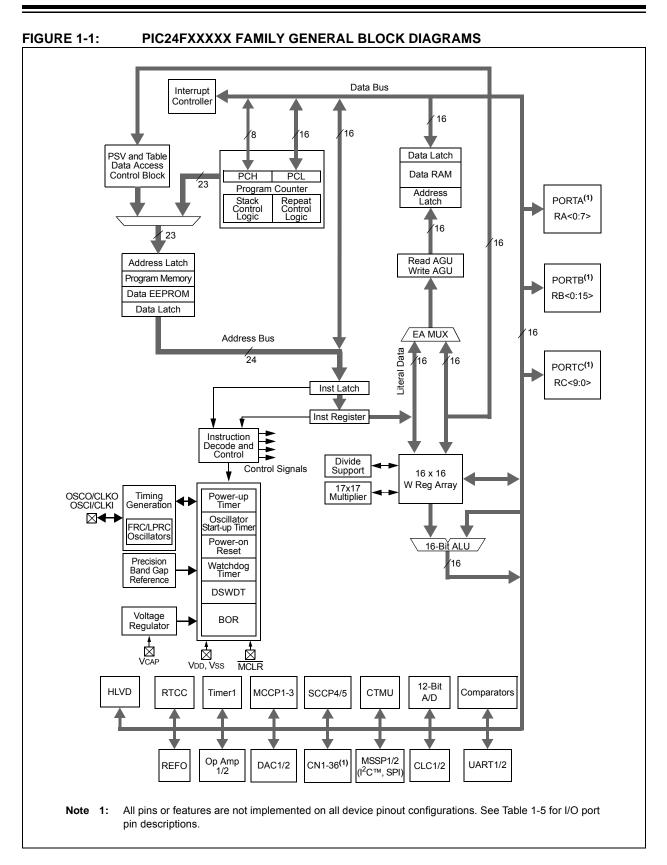


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFI

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	38
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 22x10b/12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08km204-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.6 External Oscillator Pins

Many microcontrollers have options for at least two oscillators: a high-frequency Primary Oscillator and a low-frequency Secondary Oscillator (refer to for **Section 9.0 "Oscillator Configuration**" details).

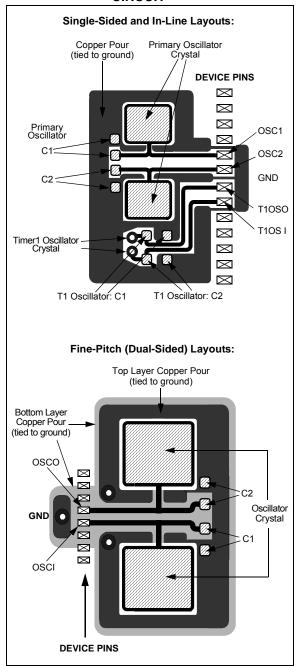
The oscillator circuit should be placed on the same side of the board as the device. Place the oscillator circuit close to the respective oscillator pins with no more than 0.5 inch (12 mm) between the circuit components and the pins. The load capacitors should be placed next to the oscillator itself, on the same side of the board.

Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed.

Layout suggestions are shown in Figure 2-5. In-line packages may be handled with a single-sided layout that completely encompasses the oscillator pins. With fine-pitch packages, it is not always possible to completely surround the pins and components. A suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be returned to ground.

In planning the application's routing and I/O assignments, ensure that adjacent port pins and other signals, in close proximity to the oscillator, are benign (i.e., free of high frequencies, short rise and fall times, and other similar noise).

For additional information and design guidance on oscillator circuits, please refer to these Microchip Application Notes, available at the corporate web site (www.microchip.com):


- AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[™] and PICmicro[®] Devices"
- AN849, "Basic PICmicro[®] Oscillator Design"
- AN943, "Practical PICmicro[®] Oscillator Analysis and Design"
- AN949, "Making Your Oscillator Work"

2.7 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state. Alternatively, connect a 1 k Ω to 10 k Ω resistor to Vss on unused pins and drive the output to logic low.

FIGURE 2-5: SU

SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

			-				
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	_	_	_	_	BCL2IP2	BCL2IP1	BCL2IP0
oit 15		·					bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	SSP2IP2	SSP2IP1	SSP2IP0		—	—	—
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplei	mented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-11	-	nted: Read as '					
bit 10-8	BCL2IP<2:0	>: MSSP2 I ² C™	Bus Collision	Interrupt Prior	rity bits		
	111 = Interru	pt is Priority 7(highest priority	/ interrupt)			
	•						
	•						
		pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 7	Unimplemen	nted: Read as '	o'				
bit 6-4	SSP2IP<2:0>	SPI/I SPI/I	² C Event Inter	rupt Priority bit	ts		
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 3-0	Unimplemen	ted: Read as '	כ'				

REGISTER 8-28: IPC12: INTERRUPT PRIORITY CONTROL REGISTER 12

9.1 CPU Clocking Scheme

The system clock source can be provided by one of four sources:

- Primary Oscillator (POSC) on the OSCI and OSCO pins
- Secondary Oscillator (SOSC) on the SOSCI and SOSCO pins

The PIC24FXXXXX family devices consist of two types of secondary oscillator:

- High-Power Secondary Oscillator
- Low-Power Secondary Oscillator

These can be selected by using the SOSCSEL (FOSC<5>) bit.

