

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	38
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 22x10b/12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08km204-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-5: PIC24FV16KM204 FAMILY PINOUT DESCRIPTION (CONTINUED)

TADLE 1-5.			F FV											
			Pin Numb	er				Pin Numb	er		-			
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	I/O	Buffer	Description	
CTED1	11	20	17	7	7	11	2	27	19	21	Ι	ST	CTMU Trigger Edge Inputs	
CTED2	15	23	20	10	11	15	23	20	10	11	I	ST	CTMU Trigger Edge Inputs	
CTED3	_	19	16	6	6	_	19	16	6	6	I	ST	CTMU Trigger Edge Inputs	
CTED4	13	18	15	1	1	13	18	15	1	1	I	ST	CTMU Trigger Edge Inputs	
CTED5	17	25	22	14	15	17	25	22	14	15	I	ST	CTMU Trigger Edge Inputs	
CTED6	18	26	23	15	16	18	26	23	15	16	I	ST	CTMU Trigger Edge Inputs	
CTED7	_		_	5	5			_	5	5	I	ST	CTMU Trigger Edge Inputs	
CTED8	—		_	13	14			—	13	14	I	ST	CTMU Trigger Edge Inputs	
CTED9	_	22	19	9	10		22	19	9	10	I	ST	CTMU Trigger Edge Inputs	
CTED10	12	17	14	44	48	12	17	14	44	48	I	ST	CTMU Trigger Edge Inputs	
CTED11	—	21	18	8	9		21	18	8	9	I	ST	CTMU Trigger Edge Inputs	
CTED12	5	5	2	22	24	5	5	2	22	24	I	ST	CTMU Trigger Edge Inputs	
CTED13	6	6	3	23	25	6	6	3	23	25	I	ST	CTMU Trigger Edge Inputs	
CTPLS	16	24	21	11	12	16	24	21	11	12	0	_	CTMU Pulse Output	
CVREF	17	25	22	14	15	17	25	22	14	15	0	ANA	Comparator Voltage Reference Output	
CVREF+	2	2	27	19	21	2	2	27	19	21	Ι	ANA	Comparator Voltage Reference Positive Input	
CVREF-	3	3	28	20	22	3	3	28	20	22	Ι	ANA	Comparator Voltage Reference Negative Input	
DAC1OUT	—	23	20	10	11		23	20	10	11	0	ANA	DAC1 Output	
DAC1REF+	_	2	27	19	21		2	27	19	21	I	ANA	DAC1 Positive Voltage Reference Input	
DAC2OUT	_	25	22	14	15	_	25	22	14	15	0	ANA	DAC2 Output	
DAC2REF+	_	26	23	15	16	_	26	23	15	16	Ι	ANA	DAC2 Positive Voltage Reference Input	
HLVDIN	15	23	20	10	11	15	23	20	10	11	Ι	ANA	External High/Low-Voltage Detect Input	
IC1	14	19	16	6	6	11	19	16	6	6	Ι	ST	MCCP1 Input Capture Input	
IC2	13	18	15	1	1	13	18	15	1	1	Ι	ST	MCCP2 Input Capture Input	
IC3	_	23	20	13	14	_	23	20	13	14	Ι	ST	MCCP3 Input Capture Input	
IC4	_	14	11	5	5	_	14	11	5	5	I	ST	SCCP4 Input Capture Input	
IC5	_	15	12	12	13		15	12	12	13	Ι	ST	SCCP5 Input Capture Input	
INT0	11	16	13	43	47	11	16	13	43	47	I	ST	External Interrupt 0 Input	
INT1	17	25	22	14	15	17	25	22	14	15	I	ST	External Interrupt 1 Input	
INT2	14	20	17	7	7	15	23	20	10	11	I	ST	External Interrupt 2 Input	

Legend: ANA = Analog level input/output, ST = Schmitt Trigger input buffer, $I^2C^{TM} = I^2C/SMBus$ input buffer

FIGURE 2-1:

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT MICROCONTROLLERS

2.1 Basic Connection Requirements

Getting started with the PIC24FV16KM204 family of 16-bit microcontrollers requires attention to a minimal set of device pin connections before proceeding with development.

