SSPM2 ⁽³⁾	SSPM1 ⁽³⁾	SSPM0 ⁽³⁾
bit 7							bit 0

Legend:									
R = Read	lable bit	W = Writable bit	U = Unimplemented bit	, read as '0'					
-n = Valu	e at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					
bit 15-8	Unimple	mented: Read as '0'							
bit 7	WCOL: \	Nrite Collision Detect bit							
		C C	while it is still transmitting the	previous word (must be cleared in					
	softw 0 = No c	,							
bit 6			Port Receive Overflow Indicate	or hit(1)					
Sit 0									
		<u>SPI Slave mode:</u> 1 = A new byte is received while the SSPxBUF register is still holding the previous data. In case of over-							
		flow, the data in SSPxSR is lost. Overflow can only occur in Slave mode. The user must read the							
	0 = No c		g data, to avoid setting overflo	w (must be cleared in software).					
bit 5			Port Enable bit(2)						
DIL 5		SSPEN: Master Synchronous Serial Port Enable bit ⁽²⁾ 1 = Enables the serial port and configures SCKx, SDOx, SDIx and \overline{SSx} as serial port pins							
			jures these pins as I/O port pi	· ·					
bit 4	CKP: Clo	ock Polarity Select bit							
	1 = Idle s	state for clock is a high level							
		state for clock is a low level							
bit 3-0	SSPM<3	:0>: Master Synchronous Se	rial Port Mode Select bits ⁽³⁾						
		SPI Master mode, Clock = Fo		$\frac{1}{2}$					
			x pin; <u>SSx</u> pin control is disable (x pin; <u>SSx</u> pin control is enab	led, \overline{SSx} can be used as an I/O pin					
		SPI Master mode, Clock = TM							
		SPI Master mode, Clock = Fo							
		0001 = SPI Master mode, Clock = Fosc/8							
	0000 = 5	SPI Master mode, Clock = Fo	SC/Z						
Note 1:			t since each new reception (a	nd transmission) is initiated by					
	writing to the	SSPxBUF register.							

- 2: When enabled, these pins must be properly configured as inputs or outputs.
- **3:** Bit combinations not specifically listed here are either reserved or implemented in I^2C^{TM} mode only.

15.2 Transmitting in 8-Bit Data Mode

- 1. Set up the UARTx:
 - a) Write the appropriate values for data, parity and Stop bits.
 - b) Write the appropriate baud rate value to the UxBRG register.
 - c) Set up transmit and receive interrupt enable and priority bits.
- 2. Enable the UARTx.
- 3. Set the UTXEN bit (causes a transmit interrupt, two cycles after being set).
- 4. Write the data byte to the lower byte of the UxTXREG word. The value will be immediately transferred to the Transmit Shift Register (TSR) and the serial bit stream will start shifting out with the next rising edge of the baud clock.
- Alternately, the data byte may be transferred while UTXEN = 0, and then, the user may set UTXEN. This will cause the serial bit stream to begin immediately, because the baud clock will start from a cleared state.
- 6. A transmit interrupt will be generated as per interrupt control bit, UTXISELx.

15.3 Transmitting in 9-Bit Data Mode

- 1. Set up the UARTx (as described in **Section 15.2** "**Transmitting in 8-Bit Data Mode**").
- 2. Enable the UARTx.
- 3. Set the UTXEN bit (causes a transmit interrupt, two cycles after being set).
- 4. Write UxTXREG as a 16-bit value only.
- 5. A word write to UxTXREG triggers the transfer of the 9-bit data to the TSR. The serial bit stream will start shifting out with the first rising edge of the baud clock.
- 6. A transmit interrupt will be generated as per the setting of control bit, UTXISELx.

15.4 Break and Sync Transmit Sequence

The following sequence will send a message frame header, made up of a Break, followed by an Auto-Baud Sync byte.