- Fast Internal RC (FRC) Oscillator:
 - 8 MHz FRC Oscillator
 - 500 kHz Lower Power FRC Oscillator
- Low-Power Internal RC (LPRC) Oscillator with two modes:
 - High-Power/High-Accuracy mode
 - Low-Power/Low-Accuracy mode

The Primary Oscillator and 8 MHz FRC sources have the option of using the internal 4x PLL. The frequency of the FRC clock source can optionally be reduced by the programmable clock divider. The selected clock source generates the processor and peripheral clock sources.

The processor clock source is divided by two to produce the internal instruction cycle clock, Fcy. In this document, the instruction cycle clock is also denoted by Fosc/2. The internal instruction cycle clock, Fosc/2, can be provided on the OSCO I/O pin for some operating modes of the Primary Oscillator.

9.2 Initial Configuration on POR

The oscillator source (and operating mode) that is used at a device Power-on Reset (POR) event is selected using Configuration bit settings. The Oscillator Configuration bit settings are located in the Configuration registers in the program memory (for more information, see Section 25.1 "Configuration Bits"). The Primary Oscillator Configuration bits, POSCMD<1:0> (FOSC<1:0>), and the Initial Oscillator Select Configuration bits, FNOSC<2:0> (FOSCSEL<2:0>), select the oscillator source that is used at a POR. The FRC Primary Oscillator with Postscaler (FRCDIV) is the default (unprogrammed) selection. The Secondary Oscillator, or one of the internal oscillators, may be chosen by programming these bit locations. The EC mode Frequency Range Configuration bits, POSCFREQ<1:0> (FOSC<4:3>), optimize power consumption when running in EC mode. The default configuration is "frequency range is greater than 8 MHz".

The Configuration bits allow users to choose between the various clock modes, shown in Table 9-1.

9.2.1 CLOCK SWITCHING MODE CONFIGURATION BITS

The FCKSM<1:0> Configuration bits (FOSC<7:6>) are used jointly to configure device clock switching and the FSCM. Clock switching is enabled only when FCKSM1 is programmed ('0'). The FSCM is enabled only when FCKSM<1:0> are both programmed ('00').

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	Notes
8 MHz FRC Oscillator with Postscaler (FRCDIV)	Internal	11	111	1, 2
500 kHz FRC Oscillator with Postscaler (LPFRCDIV)	Internal	11	110	1
Low-Power RC Oscillator (LPRC)	Internal	11	101	1
Secondary (Timer1) Oscillator (SOSC)	Secondary	00	100	1
Primary Oscillator (HS) with PLL Module (HSPLL)	Primary	10	011	
Primary Oscillator (EC) with PLL Module (ECPLL)	Primary	00	011	
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (XT)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	
8 MHz FRC Oscillator with PLL Module (FRCPLL)	Internal	11	001	1
8 MHz FRC Oscillator (FRC)	Internal	11	000	1

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: The OSCO pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

NOTES:

13.0 CAPTURE/COMPARE/PWM/ TIMER MODULES (MCCP AND SCCP)

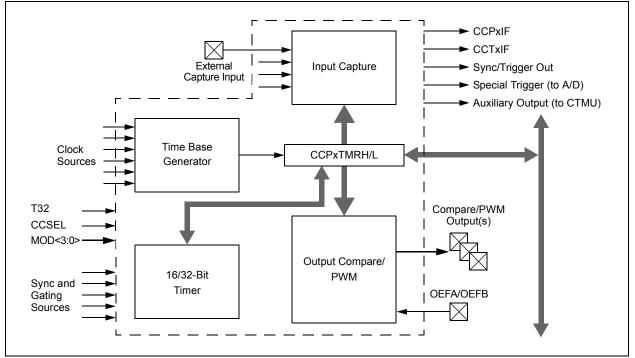
Note:	This data sheet summarizes the features
	of this group of PIC24F devices. It is not
	intended to be a comprehensive refer-
	ence source. For more information on the
	MCCP/SCCP modules, refer to the
	"PIC24F Family Reference Manual".

PIC24FV16KM204 family devices include several Capture/Compare/PWM/Timer base modules, which provide the functionality of three different peripherals of earlier PIC24F devices. The module can operate in one of three major modes:

- General Purpose Timer
- Input Capture
- Output Compare/PWM

The module is provided in two different forms, distinguished by the number of PWM outputs that the module can generate. Single output modules (SCCPs) provide only one PWM output. Multiple output modules (MCCPs) can provide up to six outputs and an extended range of power control features, depending on the pin count of the particular device. All other features of the modules are identical.

The SCCP and MCCP modules can be operated only in one of the three major modes at any time. The other modes are not available unless the module is reconfigured for the new mode. A conceptual block diagram for the module is shown in Figure 13-1. All three modes share a time base generator and a common Timer register pair (CCPxTMRH/L); other shared hardware components are added as a particular mode requires.