The following pins must always be connected:

- All VDD and Vss pins (see Section 2.2 "Power Supply Pins")
- All AVDD and AVss pins, regardless of whether or not the analog device features are used (see Section 2.2 "Power Supply Pins")
- MCLR pin (see Section 2.3 "Master Clear (MCLR) Pin")
- VCAP pins (see Section 2.4 "Voltage Regulator Pin (VCAP)")

These pins must also be connected if they are being used in the end application:

- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.5 "ICSP Pins**")
- OSCI and OSCO pins when an external oscillator source is used

(see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

• VREF+/VREF- pins are used when external voltage reference for analog modules is implemented

Note: The AVDD and AVss pins must always be connected, regardless of whether any of the analog modules are being used.

The minimum mandatory connections are shown in Figure 2-1.

MINIMUM CONNECTIONS C2⁽²⁾ Vdd Vss ₹R1 VDD R2 MCLR VCAP (1) C1 PIC24FV16KM204 Vdd Vss C6⁽²⁾ C3(2) VDD Vss AVDD AVSS /SS 20/

RECOMMENDED

Key (all values are recommendations):

C5⁽²⁾

C1 through C6: 0.1 $\mu\text{F},$ 20V ceramic

C7: 10 µF, 16V tantalum or ceramic

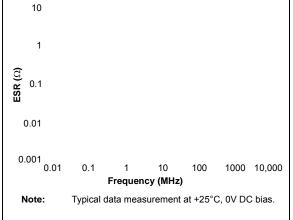
R1: 10 kΩ

R2: 100Ω to 470Ω

- Note 1: See Section 2.4 "Voltage Regulator Pin (VCAP)" for an explanation of VCAP pin connections.
 - 2: The example shown is for a PIC24F device with five VDD/Vss and AVDD/AVss pairs. Other devices may have more or less pairs; adjust the number of decoupling capacitors appropriately.

C4(2)

2.4 Voltage Regulator Pin (VCAP)


Note:	This	section	appli	ies	or	to	
	PIC24F	V16KM	devices	with	an	on-	chip
	voltage	regulato	or.				

Some of the PIC24FV16KM devices have an internal voltage regulator. These devices have the voltage regulator output brought out on the VCAP pin. On the PIC24F K devices with regulators, a low-ESR (< 5 Ω) capacitor is required on the VCAP pin to stabilize the voltage regulator output. The VCAP pin must not be connected to VDD and must use a capacitor of 10 μ F connected to ground. The type can be ceramic or tantalum. Suitable examples of capacitors are shown in Table 2-1. Capacitors with equivalent specifications can be used.

Designers may use Figure 2-3 to evaluate ESR equivalence of candidate devices.

The placement of this capacitor should be close to VCAP. It is recommended that the trace length not exceed 0.25 inch (6 mm). Refer to **Section 27.0** "**Electrical Characteristics**" for additional information. Refer to **Section 27.0 "Electrical Characteristics"** for information on VDD and VDDCORE.

FIGURE 2-3: FREQUENCY vs. ESR PERFORMANCE FOR SUGGESTED VCAP

TABLE 2-1: SUITABLE CAPACITOR EQUIVALENTS

Make	Part #	Nominal Capacitance	Base Tolerance	Rated Voltage	Temp. Range
TDK	C3216X7R1C106K	10 µF	±10%	16V	-55 to +125°C
TDK	C3216X5R1C106K	10 µF	±10%	16V	-55 to +85°C
Panasonic	ECJ-3YX1C106K	10 µF	±10%	16V	-55 to +125°C
Panasonic	ECJ-4YB1C106K	10 µF	±10%	16V	-55 to +85°C
Murata	GRM32DR71C106KA01L	10 µF	±10%	16V	-55 to +125°C
Murata	GRM31CR61C106KC31L	10 µF	±10%	16V	-55 to +85°C

TABLE 4-15: UART1 REGISTER MAP

		•																
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	220h	UARTEN	—	USIDL	IREN	RTSMD	-	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U1STA	222h	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	224h	_	_	_	_	_	_	_				UART1 Tra	ansmit Regi	ster				xxxx
U1RXREG	226h	UART1 Receive Register											0000					
U1BRG 228h Baud Rate Generator Prescaler												0000						

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved.

