

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	38
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 22x10b/12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08km204-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

DETIGETERTOREOTO				
Features	PIC24FV16KM204	PIC24FV08KM204	PIC24FV16KM202	PIC24FV08KM202
Operating Frequency		DC-3	2 MHz	
Program Memory (bytes)	16K	8K	16K	8K
Program Memory (instructions)	5632	2816	5632	2816
Data Memory (bytes)		20)48	
Data EEPROM Memory (bytes)		5	12	
Interrupt Sources (soft vectors/NMI traps)		40 (36/4)	
Voltage Range		2.0-	-5.5V	
I/O Ports	PORTA<1 PORTB< PORTC	1:7,5:0> <15:0> <9:0>	POF POF	RTA<7,5:0> RTB<15:0>
Total I/O Pins	37			23
Timers	(One 16-bit timer, f	, ive MCCPs/SCC	11 Ps with up to tv	vo 16/32 timers each)
Capture/Compare/PWM modules MCCP SCCP			3 2	
Serial Communications MSSP UART			2 2	
Input Change Notification Interrupt	36			22
12-Bit Analog-to-Digital Module (input channels)	22			19
Analog Comparators			3	
8-Bit Digital-to-Analog Converters			2	
Operational Amplifiers			2	
Charge Time Measurement Unit (CTMU)		Y	<i>ï</i> es	
Real-Time Clock and Calendar (RTCC)		Y	es	
Configurable Logic Cell (CLC)			2	
Resets (and delays)	POR, BOR, R REPEAT Instruction	ESET Instruction on, Hardware Tra (PWRT, OS	n, <mark>MCLR</mark> , WDT aps, Configurat T, PLL Lock)	, Illegal Opcode, tion Word Mismatch
Instruction Set	76 Base Inst	ructions, Multiple	e Addressing N	lode Variations
Packages	44-Pin QFI 48-Pin U	N/TQFP, JQFN	SPDIP/S	28-Pin SOP/SOIC/QFN

TABLE 1-3: DEVICE FEATURES FOR THE PIC24FV16KM204 FAMILY

TABLE 1-5: PIC24FV16KM204 FAMILY PINOUT DESCRIPTION (CONTINUED)

			F					FV					
			Pin Numb	er			I	Pin Numb	er				
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	I/O	Buffer	Description
RB9	13	18	15	1	1	13	18	15	1	1	I/O	ST	PORTB Pins
RB10	_	21	18	8	9	_	21	18	8	9	I/O	ST	PORTB Pins
RB11	_	22	19	9	10	_	22	19	9	10	I/O	ST	PORTB Pins
RB12	15	23	20	10	11	15	23	20	10	11	I/O	ST	PORTB Pins
RB13	16	24	21	11	12	16	24	21	11	12	I/O	ST	PORTB Pins
RB14	17	25	22	14	15	17	25	22	14	15	I/O	ST	PORTB Pins
RB15	18	26	23	15	16	18	26	23	15	16	I/O	ST	PORTB Pins
RC0	_	_	_	25	27	_	_	—	25	27	I/O	ST	PORTC Pins
RC1	_	_	_	26	28	_	_	—	26	28	I/O	ST	PORTC Pins
RC2	_	_	_	27	29	_	_	—	27	29	I/O	ST	PORTC Pins
RC3			_	36	39	_		—	36	39	I/O	ST	PORTC Pins
RC4			_	37	40	_		—	37	40	I/O	ST	PORTC Pins
RC5			_	38	41	_		—	38	41	I/O	ST	PORTC Pins
RC6			_	2	2	_		_	2	2	I/O	ST	PORTC Pins
RC7			_	3	3	_		_	3	3	I/O	ST	PORTC Pins
RC8			_	4	4	_		_	4	4	I/O	ST	PORTC Pins
RC9	_	_	_	5	5	_	_	—	5	5	I/O	ST	PORTC Pins
REFO	18	26	23	15	16	18	26	23	15	16	0	_	Reference Clock Output
RTCC		25	22	14	15	_	25	22	14	15	0	_	Real-Time Clock/Calendar Output
SCK1	15	22	19	9	10	15	22	19	9	10	I/O	ST	MSSP1 SPI Clock
SDI1	17	21	18	8	9	17	21	18	8	9	I	ST	MSSP1 SPI Data Input
SDO1	16	24	21	11	12	16	24	21	11	12	0	—	MSSP1 SPI Data Output
SS1	18	26	23	15	16	18	26	23	15	16	I	ST	MSSP1 SPI Slave Select Input
SCK2	_	14	11	38	41	—	14	11	38	41	I/O	ST	MSSP2 SPI Clock
SDI2	_	19	16	36	39	_	19	16	36	39	I	ST	MSSP2 SPI Data Input
SDO2	_	15	12	37	40	_	15	12	37	40	0		MSSP2 SPI Data Output
SS2	_	23	20	35	38	_	23	20	35	38	Ι	ST	MSSP2 SPI Slave Select Input

