

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

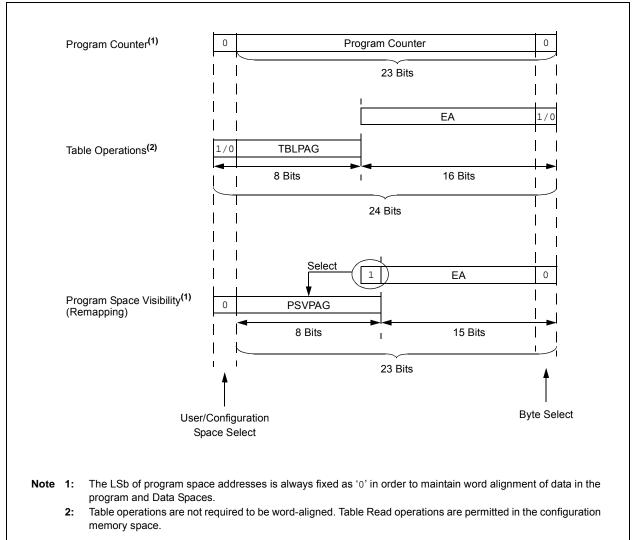
Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	38
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 22x10b/12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f08km204-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


TABLE 4-35: PROGRAM SPACE ADDRESS CONSTRUCTION

	Access	Program Space Address					
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>	
Instruction Access	User	0		PC<22:1>		0	
(Code Execution)		0xx xxxx xxxx xxxx xxxx xxx0					
TBLRD/TBLWT	User	TBLPAG<7:0>		Data EA<15:0>			
(Byte/Word Read/Write)		0xxx xxxx x:			xxx xxxx xxxx xxxx		
	Configuration	TBLPAG<7:0>		Data EA<15:0>			
	1xxx xxxx		xxx xxxx	xxxx xxxx xxxx xxxx			
Program Space Visibility	User	0	PSVPAG<7:0>(2)		Data EA<14:0>(1)		
(Block Remap/Read)		0 xxxx xxx		κx	xxx xxxx xxx	x xxxx	

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

2: PSVPAG can have only two values ('00' to access program memory and FF to access data EEPROM) on the PIC24F16KM family.

FIGURE 4-5: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

EXAMPLE 5-5: INITIATING A PROGRAMMING SEQUENCE – ASSEMBLY LANGUAGE CODE

DISI	#5	;	Block all interrupts for next 5 instructions
MOV	#0x55, W0		
MOV	W0, NVMKEY	;	Write the 55 key
MOV	#0xAA, W1	;	
MOV	W1, NVMKEY	;	Write the AA key
BSET	NVMCON, #WR	;	Start the erase sequence
NOP		;	2 NOPs required after setting WR
NOP		;	
BTSC	NVMCON, #15	;	Wait for the sequence to be completed
BRA	\$-2	;	

EXAMPLE 5-6: INITIATING A PROGRAMMING SEQUENCE – 'C' LANGUAGE CODE

// C example using MPLAB C30	
asm("DISI #5");	// Block all interrupts for next 5 instructions
builtin_write_NVM();	// Perform unlock sequence and set WR

6.0 DATA EEPROM MEMORY

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on data EEPROM, refer to the *"PIC24F Family Reference Manual"*, **"Data EEPROM"** (DS39720).

The data EEPROM memory is a Nonvolatile Memory (NVM), separate from the program and volatile data RAM. Data EEPROM memory is based on the same Flash technology as program memory, and is optimized for both long retention and a higher number of erase/write cycles.

The data EEPROM is mapped to the top of the user program memory space, with the top address at program memory address, 7FFE00h to 7FFFFh. The size of the data EEPROM is 256 words in PIC24FXXXXX devices.

The data EEPROM is organized as 16-bit-wide memory. Each word is directly addressable, and is readable and writable during normal operation over the entire VDD range.

Unlike the Flash program memory, normal program execution is not stopped during a data EEPROM program or erase operation.

The data EEPROM programming operations are controlled using the three NVM Control registers:

- NVMCON: Nonvolatile Memory Control Register
- NVMKEY: Nonvolatile Memory Key Register
- NVMADR: Nonvolatile Memory Address Register

6.1 NVMCON Register

The NVMCON register (Register 6-1) is also the primary control register for data EEPROM program/erase operations. The upper byte contains the control bits used to start the program or erase cycle and the flag bit to indicate if the operation was successfully performed. The lower byte of NVMCOM configures the type of NVM operation that will be performed.

6.2 NVMKEY Register

The NVMKEY is a write-only register that is used to prevent accidental writes or erasures of data EEPROM locations.

To start any programming or erase sequence, the following instructions must be executed first, in the exact order provided:

- 1. Write 55h to NVMKEY.
- 2. Write AAh to NVMKEY.

After this sequence, a write will be allowed to the NVMCON register for one instruction cycle. In most cases, the user will simply need to set the WR bit in the NVMCON register to start the program or erase cycle. Interrupts should be disabled during the unlock sequence.

The MPLAB® C30 C compiler provides a defined library procedure (builtin_write_NVM) to perform the unlock sequence. Example 6-1 illustrates how the unlock sequence can be performed with in-line assembly.