TABLE 4-16: UART2 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U2MODE ⁽¹⁾	230h	UARTEN	—	USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U2STA ⁽¹⁾	232h	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG ⁽¹⁾	234h	_	_	_	—	_	_	_				UART2 Tra	nsmit Regis	ster				xxxx
U2RXREG ⁽¹⁾	236h	_	_	_	—	_	_	_	UART2 Receive Register						0000			
U2BRG ⁽¹⁾	238h		Baud Rate Generator Prescaler											0000				

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved.

Note 1: These registers are available only on PIC24F(V)16KM2XX devices.

4.3.2 DATA ACCESS FROM PROGRAM MEMORY AND DATA EEPROM MEMORY USING TABLE INSTRUCTIONS

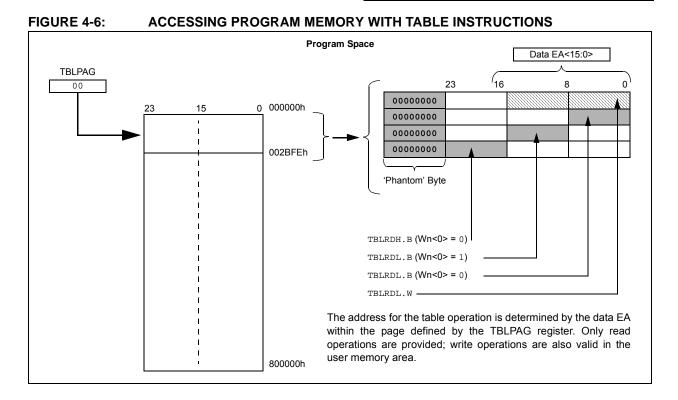
The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program memory without going through Data Space. It also offers a direct method of reading or writing a word of any address within data EEPROM memory. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

Note: The TBLRDH and TBLWTH instructions are not used while accessing data EEPROM memory.

The PC is incremented by 2 for each successive 24-bit program word. This allows program memory addresses to directly map to Data Space addresses. Program memory can thus be regarded as two 16-bit, word-wide address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word, and TBLRDH and TBLWTH access the space which contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

 TBLRDL (Table Read Low): In Word mode, it maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>). In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when byte select is '1'; the lower byte is selected when it is '0'.


 TBLRDH (Table Read High): In Word mode, it maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom' byte, will always be '0'.

In Byte mode, it maps the upper or lower byte of the program word to D<7:0> of the data address, as above. Note that the data will always be '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in **Section 5.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Memory Page Address register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

Note: Only Table Read operations will execute in the configuration memory space, and only then, in implemented areas, such as the Device ID. Table Write operations are not allowed.

© 2013 Microchip Technology Inc.

5.2 RTSP Operation

The PIC24F Flash program memory array is organized into rows of 32 instructions or 96 bytes. RTSP allows the user to erase blocks of 1 row, 2 rows and 4 rows (32, 64 and 128 instructions) at a time, and to program one row at a time. It is also possible to program single words.

The 1-row (96 bytes), 2-row (192 bytes) and 4-row (384 bytes) erase blocks, and single row write block (96 bytes) are edge-aligned, from the beginning of program memory.

When data is written to program memory using TBLWT instructions, the data is not written directly to memory. Instead, data written using Table Writes is stored in holding latches until the programming sequence is executed.

Any number of TBLWT instructions can be executed and a write will be successfully performed. However, 32 TBLWT instructions are required to write the full row of memory.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register.

Data can be loaded in any order and the holding registers can be written to multiple times before performing a write operation. Subsequent writes, however, will wipe out any previous writes.

Note:	Writing	to a		location	multiple	times,
	without	eras	sing	it, is not i	ecommer	nded.

All of the Table Write operations are single-word writes (two instruction cycles), because only the buffers are written. A programming cycle is required for programming each row.

5.3 Enhanced In-Circuit Serial Programming

Enhanced ICSP uses an on-board bootloader, known as the Program Executive (PE), to manage the programming process. Using an SPI data frame format, the Program Executive can erase, program and verify program memory. For more information on Enhanced ICSP, see the device programming specification.

5.4 Control Registers

There are two SFRs used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 5-1) controls the blocks that need to be erased, which memory type is to be programmed and when the programming cycle starts.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user must consecutively write 55h and AAh to the NVMKEY register. Refer to **Section 5.5 "Programming Operations"** for further details.