Each module has a total of seven control and status registers:

- CCPxCON1L (Register 13-1)
- CCPxCON1H (Register 13-2)
- CCPxCON2L (Register 13-3)
- CCPxCON2H (Register 13-4)
- CCPxCON3L (Register 13-5)
- CCPxCON3H (Register 13-6)
- CCPxSTATL (Register 13-7)

Each module also includes eight buffer/counter registers that serve as Timer Value registers or data holding buffers:

- CCPxTMRH/CCPxTMRL (Timer High/Low Counters)
- CCPxPRH/CCPxPRL (Timer Period High/Low)
- CCPxRA (Primary Output Compare Data Buffer)
- CCPxRB (Secondary Output Compare Data Buffer)
- CCPxBUFH/CCPxBUFL (Input Capture High/Low Buffers)

FIGURE 13-1: MCCPx/SCCPx CONCEPTUAL BLOCK DIAGRAM

13.1 Time Base Generator

The Timer Clock Generator (TCG) generates a clock for the module's internal time base, using one of the clock signals already available on the microcontroller. This is used as the time reference for the module in its three major modes. The internal time base is shown in Figure 13-2.

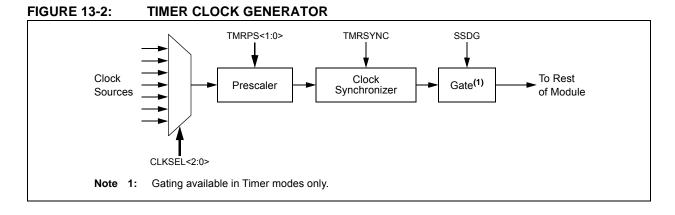

There are eight inputs available to the clock generator, which are selected using the CLKSEL<2:0> bits (CCPxCON1L<10:8>). Available sources include the FRC and LPRC, the Secondary Oscillator, and the TCLKI External Clock inputs. The system clock is the default source (CLKSEL<2:0> = 000). On PIC24FV16KM204 family devices, clock sources to the MCCPx module must be synchronized with the system clock; as a result, when clock sources are selected, clock input timing restrictions or module operating restrictions may exist. Table 13-1 describes which time base sources are valid for the various operating modes.

TABLE 13-1: VALID TIMER OPTIONS FOR MCCPx/SCCPx MODES

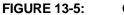
CLKSEL	Timer I		Input	Output
<2:0> ⁽¹⁾	Sync ⁽²⁾	Async ⁽³⁾	Capture	Compare
111	Х	_	_	_
110	Х			—
101	Х	_	-	—
011	Х	_	-	—
010	Х			—
001	Х	_	_	_
₀₀₀ (4)	—	Х	Х	Х

Note 1: See Register 13-1 for the description of the time base sources.

- 2: Synchronous Operation: TMRSYNC (CCPxCON1L<11>) = 1 and TRIGEN (CCPxCON1H<7>) = 0.
- Asynchronous Operation: (TMRSYNC = 0) or Triggered mode (TRIGEN = 1).
- 4: When CLKSEL<2:0> = 000, the TMRSYNC bit must be cleared.

DS30003030B-page 144

13.3 Output Compare Mode


Output Compare mode compares the Timer register value with the value of one or two Compare registers, depending on its mode of operation. The Output Compare x module on compare match events has the ability to generate a single output transition or a train of output

pulses. Like most PIC[®] MCU peripherals, the Output Compare x module can also generate interrupts on a compare match event.

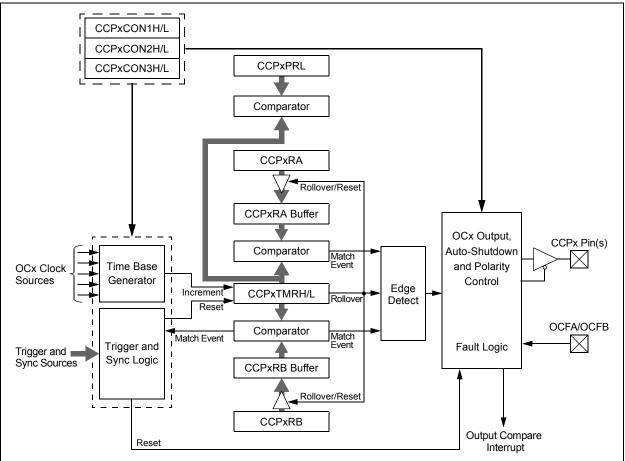

Table 13-3 shows the various modes available in Output Compare modes.

TABLE 13-3:	OUTPUT COMPARE/PWM MODES
-------------	--------------------------

MOD<3:0> (CCPxCON1L<3:0>)	T32 (CCPxCON1L<5>)			
0001	0	Output High on Compare (16-bit)		
0001	1	Output High on Compare (32-bit)		
0010	0	Output Low on Compare (16-bit)	Single Edge Mede	
0010	1	Output Low on Compare (32-bit)	Single Edge Mode	
0011	0	Output Toggle on Compare (16-bit)		
0011	1	Output Toggle on Compare (32-bit)		
0100	0	Dual Edge Compare (16-bit)	Dual Edge Mode	
0101	0	Dual Edge Compare (16-bit buffered)	PWM Mode	
0110	0	Center-Aligned Pulse (16-bit buffered)	Center PWM	
0111	0	Variable Frequency Pulse (16-bit)		
0111	1	Variable Frequency Pulse (32-bit)		