EXAMPLE 6-1: DATA EEPROM UNLOCK SEQUENCE

	rrupts For 5 instruc	ctions
asm volatile	("disi #5");	
//Issue Unlock	Sequence	
asm volatile	("mov #0x55, W0	\n"
	"mov W0, NVMKEY	\n"
	"mov #0xAA, W1	\n"
	"mov W1, NVMKEY	\n");
// Perform Wri	te/Erase operations	
asm volatile	("bset NVMCON, #WR	\n"
	"nop	\n"
	"nop	\n");

REGISTER 7-1:

RCON: RESET CONTROL REGISTER⁽¹⁾

R/W-0, H	S R/W-0, HS	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0		
TRAPR		SBOREN	RETEN ⁽³⁾	_	_	СМ	PMSLP		
bit 15							bit 8		
R/W-0, H	S R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-1, HS	R/W-1, HS		
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR		
bit 7							bit C		
Legend:		HS = Hardwar	e Settable bit						
R = Read	able bit	W = Writable t	pit	U = Unimplen	nented bit, read	as '0'			
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own		
bit 15	-	Reset Flag bit							
	•	onflict Reset has							
1.11.4.4		onflict Reset has			E 1				
bit 14		gal Opcode or l			r Flag bit or Uninitialized V	/ register used	aa an Addraaa		
		aused a Reset	on, an illegal a	duress mode c		v register used	as an Address		
		opcode or Unir	nitialized W Re	set has not oc	curred				
bit 13	SBOREN: So	oftware Enable/D	Disable of BOF	R bit					
	1 = BOR is tu	rned on in softw	are						
		rned off in softw							
bit 12		RETEN: Retention Sleep Mode ⁽³⁾							
					Regulator (RETR ge Regulator (VF				
bit 11-10	-	ted: Read as '0							
bit 9	-	ation Word Misr		lag bit					
	-	Iration Word Mis		-					
	0 = A Configu	ration Word Mis	match Reset	has not occurre	ed				
bit 8	PMSLP: Prog	gram Memory Po	ower During S	leep bit					
		memory bias vo							
	0 = Program Standby		oltage is pow	ered down du	iring Sleep and	the voltage re	gulator enters		
bit 7	•	nal Reset (MCLF	R) Pin hit						
bit i		Clear (pin) Rese		d					
		Clear (pin) Rese							
bit 6	SWR: Softwa	re reset (Instru	uction) Flag bit	t					
		instruction has t							
		instruction has r							
bit 5		oftware Enable/[Disable of WD	l bit ⁽²⁾					
	1 = WDT is ei 0 = WDT is di								
					-				
Note 1:	All of the Reset	•	be set or clear	ed in software.	Setting one of the	nese bits in soft	ware does not		
2:	If the FWDTEN		tion bits are '1	1' (upprogram	med) the WDT i	is alwavs enabl	ed renardless		
_ .	of the SWDTEN					ie amayo chabi			
-									

3: This is implemented on PIC24FV16KMXXX parts only; not used on PIC24F16KMXXX devices.

REGISTER 8-10: IFS5: INTERRUPT FLAG STATUS REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	_	—	_	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HS	
—	—	—	_	—	_	—	ULPWUIF	
bit 7 bit 0								

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-1 Unimplemented: Read as '0'

bit 0 ULPWUIF: Ultra Low-Power Wake-up Interrupt Flag Status bit

1 = Interrupt request has occurred

0 = Interrupt request has not occurred

REGISTER 8-11: IFS6: INTERRUPT FLAG STATUS REGISTER 6

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	—	—	—	
bit 15 bit 8								

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	
—	—	—	—	—	—	CLC2IF	CLC1IF	
bit 7 bit 0								

Legend:	HS = Hardware Settable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-2 Unimplemented: Read as '0'

bit 1 CLC2IF: Configurable Logic Cell 2 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred

bit 0 CLC1IF: Configurable Logic Cell 1 Interrupt Flag Status bit

1 = Interrupt request has occurred

0 = Interrupt request has not occurred

REGISTER 8-31: IPC18: INTERRUPT PRIORITY CONTROL REGISTER 18

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 15	·	•			•		bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	—	—	—	—	HLVDIP2	HLVDIP1	HLVDIP0
bit 7							bit 0
Logondi							