5.5 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. During a programming or erase operation, the processor stalls (waits) until the operation is finished. Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

REGISTER 8-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HS	U-0
—	—	—	—	—	—	CCT5IF	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		_	_		_		_
bit 7							bit 0

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10	Unimplemented: Read as '0'
bit 9	CCT5IF: Capture/Compare 5 Timer Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred

bit 8-0 Unimplemented: Read as '0'

REGISTER 8-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

U-0	R/W-0, HS	U-0	U-0	U-0	U-0	U-0	U-0
—	RTCIF	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	U-0
—	—	—	—	—	BCL2IF	SSP2IF	—
bit 7							bit 0

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14	RTCIF: Real-Time Clock and Calendar Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 13-3	Unimplemented: Read as '0'
bit 2	BCL2IF: MSSP2 I ² C [™] Bus Collision Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 1	SSP2IF: MSSP2 SPI/I ² C Event Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	Unimplemented: Read as '0'

REGISTER 8-10: IFS5: INTERRUPT FLAG STATUS REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	_	—	_	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HS
—	—	—	_	—	_	—	ULPWUIF
bit 7							bit 0

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-1 Unimplemented: Read as '0'

bit 0 ULPWUIF: Ultra Low-Power Wake-up Interrupt Flag Status bit

1 = Interrupt request has occurred

0 = Interrupt request has not occurred

REGISTER 8-11: IFS6: INTERRUPT FLAG STATUS REGISTER 6

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0, HS
—	—	—	—	—	—	CLC2IF	CLC1IF
bit 7							bit 0

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-2 Unimplemented: Read as '0'

bit 1 CLC2IF: Configurable Logic Cell 2 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred

bit 0 CLC1IF: Configurable Logic Cell 1 Interrupt Flag Status bit

1 = Interrupt request has occurred

0 = Interrupt request has not occurred

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_	DAC2IP2	DAC2IP1	DAC2IP0		DAC1IP2	DAC1IP1	DAC1IP0				
bit 15							bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0				
_	CTMUIP2	CTMUIP1	CTMUIP0	_		_	_				
bit 7							bit (
Legend:											
Legena. R = Readab	le hit	W = Writable	hit	II = Unimple	mented bit, read	las 'O'					
-n = Value a		'1' = Bit is set	on	'0' = Bit is cle		x = Bit is unkr					
					aleu						
bit 15	Unimplemen	ted: Read as ')'								
bit 14-12	-			2 Event Interr	upt Priority bits						
		•	•		upt i nonty bits						
	 111 = Interrupt is Priority 7 (highest priority interrupt) • 										
	•										
	•										
	001 = Interru 000 = Interru	pt is Priority 1 pt source is dis	abled								
bit 11	Unimplemen	ted: Read as ')'								
bit 10-8	DAC1IP<2:0>	-: Digital-to-Ana	alog Converter	1 Event Interr	upt Priority bits						
	111 = Interru	pt is Priority 7(highest priority	/ interrupt)							
	•										
	•										
	• 001 = Interru	nt is Priority 1									
		pt is Fridity 1	abled								
bit 7	-	ted: Read as '									
bit 6-4	-			s							
	CTMUIP<2:0>: CTMU Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt)										
	•										
	•										
	•										
	001 = Interru	pt is Priority 1 pt source is dis	ahlad								
hit 2 0											
bit 3-0	Unimplemented: Read as '0'										