OUTPUT COMPARE x BLOCK DIAGRAM

16.2.4 RTCC CONTROL REGISTERS

REGISTER 16-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾

R/W-0	U-0	R/W-0	R-0, HSC	R-0, HSC	R/W-0	R/W-0	R/W-0
RTCEN ⁽²⁾		RTCWREN	RTCSYNC	HALFSEC ⁽³⁾	RTCOE	RTCPTR1	RTCPTR0
bit 15				1			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0
bit 7							bit (
Legend:		HSC = Hardw	are Settable/C	learable bit			
R = Readable	e bit	W = Writable I	oit	U = Unimplem	ented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	iown
bit 15	RTCEN: RT	CC Enable bit ⁽²⁾					
		nodule is enable	-				
		nodule is disable					
bit 14	•	nted: Read as '0					
bit 13		RTCC Value Re	-		u the upor		
		_H and RTCVAL _H and RTCVAL				n to by the user	
bit 12	0 = RTCVAL	H and RTCVAL	L registers are	locked out from	n being writter	n to by the user	
bit 12	0 = RTCVAL RTCSYNC:		L registers are gisters Read S	locked out from	h being writter bit		rollover ripple
bit 12	0 = RTCVAL RTCSYNC: 1 = RTCVAL resulting	∟H and RTCVAL RTCC Value Reo ∟H, RTCVALL ar g in an invalid da	L registers are gisters Read S nd ALCFGRPT ta read. If the	locked out from ynchronization registers can c	n being writter bit hange while r	eading due to a	
bit 12	0 = RTCVAI RTCSYNC: 1 = RTCVAI resulting can be a	₋H and RTCVAL RTCC Value Reg ∟H, RTCVALL ar g in an invalid da assumed to be va	L registers are gisters Read S nd ALCFGRPT ta read. If the alid.	locked out from ynchronization registers can c register is read t	h being writter bit hange while r twice and rest	eading due to a ults in the same	data, the data
	0 = RTCVAL RTCSYNC: 1 = RTCVAL resulting can be a 0 = RTCVAL	H and RTCVAL RTCC Value Reg H, RTCVALL ar in an invalid da assumed to be va H, RTCVALL or	L registers are gisters Read S nd ALCFGRPT ta read. If the alid. ALCFGRPT r	locked out from ynchronization registers can c register is read t	h being writter bit hange while r twice and rest	eading due to a ults in the same	data, the data
bit 12 bit 11	0 = RTCVAL RTCSYNC: 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: H	H and RTCVAL RTCC Value Reg H, RTCVALL ar in an invalid da assumed to be va H, RTCVALL or Half Second Stat	L registers are gisters Read S ad ALCFGRPT ta read. If the alid. ALCFGRPT r tus bit ⁽³⁾	locked out from ynchronization registers can c register is read t	h being writter bit hange while r twice and rest	eading due to a ults in the same	data, the data
	0 = RTCVAL RTCSYNC: 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: 1 = Second	H and RTCVAL RTCC Value Reg H, RTCVALL ar in an invalid da assumed to be va H, RTCVALL or	L registers are gisters Read S ad ALCFGRPT ta read. If the alid. ALCFGRPT r sus bit ⁽³⁾ second	locked out from ynchronization registers can c register is read t	h being writter bit hange while r twice and rest	eading due to a ults in the same	data, the data
	0 = RTCVAL RTCSYNC: 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: H 1 = Second 0 = First hal	-H and RTCVAL RTCC Value Reg -H, RTCVALL ar g in an invalid da assumed to be va -H, RTCVALL or Half Second Stat half period of a s	L registers are gisters Read S ad ALCFGRPT ta read. If the alid. ALCFGRPT r sus bit ⁽³⁾ second ond	locked out from ynchronization registers can c register is read t	h being writter bit hange while r twice and rest	eading due to a ults in the same	data, the data
bit 11	0 = RTCVAL RTCSYNC: 1 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: 1 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o	-H and RTCVAL RTCC Value Reg -H, RTCVALL ar g in an invalid da assumed to be va -H, RTCVALL or Half Second Stat half period of a sec CC Output Enab utput is enabled	L registers are gisters Read S ad ALCFGRPT ta read. If the alid. ALCFGRPT r tus bit ⁽³⁾ second ond le bit	locked out from ynchronization registers can c register is read t	h being writter bit hange while r twice and rest	eading due to a ults in the same	data, the data
bit 11 bit 10	0 = RTCVAL RTCSYNC: 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: H 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o 0 = RTCC o	-H and RTCVAL RTCC Value Reg -H, RTCVALL ar g in an invalid da assumed to be va -H, RTCVALL or Half Second Stat half period of a sec CC Output Enab output is enabled output is disabled	L registers are gisters Read S ad ALCFGRPT ta read. If the alid. ALCFGRPT r second ond le bit	locked out from ynchronization registers can c register is read t egisters can be	h being writter bit hange while r twice and rest read without	eading due to a ults in the same	data, the data
bit 11	0 = RTCVAL RTCSYNC: 1 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: H 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o 0 = RTCC o RTCPTR<1:	-H and RTCVAL RTCC Value Reg H, RTCVALL ar in an invalid da assumed to be va H, RTCVALL or Half Second Stat half period of a sec CC Output Enab utput is enabled utput is disabled 0-: RTCC Value	L registers are gisters Read S ad ALCFGRPT ta read. If the alid. ALCFGRPT r us bit ⁽³⁾ second ond le bit Register Wind	locked out from ynchronization registers can c register is read t egisters can be	h being writter bit hange while r twice and rest read without	eading due to a ults in the same concern over a	data, the data
bit 11 bit 10	0 = RTCVAL RTCSYNC: 1 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: H 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o 0 = RTCC o RTCPTR<1: Points to the	-H and RTCVAL RTCC Value Reg -H, RTCVALL ar g in an invalid da assumed to be va -H, RTCVALL or Half Second Stat half period of a sec CC Output Enab output is enabled output is disabled	L registers are gisters Read S ad ALCFGRPT ta read. If the alid. ALCFGRPT r us bit ⁽³⁾ second ond le bit Register Wind TCC Value reg	locked out from ynchronization registers can c register is read t egisters can be dow Pointer bits gisters when rea	h being writter bit hange while r twice and rest read without ding the RTC	eading due to a ults in the same concern over a VALH and RTC\	data, the data rollover ripple /ALL registers