Legend:	
---------	--

bit 2-0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

HLVDIP<2:0>: High/Low-Voltage Detect Interrupt Priority bits

- 111 = Interrupt is Priority 7 (highest priority interrupt)
- •

001 = Interrupt is Priority 1

000 = Interrupt source is disabled

R-0	U-0	R/W-0	U-0	R-0	R-0	R-0	R-0			
CPUIRQ		VHOLD		ILR3	ILR2	ILR1	ILR0			
bit 15							bit 8			
U-0						R-0				
 bit 7	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0 bit 0			
							511 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15	CPUIRQ: Interrupt Request from Interrupt Controller CPU bit 1 = An interrupt request has occurred but has not yet been Acknowledged by the CPU (this will									
						eagea by the	CPU (this will			
	happen when the CPU priority is higher than the interrupt priority) 0 = No interrupt request is left unacknowledged									
bit 14	Unimplemented: Read as '0'									
bit 13	VHOLD: Vector Hold bit									
	Allows Vector Number Capture and Changes which Interrupt is Stored in the VECNUM<6:0> bits:									
	1 = VECNUM<6:0> will contain the value of the highest priority pending interrupt, instead of the									
	current interrupt 0 = VECNUM<6:0> will contain the value of the last Acknowledged interrupt (last interrupt that has									
					ther interrupts a		nupt that has			
bit 12	Unimplemen	ted: Read as '	0'							
bit 11-8	ILR<3:0>: New CPU Interrupt Priority Level bits									
	1111 = CPU Interrupt Priority Level is 15									
	•									
	•									
	0001 = CPU	Interrupt Priorit	ty Level is 1							
	0000 = CPU	Interrupt Priori	ty Level is 0							
bit 7	Unimplemen	ted: Read as '	0'							
bit 6-0	VECNUM<6:0	0>: Vector Nun	nber of Pendin	g Interrupt bits	i					
	0111111 = In	terrupt vector	pending is Nur	mber 135						
	•									
	•									
		terrupt vector								
	0000000 = In									

REGISTER 8-35: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

The following code sequence for a clock switch is recommended:

- 1. Disable interrupts during the OSCCON register unlock and write sequence.
- 2. Execute the unlock sequence for the OSCCON high byte by writing 78h and 9Ah to OSCCON<15:8>, in two back-to-back instructions.
- 3. Write the new oscillator source to the NOSCx bits in the instruction immediately following the unlock sequence.
- Execute the unlock sequence for the OSCCON 4. low byte by writing 46h and 57h to OSCCON<7:0>, in two back-to-back instructions.
- Set the OSWEN bit in the instruction immediately 5 following the unlock sequence.
- Continue to execute code that is not 6. clock-sensitive (optional).
- Invoke an appropriate amount of software delay 7. (cycle counting) to allow the selected oscillator and/or PLL to start and stabilize.
- 8. Check to see if OSWEN is '0'. If it is, the switch was successful. If OSWEN is still set, then check the LOCK bit to determine the cause of failure.

The core sequence for unlocking the OSCCON register and initiating a clock switch is shown in Example 9-1 and Example 9-2.

EXAMPLE 9-1: ASSEMBLY CODE SEQUENCE FOR CLOCK SWITCHING

;Place the new oscillator selection in WO
;OSCCONH (high byte) Unlock Sequence
MOV #OSCCONH, w1
MOV #0x78, w2
MOV #0x9A, w3
MOV.b w2, [w1]
MOV.b w3, [w1]
;Set new oscillator selection
MOV.b WREG, OSCCONH
;OSCCONL (low byte) unlock sequence
MOV #OSCCONL, w1
MOV #0x46, w2
MOV #0x57, w3
MOV.b w2, [w1]
MOV.b w3, [w1]
;Start oscillator switch operation
BSET OSCCON,#0

EXAMPLE 9-2: BASIC 'C' CODE SEQUENCE FOR CLOCK SWITCHING

//Use compiler built-in function to write new clock setting __builtin_write_OSCCONH(0x01); //0x01

```
switches to FRCPLL
```

//Use compiler built-in function to set the OSWEN bit. __builtin_write_OSCCONL(OSCCONL | 0x01);

//Optional: Wait for clock switch sequence to complete while(OSCCONbits.OSWEN == 1);

9.5 Reference Clock Output

In addition to the CLKO output (Fosc/2) available in certain oscillator modes, the device clock in the PIC24FXXXXX family devices can also be configured to provide a reference clock output signal to a port pin. This feature is available in all oscillator configurations and allows the user to select a greater range of clock submultiples to drive external devices in the application.

This reference clock output is controlled by the REFOCON register (Register 9-4). Setting the ROEN bit (REFOCON<15>) makes the clock signal available on the REFO pin. The RODIV<3:0> bits (REFOCON<11:8>) enable the selection of 16 different clock divider options.

The ROSSLP and ROSEL bits (REFOCON<13:12>) control the availability of the reference output during Sleep mode. The ROSEL bit determines if the oscillator on OSC1 and OSC2, or the current system clock source, is used for the reference clock output. The ROSSLP bit determines if the reference source is available on REFO when the device is in Sleep mode.