REGISTER 8-32: IPC19: INTERRUPT PRIORITY CONTROL REGISTER 19

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0			
TON		TSIDL	—	_	—	TECS1 ⁽¹⁾	TECS0 ⁽¹⁾			
bit 15		•	-				bit			
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0			
—	TGATE	TCKPS1	TCKPS0	—	TSYNC	TCS	—			
bit 7							bit			
Legend:										
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'				
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown			
bit 15	TON: Timer1	On bit								
	1 = Starts 16- 0 = Stops 16-									
bit 14	Unimplemen	ted: Read as '	0'							
bit 13	TSIDL: Timer	1 Stop in Idle I	Node bit							
			eration when o ation in Idle mo	device enters lo ode	lle mode					
bit 12-10	Unimplemen	ted: Read as '	0'							
bit 9-8			ed Clock Seled	ct bits ⁽¹⁾						
	11 = Reserve	•	as the sleek s	0.1700						
	10 = Timer1 uses the LPRC as the clock source 01 = Timer1 uses the External Clock (EC) from T1CK									
				r (SOSC) as th	e clock source					
bit 7	Unimplemen	ted: Read as '	0'							
bit 6			Accumulation	Enable bit						
	When TCS =									
	When TCS = $\frac{1}{2}$									
		<u>o.</u> ne accumulatio	n is enabled							
	0 = Gated tim	ne accumulatio	n is disabled							
bit 5-4	TCKPS<1:0>	: Timer1 Input	Clock Prescale	e Select bits						
	11 = 1:256									
	10 = 1:64 01 = 1:8									
	00 = 1:1									
bit 3	Unimplemen	ted: Read as '	0'							
bit 2	TSYNC: Time	er1 External Cl	ock Input Sync	hronization Se	lect bit					
	<u>When TCS =</u>	<u>1:</u> nizes External	Clock input							
			External Clock	input						
	When TCS =	-								
	This bit is igno	ored.								
bit 1		Clock Source								
			selected by TE	CS<1:0>						
	0 = Internal c									
bit 0	Unimplemen	tod. Dood oo .	Ω'							

13.5 Auxiliary Output

The MCCPx and SCCPx modules have an auxiliary (secondary) output that provides other peripherals access to internal module signals. The auxiliary output is intended to connect to other MCCP or SCCP modules, or other digital peripherals, to provide these types of functions:

- Time Base Synchronization
- Peripheral Trigger and Clock Inputs
- Signal Gating

The type of output signal is selected using the AUXOUT<1:0> control bits (CCPxCON2H<4:3>). The type of output signal is also dependent on the module operating mode.

On the PIC24FV16KM204 family of devices, only the CTMU discharge trigger has access to the auxiliary output signal.

AUXOUT<1:0>	CCSEL	MOD<3:0>	Comments	Signal Description
00	x	xxxx	Auxiliary output disabled	No Output
01	0	0000	Time Base modes	Time Base Period Reset or Rollover
10				Special Event Trigger Output
11				No Output
01	0	0001	Output Compare modes	Time Base Period Reset or Rollover
10		through		Output Compare Event Signal
11		1111		Output Compare Signal
01	1	xxxx	Input Capture modes	Time Base Period Reset or Rollover
10				Reflects the Value of the ICDIS bit
11				Input Capture Event Signal

TABLE 13-5: AUXILIARY OUTPUT

To perform an A/D conversion:

- 1. Configure the A/D module:
 - a) Configure the port pins as analog inputs and/or select band gap reference inputs (ANSx registers).
 - b) Select the voltage reference source to match the expected range on the analog inputs (AD1CON2<15:13>).
 - c) Select the analog conversion clock to match the desired data rate with the processor clock (AD1CON3<7:0>).
 - d) Select the appropriate sample/conversion sequence (AD1CON1<7:4> and AD1CON3<12:8>).
 - e) Configure the MODE12 bit to select A/D resolution (AD1CON1<10>).
 - f) Select how conversion results are presented in the buffer (AD1CON1<9:8>).
 - g) Select the interrupt rate (AD1CON2<6:2>).
 - h) Turn on the A/D module (AD1CON1<15>).
- 2. Configure the A/D interrupt (if required):
 - a) Clear the AD1IF bit.
 - b) Select the A/D interrupt priority.

To perform an A/D sample and conversion using Threshold Detect scanning:

- 1. Configure the A/D module:
 - a) Configure the port pins as analog inputs (ANSx registers).
 - b) Select the voltage reference source to match the expected range on the analog inputs (AD1CON2<15:13>).
 - c) Select the analog conversion clock to match the desired data rate with the processor clock (AD1CON3<7:0>).
 - d) Select the appropriate sample/conversion sequence (AD1CON1<7:4> and AD1CON3<12:8>).
 - e) Configure the MODE12 bit to select A/D resolution (AD1CON1<10>).
 - f) Select how the conversion results are presented in the buffer (AD1CON1<9:8>).
 - g) Select the interrupt rate (AD1CON2<6:2>).