bit 11 bit 10	0 = RTCVAL RTCSYNC: 1 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: H 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o 0 = RTCC o RTCPTR<1: Points to the	-H and RTCVAL RTCC Value Reg LH, RTCVALL ar g in an invalid da assumed to be va LH, RTCVALL or Half Second Stat half period of a sec CC Output Enab utput is enabled utput is disabled 0>: RTCC Value corresponding R R<1:0> value dec	L registers are gisters Read S ad ALCFGRPT ta read. If the alid. ALCFGRPT r us bit ⁽³⁾ second ond le bit Register Wind TCC Value reg	locked out from ynchronization registers can c register is read t egisters can be dow Pointer bits gisters when rea	h being writter bit hange while r twice and rest read without ding the RTC	eading due to a ults in the same concern over a VALH and RTC\	data, the data rollover ripple /ALL registers
bit 11 bit 10	0 = RTCVAL RTCSYNC: 1 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: H 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o 0 = RTCC o RTCPTR<1: Points to the The RTCPTF <u>RTCVAL<15</u> 00 = MINUT	-H and RTCVAL RTCC Value Reg -H, RTCVALL ar g in an invalid da assumed to be va -H, RTCVALL or Half Second Stat half period of a sec CC Output Enab utput is enabled utput is disabled 0>: RTCC Value corresponding R R<1:0> value dec : <u>8>:</u> ES	L registers are gisters Read S ad ALCFGRPT ta read. If the alid. ALCFGRPT r us bit ⁽³⁾ second ond le bit Register Wind TCC Value reg	locked out from ynchronization registers can c register is read t egisters can be dow Pointer bits gisters when rea	h being writter bit hange while r twice and rest read without ding the RTC	eading due to a ults in the same concern over a VALH and RTC\	data, the data rollover ripple /ALL registers
bit 11 bit 10	0 = RTCVAL RTCSYNC: 1 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: H 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o 0 = RTCC o RTCPTR<1: Points to the The RTCPTF <u>RTCVAL<15</u> 00 = MINUT 01 = WEEKI	-H and RTCVAL RTCC Value Reg -H, RTCVALL ar g in an invalid da assumed to be va -H, RTCVALL or Half Second Stat half period of a sec CC Output Enab output is enabled output is disabled 0>: RTCC Value corresponding R R<1:0> value dec : <u>8>:</u> ES DAY	L registers are gisters Read S ad ALCFGRPT ta read. If the alid. ALCFGRPT r us bit ⁽³⁾ second ond le bit Register Wind TCC Value reg	locked out from ynchronization registers can c register is read t egisters can be dow Pointer bits gisters when rea	h being writter bit hange while r twice and rest read without ding the RTC	eading due to a ults in the same concern over a VALH and RTC\	data, the data rollover ripple /ALL registers
bit 11 bit 10	0 = RTCVAL RTCSYNC: 1 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: H 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o 0 = RTCC o RTCPTR<1: Points to the The RTCPTF <u>RTCVAL<15</u> 00 = MINUT	-H and RTCVAL RTCC Value Reg -H, RTCVALL ar g in an invalid da assumed to be va -H, RTCVALL or Half Second Stat half period of a sec CC Output Enab utput is enabled utput is disabled 0>: RTCC Value corresponding R R<1:0> value dec :8>: ES DAY H	L registers are gisters Read S ad ALCFGRPT ta read. If the alid. ALCFGRPT r us bit ⁽³⁾ second ond le bit Register Wind TCC Value reg	locked out from ynchronization registers can c register is read t egisters can be dow Pointer bits gisters when rea	h being writter bit hange while r twice and rest read without ding the RTC	eading due to a ults in the same concern over a VALH and RTC\	data, the data rollover ripple /ALL registers
bit 11 bit 10	0 = RTCVAL RTCSYNC: 1 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: H 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o 0 = RTCC o RTCPTR<1: Points to the The RTCPTF <u>RTCVAL<15</u> 00 = MINUT 01 = WEEKE 10 = MONTH	-H and RTCVAL RTCC Value Reg H, RTCVALL ar g in an invalid da assumed to be va H, RTCVALL or Half Second Stat half period of a sec CC Output Enabled utput is enabled utput is disabled 0>: RTCC Value corresponding R R<1:0> value dec : <u>8>:</u> ES DAY H ed	L registers are gisters Read S ad ALCFGRPT ta read. If the alid. ALCFGRPT r us bit ⁽³⁾ second ond le bit Register Wind TCC Value reg	locked out from ynchronization registers can c register is read t egisters can be dow Pointer bits gisters when rea	h being writter bit hange while r twice and rest read without ding the RTC	eading due to a ults in the same concern over a VALH and RTC\	data, the data rollover ripple /ALL registers
bit 11 bit 10	0 = RTCVAL RTCSYNC: 1 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: H 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o 0 = RTCC o RTCPTR<1: Points to the The RTCPTF <u>RTCVAL<15</u> 00 = MINUT 01 = WEEKI 10 = MONTH 11 = Reserv <u>RTCVAL<7:(</u> 00 = SECON	-H and RTCVAL RTCC Value Reg H, RTCVALL ar in an invalid da assumed to be va- H, RTCVALL or Half Second Stat half period of a sec CC Output Enab utput is enabled utput is disabled 0>: RTCC Value corresponding R R<1:0> value dec <u>:8>:</u> ES DAY H ed <u>)>:</u> NDS	L registers are gisters Read S ad ALCFGRPT ta read. If the alid. ALCFGRPT r us bit ⁽³⁾ second ond le bit Register Wind TCC Value reg	locked out from ynchronization registers can c register is read t egisters can be dow Pointer bits gisters when rea	h being writter bit hange while r twice and rest read without ding the RTC	eading due to a ults in the same concern over a VALH and RTC\	data, the data rollover ripple /ALL registers
bit 11 bit 10	0 = RTCVAL RTCSYNC: 1 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: H 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o 0 = RTCC o RTCPTR<1: Points to the The RTCPTF <u>RTCVAL<15</u> 00 = MINUT 01 = WEEKI 10 = MONTH 11 = Reserv <u>RTCVAL<7:0</u>	-H and RTCVAL RTCC Value Reg H, RTCVALL ar in an invalid da assumed to be va- H, RTCVALL or Half Second Stat half period of a sec CC Output Enab utput is enabled utput is disabled 0>: RTCC Value corresponding R R<1:0> value dec <u>:8>:</u> ES DAY H ed <u>)>:</u> NDS	L registers are gisters Read S ad ALCFGRPT ta read. If the alid. ALCFGRPT r us bit ⁽³⁾ second ond le bit Register Wind TCC Value reg	locked out from ynchronization registers can c register is read t egisters can be dow Pointer bits gisters when rea	h being writter bit hange while r twice and rest read without ding the RTC	eading due to a ults in the same concern over a VALH and RTC\	data, the data rollover ripple /ALL registers