To use the reference clock output in Sleep mode, both the ROSSLP and ROSEL bits must be set. The device clock must also be configured for one of the primary modes (EC, HS or XT); otherwise, if the ROSEL bit is not also set, the oscillator on OSC1 and OSC2 will be powered down when the device enters Sleep mode. Clearing the ROSEL bit allows the reference output frequency to change as the system clock changes during any clock switches.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
OENSYNC		OCFEN ⁽¹⁾	OCEEN ⁽¹⁾	OCDEN ⁽¹⁾	OCCEN ⁽¹⁾	OCBEN ⁽¹⁾	OCAEN		
bit 15							bit		
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ICGSM1	ICGSM0	_	AUXOUT1	AUXOUT0	ICS2	ICS1	ICS0		
bit 7						1	bit		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	1 as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own		
bit 15	1 = Update b	Dutput Enable S by output enable by output enable	e bits occurs or	n the next Time	Base Reset or	rollover			
bit 14	Unimplemen	ted: Read as ')'						
bit 13-8	1 = OCx pin 0 = OCx pin		the CCPx moded by the CCP	dule and produc		compare or PWI e to the port log			
bit 7-6	ICGSM<1:0>: Input Capture Gating Source Mode Control bits								
	01 = One-Sh 00 = Level-Se	ot mode: Falling ot mode: Rising	edge from gat A high level fr	ting source ena om gating sour	bles future cap	pture events (IC oture events (IC future capture	DIS = 0)		
bit 5	Unimplemen	ted: Read as ')'						
bit 4-3	AUXOUT<1:0	0>: Auxiliary Oເ	tput Signal on	Event Selectio	n bits				
	10 = Signal c	pture or output output is defined ise rollover eve d	l by module op)			
bit 2-0	111 = Unuse 110 = CLC2 101 = CLC1 100 = Unuse 011 = Compa 010 = Compa 001 = Compa	output output		3					

REGISTER 13-4: CCPxCON2H: CCPx CONTROL 2 HIGH REGISTERS

Note 1: OCFEN through OCBEN (bits<13:9>) are implemented in MCCPx modules only.

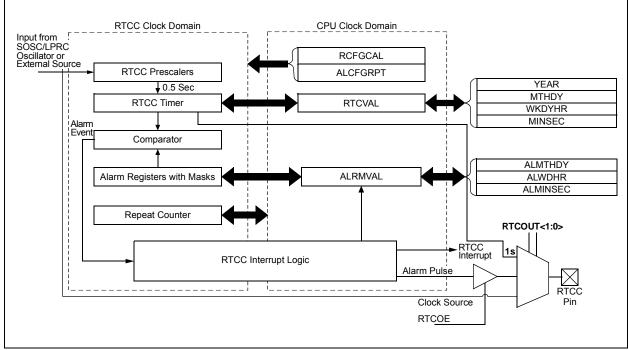
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	—	—		—		_				
bit 15							bit 8			
R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0			
SMP	CKE ⁽¹⁾	D/Ā	Р	S	R/W	UA	BF			
bit 7							bit (
Legend:										
R = Readable	e bit	W = Writable I	oit	U = Unimplem	ented bit. rea	d as '0'				
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown			
bit 15-8	Unimplemen	ted: Read as '0)'							
bit 7	SMP: Sample	e bit								
	SPI Master mode:									
	1 = Input data is sampled at the end of data output time									
	0 = Input data is sampled at the middle of data output time									
	<u>SPI Slave mode:</u> SMP must be cleared when SPI is used in Slave mode.									
bit 6	CKE: SPI Clock Select bit ⁽¹⁾									
	1 = Transmit o	occurs on trans	ition from acti	ve to Idle clock s	state					
	0 = Transmit	occurs on trans	ition from Idle	to active clock s	state					
bit 5	D/A: Data/Ad									
	Used in I ² C™	mode only.								
bit 4	P: Stop bit									
		node only. This	bit is cleared v	when the MSSP:	x module is di	sabled; SSPEN	l bit is cleared			
bit 3	S: Start bit									
	Used in I ² C m	•								
bit 2		rite Information	bit							
	Used in I ² C m									
bit 1	UA: Update A									
	Used in I ² C m	,								
bit 0	BF: Buffer Fu									
		s complete, SS s not complete,		emntv						
		-								
	plarity of clock s	tata ia aat by th		DUCONIA (A)						

REGISTER 14-1: SSPxSTAT: MSSPx STATUS REGISTER (SPI MODE)

16.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Real-Time Clock and Calendar, refer to the "PIC24F Family Reference Manual", "Real-Time Clock and Calendar (RTCC)" (DS39696).

The RTCC provides the user with a Real-Time Clock and Calendar (RTCC) function that can be calibrated.


Key features of the RTCC module are:

- · Operates in Sleep and Retention Sleep modes
- · Selectable clock source
- Provides hours, minutes and seconds using 24-hour format
- · Visibility of one half second period
- Provides calendar weekday, date, month and year
- Alarm-configurable for half a second, one second, 10 seconds, one minute, 10 minutes, one hour, one day, one week, one month or one year
- · Alarm repeat with decrementing counter
- · Alarm with indefinite repeat chime
- Year 2000 to 2099 leap year correction

- · BCD format for smaller software overhead
- Optimized for long term battery operation
- User calibration of the 32.768 kHz clock crystal/32K INTRC frequency with periodic auto-adjust
- · Optimized for long term battery operation
- · Fractional second synchronization
- Calibration to within ±2.64 seconds error per month
- · Calibrates up to 260 ppm of crystal error
- Ability to periodically wake-up external devices without CPU intervention (external power control)
- · Power control output for external circuit control
- · Calibration takes effect every 15 seconds
- · Runs from any one of the following:
 - External Real-Time Clock of 32.768 kHz
 - Internal 31.25 kHz LPRC Clock
 - 50 Hz or 60 Hz External Input

16.1 RTCC Source Clock

The user can select between the SOSC crystal oscillator, LPRC internal oscillator or an external 50 Hz/60 Hz power line input as the clock reference for the RTCC module. This gives the user an option to trade off system cost, accuracy and power consumption, based on the overall system needs.