- 1. Configure the UARTx for the desired mode.
- 2. Set UTXEN and UTXBRK this sets up the Break character.
- 3. Load the UxTXREG with a dummy character to initiate transmission (value is ignored).
- 4. Write '55h' to UxTXREG loads the Sync character into the transmit FIFO.
- 5. After the Break has been sent, the UTXBRK bit is reset by hardware. The Sync character now transmits.

15.5 Receiving in 8-Bit or 9-Bit Data Mode

- 1. Set up the UARTx (as described in Section 15.2 "Transmitting in 8-Bit Data Mode").
- 2. Enable the UARTx.
- 3. A receive interrupt will be generated when one or more data characters have been received, as per interrupt control bit, URXISELx.
- 4. Read the OERR bit to determine if an overrun error has occurred. The OERR bit must be reset in software.
- 5. Read UxRXREG.

The act of reading the UxRXREG character will move the next character to the top of the receive FIFO, including a new set of PERR and FERR values.

15.6 Operation of UxCTS and UxRTS Control Pins

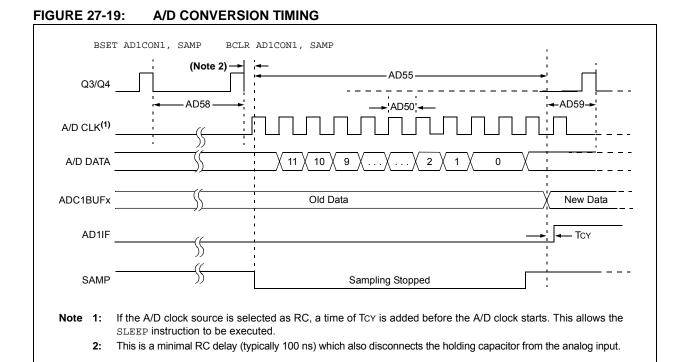
UARTx Clear-To-Send (UxCTS) and Request-To-Send (UxRTS) are the two hardware controlled pins that are associated with the UARTx module. These two pins allow the UARTx to operate in Simplex and Flow Control modes. They are implemented to control the transmission and reception between the Data Terminal Equipment (DTE). The UEN<1:0> bits in the UxMODE register configure these pins.

15.7 Infrared Support

The UARTx module provides two types of infrared UARTx support: one is the IrDA clock output to support an external IrDA encoder and decoder device (legacy module support), and the other is the full implementation of the IrDA encoder and decoder.

As the IrDA modes require a 16x baud clock, they will only work when the BRGH bit (UxMODE<3>) is '0'.

15.7.1 EXTERNAL IrDA SUPPORT – IrDA CLOCK OUTPUT


To support external IrDA encoder and decoder devices, the UxBCLK pin (same as the UxRTS pin) can be configured to generate the 16x baud clock. When UEN<1:0> = 11, the UxBCLK pin will output the 16x baud clock if the UARTx module is enabled; it can be used to support the IrDA codec chip.

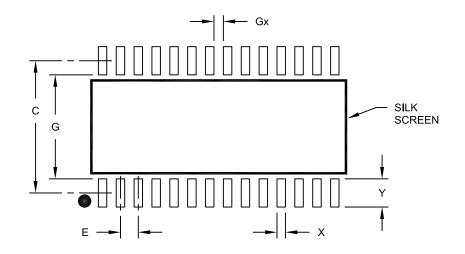
15.7.2 BUILT-IN IrDA ENCODER AND DECODER

The UARTx has full implementation of the IrDA encoder and decoder as part of the UARTx module. The built-in IrDA encoder and decoder functionality is enabled using the IREN bit (UxMODE<12>). When enabled (IREN = 1), the receive pin (UxRX) acts as the input from the infrared receiver. The transmit pin (UxTX) acts as the output to the infrared transmitter.