Note 1: The RCFGCAL register is only affected by a POR.

- 2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
- 3: This bit is read-only; it is cleared to '0' on a write to the lower half of the MINSEC register.

REGISTER 16-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾ (CONTINUED)

- **Note 1:** The RCFGCAL register is only affected by a POR.
 - 2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
 - 3: This bit is read-only; it is cleared to '0' on a write to the lower half of the MINSEC register.

REGISTER 16-2:	RTCPWC: RTCC CONFIGURATION REGISTER 2 ⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PWCEN	PWCPOL	PWCCPRE	PWCSPRE	RTCCLK1 ⁽²⁾	RTCCLK0 ⁽²⁾	RTCOUT1	RTCOUT0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—			_	—		
bit 7							bit (
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimpleme	nted bit, read as	'0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cleare	ed	x = Bit is unkr	nown
bit 15	PWCEN: Po	wer Control Er	able bit				
		ontrol is enable					
		ontrol is disable					
bit 14		ower Control F	•				
		ontrol output is ontrol output is	•				
bit 13		Power Control		caler hits			
			•	by-2 of source R ⁻	TCC clock		
				by-1 of source R			
bit 12	PWCSPRE:	Power Control	Sample Pres	caler bits			
				by-2 of source RT			
bit 11-10	RTCCLK<1:	0>: RTCC Clo	ck Select bits ⁽²	2)			
				CC clock, which i	s used for all RT	CC timer opera	ations.
		al Secondary O I LPRC Oscillat		C)			
		al power line sc					
		al power line so					
bit 9-8	RTCOUT<1:	: 0>: RTCC Out	put Select bits	5			
		the source of th	ne RTCC pin c	output.			
	00 = RTCC a	•					
	01 = RTCC	seconds clock					
	11 = Power						
bit 7-0	Unimpleme	nted: Read as	'0'				
Note 1:	The RTCPWC	register is only	affected by a	POR			
			-	r bits the Secon	da Valua ragistar	should also be	o urritton to

2: When a new value is written to these register bits, the Seconds Value register should also be written to properly reset the clock prescalers in the RTCC.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0
bit 7				-			bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	iown
bit 15		,	ed automatica	lly after an ala	arm event whe	never ARPT<7	:0> = 00h and
bit 14		ne Enable bit					
DIL 14	1 = Chime is	s enabled; ARP				to FFh	
bit 13-10		>: Alarm Mask					
	0011 = Even 0100 = Even 0101 = Even 0110 = Once 0111 = Once 1000 = Once 1001 = Once 101x = Rese 11xx = Rese	y 10 seconds y minute y 10 minutes y hour e a day e a week e a month e a year (except erved – do not u erved – do not u	se se			very 4 years)	
bit 9-8		1:0>: Alarm Val	-				
		11N VD 1NTH emented : <u>0>:</u> EC IR IR					
bit 7-0	•	Alarm Repeat	Counter Value I	oits			
		Alarm will rep					
	•						
		Alarm will not decrements on		nt; it is prevent	ted from rolling	over from 00h	to FFh unless