FIGURE 16-1: RTCC BLOCK DIAGRAM

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
_	CSS30	CSS29	CSS28	CSS27	CSS26	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS23	CSS22	CSS21	CSS20 ⁽²⁾	CSS19 ⁽²⁾	CSS18	CSS17	CSS16
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 14-10CSS<30:26>: A/D Input Scan Selection bits1 = Includes the corresponding channel for input scan0 = Skips the channel for input scanbit 9-8Unimplemented: Read as '0'bit 7-0CSS<23:16>: A/D Input Scan Selection bits⁽²⁾1 = Includes the corresponding channel for input scan0 = Skips the channel for input scan
- **Note 1:** Unimplemented channels are read as '0'. Do not select unimplemented channels for sampling as indeterminate results may be produced.
 - 2: The CSS<20:19> bits are not implemented in 20-pin devices.

REGISTER 19-9: AD1CSSL: A/D INPUT SCAN SELECT REGISTER (LOW WORD)⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8 ^(2,3)
						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS6 ^(2,3)	CSS5 ⁽²⁾	CSS4	CSS3	CSS2	CSS1	CSS0
						bit 0
	R/W-0	CSS14 CSS13 R/W-0 R/W-0	CSS14 CSS13 CSS12 R/W-0 R/W-0 R/W-0	CSS14 CSS13 CSS12 CSS11 R/W-0 R/W-0 R/W-0 R/W-0	CSS14 CSS13 CSS12 CSS11 CSS10 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0	CSS14 CSS13 CSS12 CSS11 CSS10 CSS9 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 CSS<15:0>: A/D Input Scan Selection bits^(2,3)

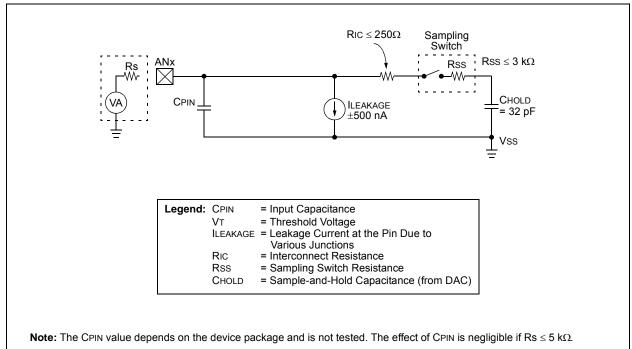
1 = Includes the corresponding ANx input for scan

- 0 = Skips the channel for input scan
- **Note 1:** Unimplemented channels are read as '0'. Do not select unimplemented channels for sampling as indeterminate results may be produced.
 - 2: The CSS<8:5> bits are not implemented in 20-pin devices.
 - 3: The CSS<8:6> bits are not implemented in 28-pin devices.

19.2 A/D Sampling Requirements

The analog input model of the 12-bit A/D Converter is shown in Figure 19-2. The total sampling time for the A/D is a function of the holding capacitor charge time.

For the A/D Converter to meet its specified accuracy, the Charge Holding Capacitor (CHOLD) must be allowed to fully charge to the voltage level on the analog input pin. The Source Impedance (Rs), the Interconnect Impedance (Rsc) and the Internal Sampling Switch Impedance (Rss) combine to directly affect the time required to charge CHOLD. The combined impedance of the analog sources must, therefore, be small enough to fully charge the holding capacitor within the chosen sample time. To minimize the effects of pin leakage currents on the accuracy of the A/D Converter, the maximum recommended source impedance, Rs, is $2.5 \text{ k}\Omega$. After the analog input channel is selected (changed), this sampling function


must be completed prior to starting the conversion. The internal holding capacitor will be in a discharged state prior to each sample operation.

At least 1 TAD time period should be allowed between conversions for the sample time. For more details, see **Section 27.0 "Electrical Characteristics"**.

EQUATION 19-1: A/D CONVERSION CLOCK PERIOD

$$TAD = TCY (ADCS + 1)$$

 $ADCS = \frac{TAD}{TCY} - 1$

Note: Based on Tcy = 2/Fosc; Doze mode and PLL are disabled.

FIGURE 19-2: 12-BIT A/D CONVERTER ANALOG INPUT MODEL

AC CHARACTERISTICS		Standard Operating Conditions: Operating temperature			: 1.8V to 3.6V (PIC24F16KM204) 2.0V to 5.5V (PIC24FV16KM204) -40°C \leq TA \leq +85°C for Industrial -40°C \leq TA \leq +125°C for Extended			
Param No.	Sym	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units Conditions		
OS50	Fplli	PLL Input Frequency Range	4	—	8	MHz	ECPLL, HSPLL modes, -40°C \leq TA \leq +85°C	
OS51	Fsys	PLL Output Frequency Range	16	—	32	MHz	$-40^{\circ}C \le TA \le +85^{\circ}C$	
OS52	TLOCK	PLL Start-up Time (Lock Time)	-	1	2	ms		
OS53	DCLK	CLKO Stability (Jitter)	-2	1	2	%	Measured over 100 ms period	