R/W-0	R-0	r-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ADRC	EXTSAM	r	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0		
bit 15							bit		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0		
bit 7			•		•		bit		
Legend:		r = Reserved	bit						
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown			
bit 13 bit 12-8	 1 = A/D is still sampling after SAMP = 0 0 = A/D is finished sampling Reserved: Maintain as '0' SAMC<4:0>: Auto-Sample Time Select bits 11111 = 31 TAD 								
	• • 00001 = 1 T. 00000 = 0 T.								
bit 7-0	11111111-0	A/D Conversio 1000000 = Re: 64 * Tcy = Tad	served	t bits					
	• 00000001 = 00000000 =	2 * TCY = TAD							

REGISTER 19-3: AD1CON3: A/D CONTROL REGISTER 3

TABLE 27-38: A/D CONVERSION TIMING REQUIREMENTS⁽¹⁾


AC CHARACTERISTICS			Operating temperature -40°C				to 3.6V (PIC24F16KM204) to 5.5V (PIC24FV16KM204) $C \leq TA \leq +85^{\circ}C$ for Industrial $C \leq TA \leq +125^{\circ}C$ for Extended
Param No.	Sym	Characteristic	Min.	Тур	Max.	Units	Conditions
			Clock P	aramete	rs		
AD50	Tad	A/D Clock Period	600	_	—	ns	Tcy = 75 ns, AD1CON3 in default state
AD51	TRC	A/D Internal RC Oscillator Period	—	1.67	—	μs	
			Conver	sion Rat	e		
AD55	Τςονν	Conversion Time	_	12 14	_	Tad Tad	10-bit results 12-bit results
AD56	FCNV	Throughput Rate	_	_	100	ksps	
AD57	TSAMP	Sample Time	_	1	_	TAD	
AD58	TACQ	Acquisition Time	750		—	ns	(Note 2)
AD59	Tswc	Switching Time from Convert to Sample	—	—	(Note 3)		
AD60	AD60 TDIS Discharge Time		12		—	TAD	
		·	Clock P	aramete	rs		-
AD61	TPSS	Sample Start Delay from Setting Sample bit (SAMP)	2	—	3	Tad	

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

- 2: The time for the holding capacitor to acquire the "New" input voltage when the voltage changes full scale after the conversion (VDD to Vss or Vss to VDD).
- 3: On the following cycle of the device clock.

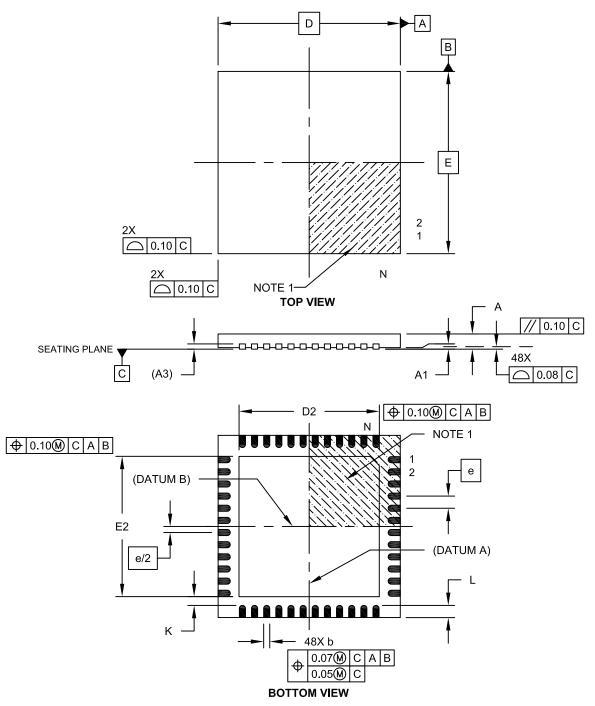
28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimensio	MIN	NOM	MAX	
Contact Pitch	1.27 BSC			
Contact Pad Spacing	С		9.40	
Contact Pad Width (X28)	Х			0.60
Contact Pad Length (X28)	Y			2.00
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.40		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A

48-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 6x6x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-153A Sheet 1 of 2

NOTES:

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733

Fax: 61-2-9868-6755

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820