REGISTER 16-3: ALCFGRPT: ALARM CONFIGURATION REGISTER

16.2.5 RTCVAL REGISTER MAPPINGS

REGISTER 16-4: YEAR: YEAR VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

| R/W-x |
|--------|--------|--------|--------|--------|--------|--------|--------|
| YRTEN3 | YRTEN2 | YRTEN1 | YRTEN0 | YRONE3 | YRONE2 | YRONE1 | YRONE0 |
| bit 7 | • | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

- bit 7-4 **YRTEN<3:0>:** Binary Coded Decimal Value of Year's Tens Digit bits Contains a value from 0 to 9.
- bit 3-0 **YRONE<3:0>:** Binary Coded Decimal Value of Year's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to the YEAR register is only allowed when RTCWREN = 1.

REGISTER 16-5: MTHDY: MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	MTHTEN0	MTHONE3	MTHONE2	MTHONE1	MTHONE0
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	—	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

- bit 12 MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit bit Contains a value of '0' or '1'.
- bit 11-8 MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit bits Contains a value from 0 to 9.
- bit 7-6 Unimplemented: Read as '0'
- bit 5-4 **DAYTEN<1:0>:** Binary Coded Decimal Value of Day's Tens Digit bits Contains a value from 0 to 3.
- bit 3-0 **DAYONE<3:0>:** Binary Coded Decimal Value of Day's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
ADON		ADSIDL			MODE12	FORM1	FORM0			
bit 15							bit			
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0, HSC	R/C-0, HSC			
SSRC3	SSRC2	SSRC1	SSRC0		ASAM	SAMP	DONE			
bit 7	•	·		·			bit			
Legend:		C = Clearable	bit	U = Unimpler	nented bit, read	d as '0'				
R = Readable	bit	W = Writable	bit	HSC = Hardv	vare Settable/C	learable bit				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown			
bit 15		Operating Mode	hit							
		verter is operat								
	0 = A/D Conv		ing ing							
bit 14	Unimplemen	ted: Read as ')'							
bit 13	ADSIDL: A/D	Stop in Idle Mo	ode bit							
	1 = Discontinues module operation when device enters Idle mode									
		s module opera		ode						
bit 12-11	Unimplemen	ted: Read as ')'							
bit 10	MODE12: 12-Bit A/D Operation Mode bit									
	 1 = 12-bit A/D operation 0 = 10-bit A/D operation 									
bit 9-8	FORM<1:0>: Data Output Format bits (see the following formats)									
	10 = Absolute 01 = Decimal	al result, signe e fractional resu result, signed, e decimal resul	ult, unsigned, l right justified	-						
bit 7-4	 00 = Absolute decimal result, unsigned, right justified SSRC<3:0>: Sample Clock Source Select bits 									
	1111 = Reserved									
	•									
	•									
	1101 = Reserved									
	1100 = CLC2 event ends sampling and starts conversion									
	1011 = SCCP4 Compare Event (CCP4IF) ends sampling and starts conversion 1010 = MCCP3 Compare Event (CCP3IF) ends sampling and starts conversion									
	1001 = MCCP3 Compare Event (CCP3F) ends sampling and starts conversion									
	1000 = CLC1 event ends sampling and starts conversion									
	0111 = Internal counter ends sampling and starts conversion (auto-convert)									
	0110 = TMR1 Sleep mode Trigger event ends sampling and starts conversion ⁽¹⁾ 0101 = TMR1 event ends sampling and starts conversion									
	0100 = CTMU	J event ends sa	ampling and st	arts conversior	า					
				ends sampling						
		P1 Compare Event ends sar		ends sampling	and starts con	version				
		Gront chus sal	nping anu sta							

REGISTER 19-1: AD1CON1: A/DA/D CONTROL REGISTER 1

Note 1: This version of the TMR1 Trigger allows A/D conversions to be triggered from TMR1 while the device is operating in Sleep mode. The SSRC<3:0> = 0101 option allows conversions to be triggered in Run or Idle modes only.

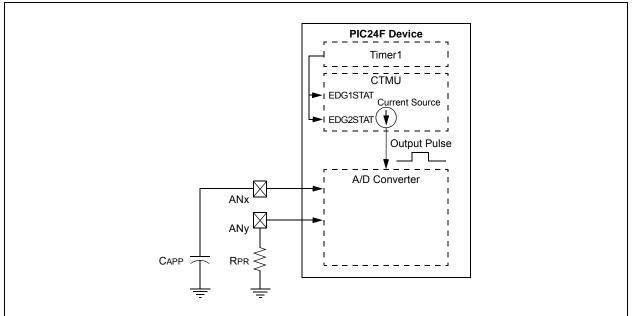
REGISTER 19-7: AD1CHITL: A/D SCAN COMPARE HIT REGISTER (LOW WORD)⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CHH15	CHH14	CHH13	CHH12	CHH11	CHH10	CHH9	CHH8 ^(2,3)			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CHH7 ^(2,3)	CHH6 ^(2,3)	CHH5 ⁽²⁾	CHH4	CHH3	CHH2	CHH1	CHH0			
bit 7					·		bit 0			
Legend:										
R = Readable	e bit	W = Writable b	pit	U = Unimplemented bit, read as '0'						
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
bit 15-0	CHH<15:0>:	A/D Compare H	lit bits ^(2,3)							
	<u>If CM<1:0> =</u>	<u>11:</u>								
	1 = A/D Result Buffer x has been written with data or a match has occurred									