Legend: ANA = Analog level input/output, ST = Schmitt Trigger input buffer, $I^2C^{TM} = I^2C/SMBus$ input buffer

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	80h	NSTDIS	—		—	_	—	—	_	_		—	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
INTCON2	82h	ALTIVT	DISI	_	_	_	_	_	_	_	_	_	_	_	INT2EP	INT1EP	INT0EP	0000
IFS0	84h	NVMIF	_	AD1IF	U1TXIF	U1RXIF	_	_	CCT2IF	CCT1IF	CCP4IF	CCP3IF	_	T1IF	CCP2IF	CCP1IF	INT0IF	0000
IFS1	86h	U2TXIF	U2RXIF	INT2IF	CCT4IF	CCT3IF	_	_	_	_	CCP5IF	_	INT1IF	CNIF	CMIF	BCL1IF	SSP1IF	0000
IFS2	88h	—	—		_		—	CCT5IF	_	_		—	—	—	_	—	—	0000
IFS3	8Ah	—	RTCIF		—		—	—	—			—	—	_	BCL2IF	SSP2IF	—	0000
IFS4	8Ch	DAC2IF	DAC1IF	CTMUIF	_	_	_	_	HLVDIF		_	_	_	_	U2ERIF	U1ERIF	_	0000
IFS5	8Eh	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	ULPWUIF	0000
IFS6	90h	—	—		—		—	—	—			—	—	—	—	CLC2IF	CLC1IF	0000
IEC0	94h	NVMIE	—	AD1IE	U1TXIE	U1RXIE	—	—	CCT2IE	CCT1IE	CCP4IE	CCP3IE	—	T1IE	CCP2IE	CCP1IE	INT0IE	0000
IEC1	96h	U2TXIE	U2RXIE	INT2IE	CCT4IE	CCT3IE	—	—	—		CCP5IE	—	INT1IE	CNIE	CMIE	BCL1IE	SSP1IE	0000
IEC2	98h	—	—		—		—	CCT5IE	—			—	—	—	—	—	—	0000
IEC3	9Ah	—	RTCIE		—		—	—	—			—	—	—	BCL2IE	SSP2IE	—	0000
IEC4	9Ch	DAC2IE	DAC1IE	CTMUIE	—		—	—	HLVDIE			—	—	—	U2ERIE	U1ERIE	—	0000
IEC5	9Eh	—	—		—		—	—	—			—	—	—	—	—	ULPWUIE	0000
IEC6	A0h	_	_		-		_	_	—			_	—	-	—	CLC2IE	CLC1IE	0000
IPC0	A4h	—	T1IP2	T1IP1	T1IP0	—	CCP2IP2	CCP2IP1	CCP2IP0	—	CCP1IP2	CCP1IP1	CCP1IP0	—	INT0IP2	INT0IP1	INT0IP0	4444
IPC1	A6h	—	CCT1IP2	CCT1IP1	CCT1IP0	—	CCP4IP2	CCP4IP1	CCP4IP0	—	CCP3IP2	CCP3IP1	CCP3IP0	—	—	—	—	4440
IPC2	A8h	—	U1RXIP2	U1RXIP1	U1RXIP0		—	—	—			—	—	—	CCT2IP2	CCT2IP1	CCT2IP0	4004
IPC3	AAh	_	NVMIP2	NVMIP1	NVMIP0		_	_	—		AD1IP2	AD1IP1	AD1IP0	_	U1TXIP2	U1TXIP1	U1TXIP0	4044
IPC4	ACh	—	CNIP2	CNIP1	CNIP0	—	CMIP2	CMIP1	CMIP0	—	BCL1IP2	BCL1IP1	BCL1IP0	—	SSP1IP2	SSP1IP1	SSP1IP0	4444
IPC5	AEh	—	—	—	—	—	CCP5IP2	CCP5IP1	CCP5IP0	—	—	—	—	—	INT1IP2	INT1IP1	INT1IP0	0404
IPC6	B0h	—	CCT3IP2	CCT3IP1	CCT3IP0	—	—	—	—	—	—	—	—	—	—	—	—	4000
IPC7	B2h	—	U2TXIP2	U2TXIP1	U2TXIP0	—	U2RXIP2	U2RXIP1	U2RXIP0	—	INT2IP2	INT2IP1	INT2IP0	—	CCT4IP2	CCT4IP1	CCT4IP0	4444
IPC10	B8h	—	—	—	—	—	—	—	—	—	CCT5IP2	CCT5IP1	CCT5IP0	—	—	—	—	0040
IPC12	BCh	—	—	—	—	—	BCL2IP2	BCL2IP1	BCL2IP0	—	SSP2IP2	SSP2IP1	SSP2IP0	—	—	—	—	0440
IPC15	C2h	—	—		—		RTCIP2	RTCIP1	RTCIP0			—	—	—	—	—	—	0400
IPC16	C4h	—	—		—		U2ERIP2	U2ERIP1	U2ERIP0		U1ERIP2	U1ERIP1	U1ERIP0	—	—	—	—	0440
IPC18	C8h	—	—	—	—	—	—	—	—	—	_	—	—	—	HLVDIP2	HLVDIP1	HLVDIP0	0004
IPC19	CAh	—	DAC2IP2	DAC2IP1	DAC2IP0	—	DAC1IP2	DAC1IP1	DAC1IP0		CTMUIP2	CTMUIP1	CTMUIP0	_		_		4440
IPC20	CCh	_	_	_	—	—	—	—	_	_	_	—	—	_	ULPWUIP2	ULPWUIP1	ULPWUIP0	0004
IPC24	D4h	—	—	_	—	—	—	—	—	—	CLC2IP2	CLC2IP1	CLC2IP0	—	CLC1IP2	CLC1IP1	CLC1IP0	0044
INTTREG	E0h	CPUIRQ	_	VHOLD	—	ILR3	ILR2	ILR1	ILR0		VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP

TABLE 4-26: CTMU REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CTMUCON1L	35Ah	CTMUEN	—	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0	0000
CTMUCON1H	35Ch	EDG1MOD	EDG1POL	EDG1SEL3	EDG1SEL2	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT	EDG2MOD	EDG2POL	EDG2SEL3	EDG2SEL2	EDG2SEL1	EDG2SEL0	_	_	0000
CTMUCON2L	35Eh	_	_	—	_	_	_	_	_	_	_	_	IRSTEN	_	DISCHS2	DISCHS1	DISCHS0	0000

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition, r = reserved.

TABLE 4-27: ANSEL REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ANSA	4E0h	_	—	—	—	_	—	—	—	—	—	—	ANSA4 ⁽²⁾	ANSA3	ANSA2	ANSA1	ANSA0	001F ⁽¹⁾
ANSB	4E2h	ANSB15	ANSB14	ANSB13	ANSB12	_	_	ANSB9	ANSB8	ANSB7	ANSB6(2)	ANSB5 ⁽²⁾	ANSB4	ANSB3 ⁽²⁾	ANSB2	ANSB1	ANSB0	_{F3FF} (1)
ANSC	4E4h	_	_	_	_	_	_	_	_	—	_	_	—	_	ANSC2 ^(2,3)	ANSC1 ^(2,3)	ANSC0 ^(2,3)	0007 (1)

Legend: x = unknown, u = unchanged, --- = unimplemented, q = value depends on condition, r = reserved.

Note 1: Reset value depends on the device type; the PIC24F16KM204 value is shown.

2: These bits are not implemented in 20-pin devices.

3: These bits are not implemented in 28-pin devices.

TABLE 4-28: REAL-TIME CLOCK AND CALENDAR REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ALRMVAL	620h						Alarm Value	High Register	Window Based	on APTR	<1:0>							xxxx
ALCFGRPT	622h	ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0	ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0	0000 (1)
RTCVAL	624h					F	RTCC Value H	igh Register W	Vindow Based o	n RTCPT	R<1:0>							xxxx
RCFGCAL	626h	RTCEN	_	RTCWREN	RTCSYNC	HALFSEC	RTCOE	RTCPTR1	RTCPTR0	CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	0000 (1)
RTCPWC	628h	PWCEN	PWCPOL	PWCCPRE	PWCSPRE	RTCCLK1	RTCCLK0	RTCOUT1	RTCOUT0	_	_	_	_	-	_		_	₀₀₀₀ (1)

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved.

Note 1: Values are reset only on a VDD POR event.

TABLE 4-35: PROGRAM SPACE ADDRESS CONSTRUCTION

	Access		Progra	n Space A	ddress	
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>
Instruction Access	User	0		PC<22:1>		0
(Code Execution)			0xx xxxx x	xxx xxxx	xxxx xxx0	
TBLRD/TBLWT	User	TB	LPAG<7:0>		Data EA<15:0>	
(Byte/Word Read/Write)		02	xxx xxxx	xxx		xxx
	Configuration	TB	LPAG<7:0>		Data EA<15:0>	
		1:	xxx xxxx	XXX		xxx
Program Space Visibility	User	0	PSVPAG<7:	0>(2)	Data EA<14:	:0>(1)
(Block Remap/Read)		0	XXXX XXX	κx	xxx xxxx xxx	x xxxx

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

2: PSVPAG can have only two values ('00' to access program memory and FF to access data EEPROM) on the PIC24F16KM family.

FIGURE 4-5: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

7.1 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen, as shown in Table 7-2. If clock switching is disabled, the system clock source is always selected according to the Oscillator Configuration bits. For more information, see **Section 9.0** "Oscillator Configuration".