- 2. Configure the threshold compare channels:
 - a) Enable auto-scan; set the ASEN bit (AD1CON5<15>).
 - b) Select the Compare mode, "Greater Than, Less Than or Windowed"; set the CMx bits (AD1CON5<1:0>).
 - c) Select the threshold compare channels to be scanned (AD1CSSH, AD1CSSL).
 - d) If the CTMU is required as a current source for a threshold compare channel, enable the corresponding CTMU channel (AD1CTMENH, AD1CTMENL).
 - e) Write the threshold values into the corresponding ADC1BUFx registers.
 - f) Turn on the A/D module (AD1CON1<15>).
- Note: If performing an A/D sample and conversion, using Threshold Detect in Sleep Mode, the RC A/D clock source must be selected before entering into Sleep mode.
- 3. Configure the A/D interrupt (OPTIONAL):
 - a) Clear the AD1IF bit.
 - b) Select the A/D interrupt priority.

REGISTER 20-1: DACxCON: DACx CONTROL REGISTER (CONTINUED)

- bit 6-2 DACTSEL<4:0>: DACx Trigger Source Select bits
 - 11101-11111 = Unused 11100 = CTMU 11011 = A/D 11010 = Comparator 3 11001 = Comparator 2 11000 = Comparator 1 10011 to 10111 = Unused 10010 = CLC2 output 10001 = CLC1 output 01100 to 10000 = Unused 01011 = Timer1 Sync output 01010 = External Interrupt 2 01001 = External Interrupt 1 01000 = External Interrupt 0 0011x = Unused 00101 = MCCP5 or SCCP5 Sync output 00100 = MCCP4 or SCCP4 Sync output 00011 = MCCP3 or SCCP3 Sync output 00010 = MCCP2 or SCCP2 Sync output 00001 = MCCP1 or SCCP1 Sync output 00000 = Unused DACREF<1:0>: DACx Reference Source Select bits 11 = Internal Band Gap Buffer 1 (BGBUF1)⁽¹⁾
 - 10 = AVDD

bit 1-0

- 01 = DVREF+
- 00 = Reference is not connected (lowest power but no DAC functionality)
- **Note 1:** BGBUF1 voltage is configured by BUFREF<1:0> (BUFCON0<1:0>).

REGISTER 23-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	—					—	—			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CVREN	CVROE	CVRSS	CVR4	CVR3	CVR2	CVR1	CVR0			
bit 7							bit (
Legend:										
R = Readab		W = Writable	bit	•	nented bit, rea					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15-8	Unimplomon	ted: Read as ') '							
bit 7	•			achla bit						
DIT 7		parator Voltage		nable bit						
		rcuit is powered rcuit is powered								
bit 6		parator VREF (bit						
		oltage level is o	•							
		0		rom the CVREF	pin					
bit 5	CVRSS: Com	parator VREF S	ource Selecti	on bit						
	1 = Compara	tor reference s	ource, CVRSR	c = Vref+ – Vr	EF-					
	0 = Compara	tor reference s	ource, CVRSR	c = AVDD – AVS	S					
bit 4-0	CVR<4:0>: C	omparator VRE	F Value Selec	tion $0 \le CVR < 4$:0> ≤ 31 bits					
		When CVRSS = 1:								
	,	EF-) + (CVR<4:()>/32) • (VREF	+ – VREF-)						
	When CVRSS									
	OVREF = (AVS	ss) + (CVR<4:0	~132) • (AVDD	– AVSS)						

REGISTER 24-3: CTMUCON2L: CTMU CONTROL 2 LOW REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	—	—	—	—	—	—	—			
bit 15							bit 8			
U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0			
	—	—	IRSTEN	—	DISCHS2	DISCHS1	DISCHS0			
bit 7 bit 0										
Legend:										
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'				
-n = Value a	-n = Value at POR '1' = Bit is set				ared	x = Bit is unkn	own			
bit 15-5	Unimplement	ted: Read as '	0'							
bit 4	IRSTEN: CTM	IU Current Sou	urce Reset Ena	able bit						
	detect log	gic			SSEN control	bit will reset th	e CTMU edge			
			c will not occur							
bit 3	Unimplement	ted: Read as '	0'							
bit 2-0	DISCHS<2:0>	Discharge S	ource Select bi	its						
		111 = CLC2 output								
	110 = CLC1 c									
		ed; do not use d of conversion								
	100 = A/D end of conversion signal 011 = SCCP5 auxiliary output									