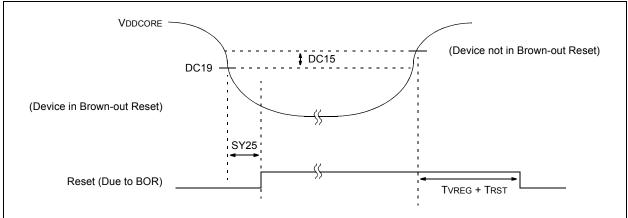
TABLE 27-21: PLL CLOCK TIMING SPECIFICATIONS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 27-22: INTERNAL RC OSCILLATOR ACCURACY

AC CHA	ARACTERISTICS		r d Opera ng temp	•	nditions	tions: 1.8V to 3.6V (PIC24F16KM204) 2.0V to 5.5V (PIC24FV16KM204) $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended			
Param No.	Characteristic	Min	Тур	Max	Units	Conditions			
F20	FRC @ 8 MHz ⁽¹⁾	-2		+2	%	+25°C	$\begin{array}{l} 3.0V \leq V \text{DD} \leq 3.6V, \mbox{ F device} \\ 3.2V \leq V \text{DD} \leq 5.5V, \mbox{ FV device} \end{array}$		
		-5	_	+5	%	$-40^\circ C \le T A \le +125^\circ C$	$\begin{array}{l} 1.8V \leq VDD \leq 3.6V, \mbox{ F device} \\ 2.0V \leq VDD \leq 5.5V, \mbox{ FV device} \end{array}$		
F21	LPRC @ 31 kHz ⁽²⁾	-15		+15	%	$-40^{\circ}C \le TA \le +125^{\circ}C$	$\begin{array}{l} 1.8V \leq V\text{DD} \leq 3.6\text{V}, \ \text{F} \ \text{device} \\ 2.0V \leq V\text{DD} \leq 5.5\text{V}, \ \text{FV} \ \text{device} \end{array}$		


Note 1: The frequency is calibrated at +25°C and 3.3V. The OSCTUN bits can be used to compensate for temperature drift.

2: The change of LPRC frequency as VDD changes.

TABLE 27-23: INTERNAL RC OSCILLATOR SPECIFICATIONS

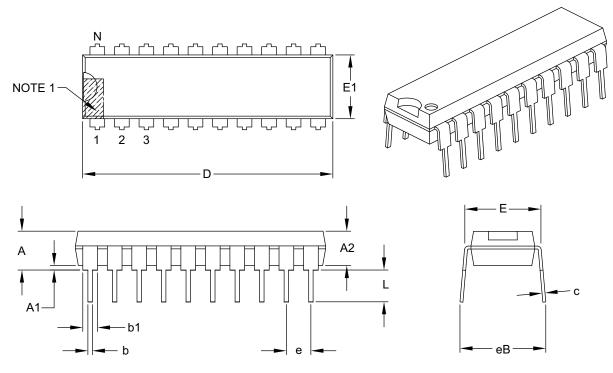
AC CHARACTERISTICS		$ \begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Sym	Characteristic	Min	Тур	Мах	Units	Conditions	
	TFRC	FRC Start-up Time	—	5	_	μS		
	TLPRC	LPRC Start-up Time	—	70	—	μS		

FIGURE 27-9: BROWN-OUT RESET CHARACTERISTICS

TABLE 27-25:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET TIMING REQUIREMENTS

AC CHARACTERISTICS				Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C f$			8V to 3.6V (PIC24F16KM204) 0V to 5.5V (PIC24FV16KM204) $0^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $0^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended
Param No.	Symbol	Characteristic	Min.	Typ ⁽¹⁾	Max.	Units	Conditions
SY10	TmcL	MCLR Pulse Width (low)	2	—	_	μs	
SY11	TPWRT	Power-up Timer Period	50	64	90	ms	
SY12	TPOR	Power-on Reset Delay	1	5	10	μS	
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	_	—	100	ns	
SY20	TWDT	Watchdog Timer Time-out	0.85	1.0	1.15	ms	1.32 prescaler
		Period	3.4	4.0	4.6	ms	1:128 prescaler
SY25	TBOR	Brown-out Reset Pulse Width	1	—	—	μS	
SY35	TFSCM	Fail-Safe Clock Monitor Delay	—	2.0	2.3	μS	
SY45	TRST	Internal State Reset Time	—	5	_	μS	
SY50	Tvreg	On-Chip Voltage Regulator Output Delay	—	10	_	μS	(Note 2)
SY55	TLOCK	PLL Start-up Time	_	100		μs	
SY65	Tost	Oscillator Start-up Time	—	1024	_	Tosc	
SY71	Трм	Program Memory Wake-up Time	—	1	_	μS	Sleep wake-up with PMSLP = 0
SY72	Tlvr	Low-Voltage Regulator Wake-up Time	—	250	_	μS	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.


2: This applies to PIC24FV16KMXXX devices only.