TABLE 7-2:OSCILLATOR SELECTION vs.TYPE OF RESET (CLOCK
SWITCHING ENABLED)

Reset Type	Clock Source Determinant
POR	FNOSC<2:0> Configuration bits
BOR	(FOSCSEL<2:0>)
MCLR	COSC<2:0> Control bits
WDTO	(OSCCON<14:12>)
SWR	

7.2 Device Reset Times

The Reset times for various types of device Reset are summarized in Table 7-3. Note that the system Reset signal, SYSRST, is released after the POR and PWRT delay times expire.

The time at which the device actually begins to execute code will also depend on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable SYSRST delay times.

The FSCM delay determines the time at which the FSCM begins to monitor the system clock source after the SYSRST signal is released.

Reset Type	Clock Source	SYSRST Delay	System Clock Delay	Notes
POR ⁽⁶⁾	EC	TPOR + TPWRT	_	1, 2
	FRC, FRCDIV	TPOR + TPWRT	TFRC	1, 2, 3
	LPRC	TPOR + TPWRT	TLPRC	1, 2, 3
	ECPLL	TPOR + TPWRT	TLOCK	1, 2, 4
	FRCPLL	TPOR + TPWRT	TFRC + TLOCK	1, 2, 3, 4
	XT, HS, SOSC	TPOR+ TPWRT	Тоѕт	1, 2, 5
	XTPLL, HSPLL	TPOR + TPWRT	Tost + Tlock	1, 2, 4, 5
BOR	EC	TPWRT	—	2
	FRC, FRCDIV	TPWRT	TFRC	2, 3
	LPRC	TPWRT	TLPRC	2, 3
	ECPLL	TPWRT	TLOCK	2, 4
	FRCPLL	TPWRT	TFRC + TLOCK	2, 3, 4
	XT, HS, SOSC	TPWRT	Tost	2, 5
	XTPLL, HSPLL	TPWRT	TFRC + TLOCK	2, 3, 4
All Others	Any Clock	—	_	None

TABLE 7-3: RESET DELAY TIMES FOR VARIOUS DEVICE RESETS

Note 1: TPOR = Power-on Reset delay.

- 2: TPWRT = 64 ms nominal if the Power-up Timer is enabled; otherwise, it is zero.
- **3:** TFRC and TLPRC = RC Oscillator start-up times.
- **4:** TLOCK = PLL Lock time.
- **5:** TOST = Oscillator Start-up Timer (OST). A 10-bit counter waits 1024 oscillator periods before releasing the oscillator clock to the system.
- 6: If Two-Speed Start-up is enabled, regardless of the Primary Oscillator selected, the device starts with FRC, and in such cases, FRC start-up time is valid.

Note: For detailed operating frequency and timing specifications, see Section 27.0 "Electrical Characteristics".

DAM 0	11.0	DAM 0			11.0	11.0	D/M/ 0
	0-0				0-0	0-0	
bit 15		ADTIE	OTIXIE	OTIVIL			bit 8
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
CCT1IE	CCP4IE	CCP3IE		T1IE	CCP2IE	CCP1IE	INT0IE
bit 7							bit 0
Legend:	a hit		L:4		a anta d hit was a		
R = Readabl		vv = vvritable	DIT	U = Unimplem	nented bit, read	as U x = Dit io unkn	
	FUR				areu		lown
bit 15	NVMIE: NVM	Interrupt Enab	le bit				
	1 = Interrupt r	equest is enab	led				
	0 = Interrupt r	request is not e	nabled				
bit 14	Unimplemen	ted: Read as '	0'				
bit 13	AD1IE: A/D C	Conversion Cor	nplete Interrup	t Enable bit			
	1 = Interrupt r	equest is enab	led				
hit 12		equest is not e	napieu	blo bit			
DIL 12		equest is enab	linterrupt ⊏na lod				
	0 = Interrupt r	request is not e	nabled				
bit 11	U1RXIE: UAF	RT1 Receiver II	nterrupt Enable	e bit			
	1 = Interrupt r	equest is enab	led				
	0 = Interrupt r	equest is not e	nabled				
bit 10-9	Unimplemen	ted: Read as '	0'				
bit 8	CCT2IE: Cap	ture/Compare	2 Timer Interru	ipt Enable bit			
	1 = Interrupt r	equest is enab	led				
hit 7	CCT1IE: Can	ture/Compare	1 Timer Interru	int Enable hit			
bit i	1 = Interrupt r	request is enab	led				
	0 = Interrupt r	request is not e	nabled				
bit 6	CCP4IE: Cap	ture/Compare	4 Event Interru	ipt Enable bit			
	1 = Interrupt r	equest is enab	led				
hit 5		equest is not e	2 Event Interru	unt Encollo hit			
DIL 5	1 = Interrunt r	equest is enab	led				
	0 = Interrupt r	request is not e	nabled				
bit 4	Unimplemen	ted: Read as '	0'				
bit 3	T1IE: Timer1	Interrupt Enab	le bit				
	1 = Interrupt r	equest is enab	led				
	0 = Interrupt r	equest is not e	nabled				
bit 2	CCP2IE: Cap	ture/Compare	2 Event Interru	ipt Enable bit			
	1 = Interrupt r	request is enab	led				
bit 1	CCP1IF: Cap	ture/Compare	1 Event Interri	int Enable bit			
	1 = Interrupt r	request is enab	led				
	0 = Interrupt r	equest is not e	nabled				
bit 0	INTOIE: Exter	nal Interrupt 0	Enable bit				
	1 = Interrupt r	equest is enab	led				
	0 = Interrupt r	equest is not e	nabled				