- 110 = MCCP2 auxiliary output 001 = MCCP1 auxiliary output
- 000 = No discharge source selected, use the IDISSEN bit

R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
MCLRE ⁽²⁾	BORV1 ⁽³⁾	BORV0 ⁽³⁾	I2C1SEL ⁽¹⁾	PWRTEN	RETCFG ⁽¹⁾	BOREN1	BOREN0
bit 7						•	bit (
Legend:							
R = Reada	ble bit	P = Programr	nable bit	U = Unimplen	nented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown
bit 7	MCLRE: MCL	R Pin Enable b	_{it} (2)				
			5 input pin is di	sabled			
			MCLR is disab				
bit 6-5	BORV<1:0>: [Brown-out Rese	et Enable bits ⁽³⁾)			
	11 = Brown-ou	it Reset is set t	o the lowest vo	ltage			
			o the middle vo	0			
			o the highest ve				
		-		a – Low-Power	BOR (LPBOR)	is selected	
bit 4	I2C1SEL: Alte						
	1 = Default loc 0 = Alternate lo						
bit 3	PWRTEN: Pov	ver-up Timer E	nable bit				
	1 = PWRT is e	nabled					
	0 = PWRT is d	isabled					
bit 2	RETCFG: Ret	ention Regulate	or Configuratior	n bit ⁽¹⁾			
	1 = Low-voltag 0 = Low-voltag			ontrolled by the	RETEN bit (RC	ON<12>) durin	g Sleep
bit 1-0	BOREN<1:0>:	Brown-out Re	set Enable bits				
	11 = Brown-ou	it Reset is enal	oled in hardwar	e; SBOREN bit	is disabled		
			•		and disabled in S	leep; SBOREN	l bit is disable
			rolled with the				
	00 = Brown-ol	It Reset is disa	bled in hardwar	re; SBOREN DI	t is disabled		
Note 1:	This setting only devices.	applies to the	"FV" devices. T	his bit is reserv	ved and should I	be maintained a	as '1' on "F"
2:	The MCLRE fus	e can only be c	hanged when ι	using the VPP-b	ased ICSP™ m	ode entry. This	prevents a
	user from accide					-	
	Refer to Section						

REGISTER 25-6: FPOR: RESET CONFIGURATION REGISTER

REGISTER 25-8: DEVID: DEVICE ID REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 23							bit 16

R	R	R	R	R	R	R	R
FAMID7	FAMID6	FAMID5	FAMID4	FAMID3	FAMID2	FAMID1	FAMID0
bit 15							bit 8

R	R	R	R	R	R	R	R
DEV7	DEV6	DEV5	DEV4	DEV3	DEV2	DEV1	DEV0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-16	Unimplemented: Read as '0'
bit 15-8	FAMID<7:0>: Device Family Identifier bits
	01000101 = PIC24FV16KM204 family
bit 7-0	DEV<7:0>: Individual Device Identifier bits
	00011111 = PIC24FV16KM204
	00011011 = PIC24FV16KM202
	00010111 = PIC24FV08KM204
	00010011 = PIC24FV08KM202
	00001111 = PIC24FV16KM104
	00001011 = PIC24FV16KM102
	00000011 = PIC24FV08KM102
	00000001 = PIC24FV08KM101
	00011110 = PIC24F16KM204
	00011010 = PIC24F16KM202
	00010110 = PIC24F08KM204
	00010010 = PIC24F08KM202
	00001110 = PIC24F16KM104
	00001010 = PIC24F16KM102
	00000010 = PIC24F08KM102
	0000000 = PIC24F08KM101

AC CHARACTERISTICS			Operating temperatu		: 1.8V to 3.6V (PIC24F16KM204) 2.0V to 5.5V (PIC24FV16KM204) -40°C \leq TA \leq +85°C for Industrial -40°C \leq TA \leq +125°C for Extended		
Param No.	Sym	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
OS50	Fplli	PLL Input Frequency Range	4	—	8	MHz	ECPLL, HSPLL modes, -40°C \leq TA \leq +85°C
OS51	Fsys	PLL Output Frequency Range	16	—	32	MHz	$-40^{\circ}C \le TA \le +85^{\circ}C$
OS52	TLOCK	PLL Start-up Time (Lock Time)	-	1	2	ms	
OS53	DCLK	CLKO Stability (Jitter)	-2	1	2	%	Measured over 100 ms period