28.2 Package Details

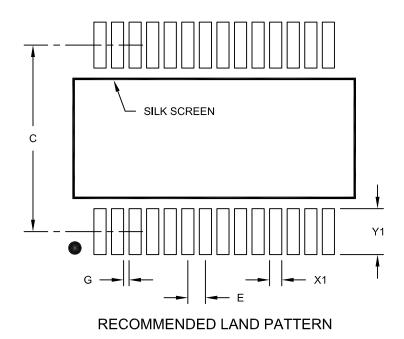
The following sections give the technical details of the packages.

20-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N		20	
Pitch	е		.100 BSC	
Top to Seating Plane	А	-	-	.210
Molded Package Thickness	A2	.115	.130	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.300	.310	.325
Molded Package Width	E1	.240	.250	.280
Overall Length	D	.980	1.030	1.060
Tip to Seating Plane	L	.115	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.045	.060	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	_	-	.430

Notes:


- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

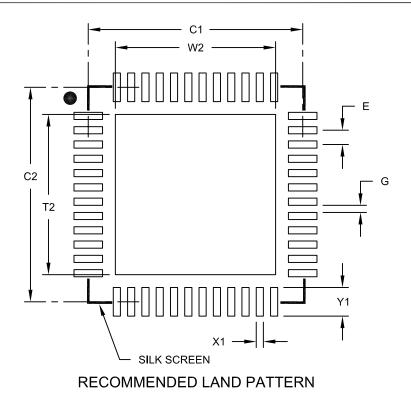
Microchip Technology Drawing C04-019B

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			S
Dimensio	Dimension Limits		NOM	MAX
Contact Pitch	E		0.65 BSC	
Contact Pad Spacing	С		7.20	
Contact Pad Width (X28)	X1			0.45
Contact Pad Length (X28)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A

48-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) - 6x6 mm Body [UQFN] With 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimensior	n Limits	MIN	NOM	MAX
Contact Pitch	E		0.40 BSC	
Optional Center Pad Width	W2			4.45
Optional Center Pad Length	T2			4.45
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X28)	X1			0.20
Contact Pad Length (X28)	Y1			0.80
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2153A

INDEX

1	•
r	١

A/D	
Buffer Data Formats	. 225
Control Registers	. 212
AD1CHITH/L	. 212
AD1CHS	. 212
AD1CON1	. 212
AD1CON2	. 212
AD1CON3	. 212
AD1CON5	. 212
AD1CSSH/L	. 212
AD1CTMENH/L	. 212
Sampling Requirements	. 223
Transfer Function	. 224
AC Characteristics	
8-Bit DAC Specifications	. 296
A/D Conversion Requirements	. 295
A/D Module Specifications	. 294
Capacitive Loading Requirements on	
Output Pins	. 279
CLKO and I/O Requirements	. 282
External Clock Requirements	. 280
Internal RC Accuracy	. 281
Internal RC Oscillator Specifications	. 281
Load Conditions and Requirements	. 279
PLL Clock Specification	. 281
Reset, Watchdog Timer. Oscillator Start-up Timer,	
Power-up Timer, Brown-out Reset	
Requirements	. 284
Temperature and Voltage Specifications	. 279
Assembler	
MPASM Assembler	. 262

В

Block Diagrams	
12-Bit A/D Converter	210
12-Bit A/D Converter Analog Input Model	223
16-Bit Timer1	
32-Bit Timer Mode	146
Accessing Program Memory with	
Table Instructions	65
CALL Stack Frame	63
CLCx Input Source Selection	
CLCx Logic Function Combinatorial Options	196
CLCx Module	195
Comparator Voltage Reference	239
Comparator x Module	
Conceptual MCCPx/SCCPx Modules	143
CPU Programmer's Model	37
CTMU Connections, Internal Configuration for	
Capacitance Measurement	242
CTMU Connections, Internal Configuration for	
Pulse Delay Generation	243
CTMU Connections, Internal Configuration for	
Time Measurement	
Data Access from Program Space Address Gen 64	eration
Data EEPROM Addressing with TBLPAG and	
NVM Registers	75
Dual 16-Bit Timer Mode	145
High/Low-Voltage Detect (HLVD)	207
Individual Comparator Configurations	236
Input Capture x Module	148

MCLR Pin Connections Example	30
MSSPx (I ² C Master Mode)	161
MSSPx (I ² C Mode)	161
MSSPx (SPI Mode)	160
On-Chip Voltage Regulator Connections	257
Output Compare x Module	147
PIC24F CPU Core	36
PIC24FXXXXX Family (General)	19
PSV Operation	
Recommended Minimum Connections	29
Reset System	79
RTCC Module	
Series Resistor	132
Shared I/O Port Structure	137
Simplified Single DACx Module	229
Simplified UARTx	173
Single Operational Amplifier	233
SPI Master/Slave Connection	160
Suggested Oscillator Circuit Placement	33
System Clock	
Table Register Addressing	67
Timer Clock Generator	144
Watchdog Timer (WDT)	258
Brown-out Reset	
Trip Points	