REGISTER 8-12: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	DAC2IP2	DAC2IP1	DAC2IP0		DAC1IP2	DAC1IP1	DAC1IP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
	CTMUIP2	CTMUIP1	CTMUIP0		<u> </u>		
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	כי				
bit 14-12	DAC2IP<2:0>	Digital-to-Ana	alog Converter	2 Event Interr	upt Priority bits		
	111 = Interru	pt is Priority 7(highest priority	/ interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 11	Unimplemen	ted: Read as ')'				
bit 10-8	DAC1IP<2:0>	>: Digital-to-Ana	alog Converter	1 Event Interr	upt Priority bits		
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 7	Unimplemen	ted: Read as '	כ'				
bit 6-4	CTMUIP<2:0	>: CTMU Interr	upt Priority bit	S			
	111 = Interru	pt is Priority 7(highest priority	/ interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 3-0	Unimplemen	ted: Read as '	כ'				

REGISTER 8-32: IPC19: INTERRUPT PRIORITY CONTROL REGISTER 19

NOTES:

13.5 Auxiliary Output

The MCCPx and SCCPx modules have an auxiliary (secondary) output that provides other peripherals access to internal module signals. The auxiliary output is intended to connect to other MCCP or SCCP modules, or other digital peripherals, to provide these types of functions:

- Time Base Synchronization
- Peripheral Trigger and Clock Inputs
- Signal Gating

The type of output signal is selected using the AUXOUT<1:0> control bits (CCPxCON2H<4:3>). The type of output signal is also dependent on the module operating mode.

On the PIC24FV16KM204 family of devices, only the CTMU discharge trigger has access to the auxiliary output signal.

AUXOUT<1:0>	CCSEL	MOD<3:0>	Comments	Signal Description
00	x	xxxx	Auxiliary output disabled	No Output
01	0	0000	Time Base modes	Time Base Period Reset or Rollover
10				Special Event Trigger Output
11				No Output
01	0	0001	Output Compare modes	Time Base Period Reset or Rollover
10		through	rough 1111	Output Compare Event Signal
11				Output Compare Signal
01	1	xxxx	Input Capture modes	Time Base Period Reset or Rollover
10				Reflects the Value of the ICDIS bit
11				Input Capture Event Signal

TABLE 13-5: AUXILIARY OUTPUT

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_				_	_	_
bit 15							bit 8
R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE	D/Ā	P ⁽¹⁾	S ⁽¹⁾	R/W	UA	BF
bit 7	L		I	-	L		bit 0
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15-8	Unimpleme	nted: Read as 'o)'				
bit 7	SMP: Slew I	Rate Control bit					
	In Master or	<u>Slave mode:</u>	and for Stand	ard Spood mode	(100 kHz and	1 MU-)	
	0 = Slew rate	e control is enab	led for High-S	peed mode (40)	0 kHz)	1 1011 12)	
bit 6	CKE: SMBu	s Select bit	Ū		,		
	In Master or	Slave mode:					
	1 = Enables	SMBus-specific	inputs				
	0 = Disables	SIVIBUS-Specific	nputs				
DIT 5	D/A: Data/A	adress bit					
	Reserved.	<u>bue.</u>					
	In Slave mo	de:					
	1 = Indicates	s that the last by	te received or	transmitted was	s data		
L:1	0 = Indicates	s that the last by)	te received or	transmitted was	saddress		
DIL 4	\mathbf{P} : Stop bit \mathbf{P}	, s that a Ston hit I	nas haan data	icted last			
	0 = Stop bit	was not detected	d last				
bit 3	S: Start bit ⁽¹)					
	1 = Indicates	s that a Start bit I	has been dete	cted last			
	0 = Start bit	was not detected	d last				
bit 2	R/W: Read/	Write Information	ı bit				
	In Slave mo	<u>de:</u> (2)					
	0 = Write						
	In Master me	<u>ode:</u> (3)					
	1 = Transmit	t is in progress					
hit 1	0 = 1 ransmit is not in progress						
	1 = Indicated	Audress Dil (10-	Dit Slave 11100	the address in	the SSPvADD	register	
	0 = Address	does not need t	o be updated				
Note 1:	This bit is cleare	d on Reset and	when SSPEN	is cleared.			
2:	This bit holds the	e R/W bit inform	ation following	the last addres	s match. This l	oit is only valid	from the
_	address match t	o the next Start I	bit, Stop bit or	not ACK bit.			
2.	UDing this hit wi	THE CLAI DOCA		or ∧(`k∢∟Niwill in	dianta if tha M	SCUVIC in Activ	o modo

REGISTER 14-2: SSPxSTAT: MSSPx STATUS REGISTER (I²C[™] MODE)

3: ORing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSPx is in Active mode.