TABLE 27-21: PLL CLOCK TIMING SPECIFICATIONS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 27-22: INTERNAL RC OSCILLATOR ACCURACY

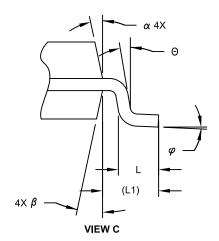
AC CHA	ARACTERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Characteristic	Min	Тур	Max	Units	Conditions			
F20	FRC @ 8 MHz ⁽¹⁾	-2		+2	%	+25°C	$\begin{array}{l} 3.0V \leq V \text{DD} \leq 3.6V, \mbox{ F device} \\ 3.2V \leq V \text{DD} \leq 5.5V, \mbox{ FV device} \end{array}$		
		-5	_	+5	%	$-40^\circ C \le T A \le +125^\circ C$	$\begin{array}{l} 1.8V \leq VDD \leq 3.6V, \mbox{ F device} \\ 2.0V \leq VDD \leq 5.5V, \mbox{ FV device} \end{array}$		
F21	LPRC @ 31 kHz ⁽²⁾	-15		+15	%	$\label{eq:constraint} \begin{array}{c} -40^{\circ}C \leq TA \leq +125^{\circ}C \\ 2.0V \leq VDD \leq 3.6V, \ F \ device \\ 2.0V \leq VDD \leq 5.5V, \ FV \ device \end{array}$			

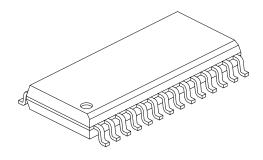
Note 1: The frequency is calibrated at +25°C and 3.3V. The OSCTUN bits can be used to compensate for temperature drift.

2: The change of LPRC frequency as VDD changes.

TABLE 27-23: INTERNAL RC OSCILLATOR SPECIFICATIONS

АС СНА	AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Sym	Characteristic	Min	Тур	Мах	Units	Conditions			
	TFRC	FRC Start-up Time	—	5	_	μS				
	TLPRC	LPRC Start-up Time	—	70	—	μS				


AC CHARACTERISTICS				perating Col	$\label{eq:conditions: 1.8V to 3.6V (PIC24F16KM204) \\ 2.0V to 5.5V (PIC24FV16KM204) \\ -40^\circ C \leq TA \leq +85^\circ C \text{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \text{ for Extended} \\ \end{aligned}$			
Param No.	Sym	Characteristic	Min.	Тур	Max.	Units	Comments	
		Resolution	8			bits		
		DACREF<1:0> Input Voltage Range	AVss + 1.8	—	AVDD	V		
		Differential Linearity Error (DNL)	—	—	±0.5	LSb		
		Integral Linearity Error (INL)	—	—	±1.5	LSb		
		Offset Error	—	—	±0.5	LSb		
		Gain Error	_	—	±3.0	LSb		
		Monotonicity	_	_	—	_	(Note 1)	
		Output Voltage Range	AVss + 50	AVss + 5 to AVpp – 5	AVDD - 50	mV	0.5V input overdrive, no output loading	
		Slew Rate	_	5		V/µs		
		Settling Time	—	10	—	μs		


TABLE 27-39: 8-BIT DIGITAL-TO-ANALOG CONVERTER SPECIFICATIONS

Note 1: DAC output voltage never decreases with an increase in the data code.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	N	MILLIMETERS				
Dimensior	Limits	MIN	NOM	MAX			
Number of Pins	N		28				
Pitch	е		1.27 BSC				
Overall Height	A	-	-	2.65			
Molded Package Thickness	A2	2.05	-	-			
Standoff §	A1	0.10	-	0.30			
Overall Width	E		10.30 BSC				
Molded Package Width	E1		7.50 BSC				
Overall Length	D		17.90 BSC				
Chamfer (Optional)	h	0.25	-	0.75			
Foot Length	L	0.40	-	1.27			
Footprint	L1		1.40 REF				
Lead Angle	Θ	0°	-	-			
Foot Angle	φ	0°	-	8°			
Lead Thickness	С	0.18	-	0.33			
Lead Width	b	0.31	-	0.51			
Mold Draft Angle Top	α	5°	-	15°			
Mold Draft Angle Bottom	β	5°	-	15°			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2