0 = A/D Result Buffer x has not been written with data

For All Other Values of CM<1:0>:

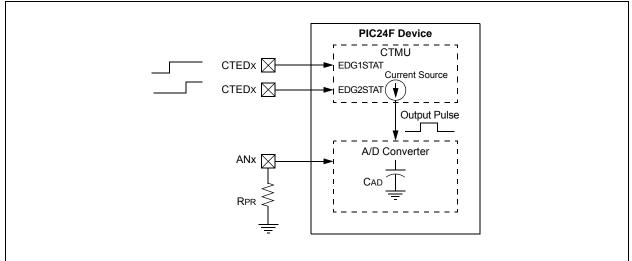
1 = A match has occurred on A/D Result Channel x


0 = No match has occurred on A/D Result Channel x

Note 1: Unimplemented channels are read as '0'.

2: The CHH<8:5> bits are not implemented in 20-pin devices.

3: The CHH<8:6> bits are not implemented in 28-pin devices.


FIGURE 24-1: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR CAPACITANCE MEASUREMENT

24.2 Measuring Time

Time measurements on the pulse width can be similarly performed using the A/D module's Internal Capacitor (CAD) and a precision resistor for current calibration. Figure 24-2 displays the external connections used for time measurements, and how the CTMU and A/D modules are related in this application. This example also shows both edge events coming from the external CTEDx pins, but other configurations using internal edge sources are possible.

FIGURE 24-2: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR TIME MEASUREMENT

REGISTER 25-7: FICD: IN-CIRCUIT DEBUGGER CONFIGURATION REGISTER

R/P-1	U-0	U-0	U-0	U-0	U-0	R/P-1	R/P-1
DEBUG	—	—	_	—	—	FICD1	FICD0
bit 7				•		•	bit 0
Legend:							
R = Readab	le bit	P = Programmable bit		U = Unimplem	nented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 7 bit 6-2 bit 1-0	DEBUG: Background Debugger Enable bit 1 = Background debugger is disabled 0 = Background debugger functions are enabled Unimplemented: Read as '0' FICD<1:0:>: ICD Pin Select bits 11 = PGEC1/PGED1 are used for programming and debugging the device 10 = PGEC2/PGED2 are used for programming and debugging the device 01 = PGEC3/PGED3 are used for programming and debugging the device 02 = Reserved; do not use						

DC CHARACTERISTICS		Standard Operating Conditions			: 1.8V to 3.6V (PIC24F16KM204) 2.0V to 5.5V (PIC24FV16KM204) -40°C \leq TA \leq +85°C for Industrial -40°C \leq TA \leq +125°C for Extended			
Parameter No.	Device	Typical ⁽¹⁾	Max	Units		onditions		
Power-Dow	n Current (IPD)							
DC60	PIC24FV16KMXXX				-40°C			
			8.0		+25°C			
		6.0	8.5	μA	+60°C	2.0V		
			9.0		+85°C			
			15.0		+125°C			
			—		-40°C			
			8.0		+25°C			
		6.0	9.0	μA	+60°C	5.0V		
			10.0		+85°C			
			15.0		+125°C		Sleep Mode ⁽²⁾	
	PIC24F16KMXXX		—		-40°C			
			0.80		+25°C			
		0.025	1.5	μA	+60°C	1.8V		
			2.0		+85°C			
			7.5		+125°C			
			—		-40°C			
			1.0		+25°C			
		0.040	2.0	μA	+60°C	3.3V		
			3.0		+85°C			
			7.5		+125°C			
DC61	PIC24FV16KMXXX	0.25	_	μA	+85°C	2.0V		
			7.5	P., 4	+125°C	2.0 V	Low-Voltage	
		0.35	3.0	μA	+85°C	5.0V	Sleep Mode ⁽²⁾	
			7.5		+125°C			

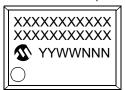
TABLE 27-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Legend: Unshaded rows represent PIC24F16KMXXX devices and shaded rows represent PIC24FV16KMXXX devices.

Note 1: Data in the Typical column is at 3.3V, +25°C (PIC24F16KMXXX) or 5.0V, +25°C (PIC24FV16KMXXX) unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as outputs and set low. PMSLP is set to '0' and WDT, etc., are all switched off.

3: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.


28.0 PACKAGING INFORMATION

28.1 Package Marking Information

20-Lead PDIP (300 mil)

20-Lead SSOP (5.30 mm)

20-Lead SOIC (7.50 mm)

20-Lead QFN

Example PIC24F08KM101 -I/P@3 0 1342M7W

Example

Example

Legend:	XXX Y YY WW NNN @3	Product-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	will be	event the full Microchip part number cannot be marked on one line, it carried over to the next line, thus limiting the number of available ters for customer-specific information.

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

 $\ensuremath{\textcircled{\sc 0}}$ 2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-62077-358-1

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.