REGISTER 14-7: SSPxCON3: MSSPx CONTROL REGISTER 3 (I²C[™] MODE)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
				_	_	_	_
bit 15							bit 8
R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ACKTIM	⁽¹⁾ PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN
bit 7							bit 0
Legend:							
R = Reada	able bit	W = Writable b	it	U = Unimplen	nented bit, read	d as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15-8	Unimplemer	nted: Read as '0'	,				
bit 7	ACKTIM: Ac	knowledge Time	Status bit ⁽¹⁾				
	1 = Indicates	the I ² C bus is in	an Acknowle	dge sequence,	set on the 8 th f	alling edge of t	he SCLx clock
	0 = Not an A	cknowledge sequ	uence, cleared	d on the 9 th risi	ng edge of the	SCLx clock	
bit 6	PCIE: Stop C	Condition Interrup	t Enable bit				
	\perp = Enables	Interrupt on deter	ction of a Stop) condition			
bit 5	SCIE: Start (Condition Interrup	t Enable hit				
bit 0	1 = Enables i	interrupt on deter	ction of a Star	t or Restart cor	ndition		
	0 = Start dete	ection interrupts a	are disabled ⁽²)			
bit 4	BOEN: Buffe	er Overwrite Enat	ole bit				
	<u>I²C Master m</u> This bit is ign	<u>node:</u> iored.					
	I ² C Slave mo	<u>ode:</u>					
	1 = SSPxBU	JF is updated and	l an <mark>ACK</mark> is ge	enerated for a re	eceived addres	s/data byte, ign	oring the state
	of the SS	SPOV bit only if t	he BF bit = 0))/ is cloar			
hit 3		A Hold Time Sel	ection hit				
DIL J		of 300 ns hold ti	ime on SDAx	after the falling	edge of SCLx		
	0 = Minimum	of 100 ns hold ti	ime on SDAx	after the falling	edge of SCLx		
bit 2	SBCDE: Slav	ve Mode Bus Col	llision Detect	Enable bit (Sla	ve mode only)		
	1 = Enables	slave bus collisio	n interrupts				
	0 = Slave bu	s collision interru	pts are disabl	ed			
bit 1	AHEN: Addre	ess Hold Enable	bit (Slave mo	de only)			
	1 = Followin	g the 8th falling	edge of SCL	Lx for a match	ing received a	ddress byte; C	CKP bit of the
	0 = Address	holding is disabl	ed		neia iow		
bit 0	DHEN: Data	Hold Enable bit	Slave mode (onlv)			
	1 = Followin	g the 8th falling e	edge of SCLx	for a received of	data byte: slave	e hardware clea	irs the CKP bit
	of the SS	SPxCON1 registe	er and SCLx is	s held low	, ,		
	0 = Data hol	ding is disabled					
Note 1:	This bit has no e	ffect in Slave mo	des for which	Start and Stop	condition dete	ction is explicitl	y listed as
	enabled.			· · · · · ·		- F	•

2: The ACKTIM status bit is active only when the AHEN bit or DHEN bit is set.

REGISTER 17-5: CLCxGLSH: CLCx GATE LOGIC INPUT SELECT HIGH REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N
bit 15	1				1		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N
bit 7							bit 0
Legend:	. 1. 11					1	
R = Readable		vv = vvritable i	DIT	0 = 0	iented dit, read	as U v = Ditio unkr	
	FUK	I – DILIS SEL			areu	X - DILISUIKI	IOWIT
bit 15	G4D4T: Gate	4 Data Source	4 True Enable	bit			
	1 = The Data	Source 4 invert	ted signal is er	habled for Gate	4		
	0 = The Data	Source 4 invert	ted signal is di	sabled for Gate	e 4		
bit 14	G4D4N: Gate	4 Data Source	4 Negated Er	nable bit			
	1 = The Data	Source 4 invert	ted signal is er	habled for Gate	4		
hit 13	G4D3T: Gate	4 Data Source	3 True Enable	hit	; 4		
bit 10	1 = The Data	Source 3 invert	ted signal is er	nabled for Gate	4		
	0 = The Data	Source 3 invert	ted signal is di	sabled for Gate	e 4		
bit 12	G4D3N: Gate	4 Data Source	3 Negated Er	nable bit			
	1 = The Data	Source 3 inver	ted signal is er	nabled for Gate	4		
bit 11	0 = 1 ne Data	4 Data Source	ed signal is di 2 True Encelo	sabled for Gate	9 4		
	1 = The Data	Source 2 invert	ed signal is er	abled for Gate	4		
	0 = The Data	Source 2 invert	ted signal is di	sabled for Gate	24		
bit 10	G4D2N: Gate	4 Data Source	2 Negated Er	nable bit			
	1 = The Data	Source 2 invert	ted signal is er	nabled for Gate	4		
h it 0	0 = 1 ne Data	Source 2 Inven	ted signal is di	sabled for Gate	9 4		
DIL 9	1 = The Data	4 Data Source Source 1 invert	I True Enable ted signal is er	: DIL Dabled for Gate	4		
	0 = The Data	Source 1 invert	ted signal is di	sabled for Gate	+ • 4		
bit 8	G4D1N: Gate	4 Data Source	1 Negated Er	nable bit			
	1 = The Data	Source 1 invert	ted signal is er	nabled for Gate	4		
h:+ 7	0 = 1 he Data	Source 1 invert	ted signal is di	sabled for Gate	e 4		
DIT /	G3D41: Gate	3 Data Source	4 True Enable	e DIT Dabled for Cate	3		
	0 = The Data	Source 4 invert	ted signal is di	sabled for Gate	3		
bit 6	G3D4N: Gate	3 Data Source	4 Negated Er	nable bit			
	1 = The Data	Source 4 invert	ted signal is er	nabled for Gate	3		
	0 = The Data	Source 4 invert	ted signal is di	sabled for Gate	93		
bit 5	G3D3T: Gate	3 Data Source	3 Irue Enable	e bit	2		
	1 = 110 Data 0 = The Data	Source 3 inven	ted signal is di	sabled for Gate	3		
bit 4	G3D3N: Gate	3 Data Source	3 Negated Er	nable bit			
	1 = The Data	Source 3 invert	ted signal is er	nabled for Gate	3		
	0 = The Data	Source 3 invert	ted signal is di	sabled for Gate	e 3		