С

C Compilers	
MPLAB XC Compilers 2	262
Capture/Compare/PWM/Timer	
Auxiliary Output 1	
General Purpose Timer 1	45
Input Capture Mode 1	
Output Compare Mode 1	47
Synchronization Sources 1	53
Time Base Generator 1	
Capture/Compare/PWM/Timer (MCCP, SCCP) 1	43
Charge Time Measurement Unit. See CTMU.	
CLC	
Control Registers 1	98
Code Examples	
Assembly Code Sequence for Clock Switching 1	
C Code Power-Saving Entry 1	
C Code Sequence for Clock Switching 1	28
Data EEPROM Bulk Erase	77
Data EEPROM Unlock Sequence	73
Erasing a Program Memory Row,	
Assembly Language	
Erasing a Program Memory Row, C Language	
I/O Port Write/Read 1	40
Initiating a Programming Sequence,	
Assembly Language	72
Initiating a Programming Sequence, C Language	72
Loading the Write Buffers, Assembly Language	71
Loading the Write Buffers, C Language	71
Reading Data EEPROM Using	
TBLRD Command	
Setting the RTCWREN Bit in 'C' 1	82
Setting the RTCWREN Bit in Assembly 1	82
Single-Word Erase	76
Single-Word Write to Data EEPROM	77
Ultra Low-Power Wake-up Initialization 1	32
Code Protection	259
Comparator 2	235

Μ

Master Synchronous Serial Port (MSSP)	159
Microchip Internet Web Site	332
MPLAB Assembler, Linker, Librarian	262
MPLAB ICD 3 In-Circuit Debugger	263
MPLAB PM3 Device Programmer	263
MPLAB REAL ICE In-Circuit Emulator System	263
MPLAB X Integrated Development	
Environment Software	261
MPLAB X SIM Software Simulator	263
MPLIB Object Librarian	262
MPLINK Object Linker	262
N	
Near Data Space	

0

127
127
122
123
122
122
128

P Packagir

Packaging	
Details	300
Marking	
PICkit 3 In-Circuit Debugger/Programmer	
Power-Saving	135
Power-Saving Features	
Clock Frequency, Clock Switching	131
Coincident Interrupts	132
Instruction-Based Modes	131
Idle	132
Sleep	131
Retention Regulator (RETREG)	134
Selective Peripheral Control	
Ultra Low-Power Wake-up (ULPWU)	
Voltage Regulator-Based	134
Retention Sleep Mode	134
Run Mode	134
Sleep Mode	134
Product Identification System	
Program and Data Memory	
Access Using Table Instructions	65
Program Space Visibility	66
Program and Data Memory Spaces	
Interfacing, Addressing	63
Program Memory	
Address Space	41
Configuration Word Addresses	
Program Space	
Memory Map	41
Program Verification	
R	
Real-Time Clock and Calendar (RTCC)	181
Register Maps	
A/D	59
ANSEL	
Band Gap Buffer Control	
CLC1-2	

Clock Control	
Comparator	
CPU Core	
CTMU	
DAC1	
DAC2	
ICN	
Interrupt Controller	
MCCP1	
MCCP2	
MCCP3 MSSP1 (I ² C/SPI)	51
MSSP1 (I ⁻ C/SP1) MSSP2 (I ² C/SPI)	
NVM	
Op Amp 1	
Op Amp 2	
Pad Configuration	
PMD	
PORTA	
PORTB	
PORTC	
Real-Time Clock and Calendar	
SCCP4	
SCCP5	
Timer1	48
UART1	55
UART2	55
Ultra Low-Power Wake-up	62
Registers	
AD1CHITH (A/D Scan Compare Hit,	
High Word)	. 219
AD1CHITL (A/D Scan Compare Hit,	
Low Word)	
AD1CHS (A/D Sample Select)	
AD1CON1 (A/D Control 1)	
AD1CON2 (A/D Control 2)	
AD1CON3 (A/D Control 3)	
AD1CON5 (A/D Control 5)	. 217
AD1CSSH (A/D Input Scan Select, High Word)	
AD1CSSL (A/D Input Scan Select, Low Word) AD1CTMENH (CTMU Enable, High Word)	
AD1CTMENT (CTMU Enable, Fligh Word)	
ALCFGRPT (Alarm Configuration)	
ALMINSEC (Alarm Minutes and	. 100
Seconds Value)	190
ALMTHDY (Alarm Month and Day Value)	
ALWDHR (Alarm Weekday and Hours Value)	
AMPxCON (Op Amp x Control)	
ANSA (PORTA Analog Selection)	
ANSB (PORTB Analog Selection)	
ANSC (PORTC Analog Selection)	
BUFCON0 (Internal Voltage Reference	
Control 0)	. 232
CCPxCON1H (CCPx Control 1 High)	. 152
CCPxCON1L (CCPx Control 1 Low)	. 150
CCPxCON2H (CCPx Control 2 High)	. 155
CCPxCON2L (CCPx Control 2 Low)	
CCPxCON3H (CCPx Control 3 High)	
CCPxCON3L (CCPx Control 3 Low)	
CCPxSTATL (CCPx Status)	
CLCxCONH (CLCx Control High)	
CLCxCONL (CLCx Control Low)	
CLCxGLSH (CLCx Gate Logic Input Select High)	
CLCxGLSL (CLCx Gate Logic Input Select Low)	
CLCxSEL (CLCx Input MUX Select)	
CLKDIV (Clock Divider)	. 125