19.1 A/D Control Registers

The 12-bit A/D Converter module uses up to 43 registers for its operation. All registers are mapped in the data memory space.

19.1.1 CONTROL REGISTERS

Depending on the specific device, the module has up to eleven control and status registers:

- AD1CON1: A/D Control Register 1
- AD1CON2: A/D Control Register 2
- AD1CON3: A/D Control Register 3
- AD1CON5: A/D Control Register 5
- AD1CHS: A/D Sample Select Register
- AD1CHITH and AD1CHITL: A/D Scan Compare Hit Registers
- AD1CSSH and AD1CSSL: A/D Input Scan Select Registers
- AD1CTMENH and AD1CTMENL: CTMU Enable Registers

The AD1CON1, AD1CON2 and AD1CON3 registers (Register 19-1, Register 19-2 and Register 19-3) control the overall operation of the A/D module. This includes enabling the module, configuring the conversion clock and voltage reference sources, selecting the sampling and conversion Triggers, and manually controlling the sample/convert sequences. The AD1CON5 register (Register 19-4) specifically controls features of the Threshold Detect operation, including its function in power-saving modes.

The AD1CHS register (Register 19-5) selects the input channels to be connected to the S/H amplifier. It also allows the choice of input multiplexers and the selection of a reference source for differential sampling.

The AD1CHITH and AD1CHITL registers (Register 19-6 and Register 19-7) are semaphore registers used with Threshold Detect operations. The status of individual bits, or bit pairs in some cases, indicates if a match condition has occurred. AD1CHITL is always implemented, whereas AD1CHITH may not be implemented in devices with 16 or fewer channels.

The AD1CSSH/L registers (Register 19-8 and Register 19-9) select the channels to be included for sequential scanning.

The AD1CTMENH/L registers (Register 19-10 and Register 19-11) select the channel(s) to be used by the CTMU during conversions. Selecting a particular channel allows the A/D Converter to control the CTMU (particularly, its current source) and read its data through that channel. AD1CTMENL is always implemented, whereas AD1CTMENH may not be implemented in devices with 16 or fewer channels.

19.1.2 A/D RESULT BUFFERS

The module incorporates a multi-word, dual port buffer, called ADC1BUFx. Each of the locations is mapped into the data memory space and is separately addressable. The buffer locations are referred to as ADC1BUF0 through ADC1BUFx (x = up to 17).

The A/D result buffers are both readable and writable. When the module is active (AD1CON<15> = 1), the buffers are read-only and store the results of A/D conversions. When the module is inactive (AD1CON<15> = 0), the buffers are both readable and writable. In this state, writing to a buffer location programs a conversion threshold for Threshold Detect operations.

Buffer contents are not cleared when the module is deactivated with the ADON bit (AD1CON1<15>). Conversion results and any programmed threshold values are maintained when ADON is set or cleared.

TABLE 19-4:	NUMERICAL EQUIVALENTS OF VARIOUS RESULT CODES:
	10-BIT FRACTIONAL FORMATS

VIN/VREF	10-Bit Differential Output Code (11-bit result)	16-Bit Fractional Format Equivalent Decimal Value	16-Bit Signed Fractional Format/ Equivalent Decimal Value					
+1023/1024	011 1111 1111	1111 1111 1100 0000	0.999	0111 1111 1110 0000	0.999			
+1022/1024	011 1111 1110	1111 1111 1000 0000	0.998	0111 1111 1000 0000	0.998			
		•••						
+1/1024	000 0000 0001	0000 0000 0100 0000	0.001	0000 0000 0010 0000	0.001			
0/1024	000 0000 0000	0000 0000 0000 0000	0.000	0000 0000 0000 0000	0.000			
-1/1024	101 1111 1111	0000 0000 0000 0000	0.000	1111 1111 1110 0000	-0.001			
•••								
-1023/1024	100 0000 0001	0000 0000 0000 0000	0.000	1000 0000 0010 0000	-0.999			
-1024/1024	100 0000 0000	0000 0000 0000 0000	0.000	1000 0000 0000 0000	-1.000			

REGISTER 22-1: CMxCON: COMPARATOR x CONTROL REGISTERS (CONTINUED)

- bit 2 Unimplemented: Read as '0'
- bit 1-0 **CCH<1:0>:** Comparator x Channel Select bits
 - 11 = Inverting input of the comparator connects to BGBUF1⁽¹⁾
 - 10 = Inverting input of the comparator connects to the CxIND pin
 - 01 = Inverting input of the comparator connects to the CxINC pin
 - 00 = Inverting input of the comparator connects to the CxINB pin
- **Note 1:** BGBUF1 voltage is configured by BUFREF1<1:0> (BUFCON0<1:0>).
 - 2: If the EVPOL<1:0> bits are set to a value other than '00', the first interrupt generated will occur on any transition of COUT. Subsequent interrupts will occur based on the EVPOLx bits setting.

REGISTER 22-2: CMSTAT: COMPARATOR MODULE STATUS REGISTER

R/W-0	U-0	U-0	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC
CMIDL	—			—	C3EVT ⁽¹⁾	C2EVT ⁽¹⁾	C1EVT
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC
—	—	—	—	—	C3OUT ⁽¹⁾	C2OUT ⁽¹⁾	C1OUT
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15	CMIDL: Comparator x Stop in Idle Mode bit
	 1 = Comparator interrupts are disabled in Idle mode; enabled comparators remain operational 0 = Continues operation of all enabled comparators in Idle mode
bit 14-11	Unimplemented: Read as '0'
bit 10	C3EVT: Comparator 3 Event Status bit (read-only) ⁽¹⁾
	Shows the current event status of Comparator 3 (CM3CON<9>).
bit 9	C2EVT: Comparator 2 Event Status bit (read-only) ⁽¹⁾
	Shows the current event status of Comparator 2 (CM2CON<9>).
bit 8	C1EVT: Comparator 1 Event Status bit (read-only)
	Shows the current event status of Comparator 1 (CM1CON<9>).
bit 7-3	Unimplemented: Read as '0'
bit 2	C3OUT: Comparator 3 Output Status bit (read-only) ⁽¹⁾
	Shows the current output of Comparator 3 (CM3CON<8>).
bit 1	C2OUT: Comparator 2 Output Status bit (read-only) ⁽¹⁾
	Shows the current output of Comparator 2 (CM2CON<8>).
bit 0	C1OUT: Comparator 1 Output Status bit (read-only)
	Shows the current output of Comparator 1 (CM1CON<8>).
Note 1:	Comparator 2 and Comparator 3 are only available on PIC24F(V)16KM2XX devices.

26.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16 and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

26.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

26.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

26.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- · MPLAB X IDE compatibility

FIGURE 27-17: MSSPx I²C[™] BUS START/STOP BITS TIMING WAVEFORMS

TABLE 27-35: I ² C™ BUS START/STOP BITS REQUIREMENTS (MASTER MOD	E)
---	----

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions	
90	TSU:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)		ns	Only relevant for	
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)			Repeated Start condition	
91	THD:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	After this period, the	
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_		first clock pulse is generated	
92	Tsu:sto	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns		
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	—			
93	THD:STO	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)		ns		
	Hold Time	400 kHz mode	2(Tosc)(BRG + 1)					

28.0 PACKAGING INFORMATION

28.1 Package Marking Information

20-Lead PDIP (300 mil)

20-Lead SSOP (5.30 mm)

20-Lead SOIC (7.50 mm)

20-Lead QFN

Example PIC24F08KM101 -I/P@3 0 1342M7W

Example

Example

Legend:	XXX Y YY WW NNN @3	Product-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.		
Note:	In the event the full Microchip part number cannot be marked on one line, will be carried over to the next line, thus limiting the number of available characters for customer-specific information.			

20-Lead Plastic Quad Flat, No Lead Package (ML) - 4x4 mm Body [QFN] With 0.40 mm Contact Length

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E	0.50 BSC		
Optional Center Pad Width	W2			2.50
Optional Center Pad Length	T2			2.50
Contact Pad Spacing	C1		3.93	
Contact Pad Spacing	C2		3.93	
Contact Pad Width	X1			0.30
Contact Pad Length	Y1			0.73
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2126A