

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-><F

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (5.5K × 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 19x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f16km102-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

28-F	Pin SPDIP/SSOP/SOIC MCLR/RA5 1 28 AVDD RA0 2 27 AVss RA1 3 26 RB15 RB0 4 25 RB14 RB1 5 X24 RB13 RB2 6 Y2 RB12 RB3 7 9 22 RB11 Vss 8 12 21 RB10 RA2 9 Y20 RA6 or VDDCORE RA3 10 0 19 RA7 RB4 11 18 RB9 RA4 12 17 RB8 Voo 13 16 RB7 RB5 14 15 RB6
Din	Pin Features
гш	PIC24FXXKMX02 PIC24FVXXKMX02
1	MCLR/Vpp/RA5
2	CVREF+/VREF+/ /AN0/ /CN2/RA0
3	CVREF-/VREF-/AN1/CN3/RA1 CVREF-/VREF-/AN1/RA1
4	PGED1/AN2/CTCMP/ULPWU/C1IND/ / / /CN4/RB0
5	PGEC1/ / /AN3/C1INC/ / /CTED12/CN5/RB1
6	/ /AN4/C1INB/ / /U1RX/TCKIB/CTED13/CN6/RB2
7	/AN5/C1INA/ / /CN7/RB3
8	Vss
9	OSCI/CLKI/AN13/CN30/RA2
10	OSCO/CLKO/AN14/CN29/RA3
11	SOSCI/AN15/ / /CN1/RB4
12	SOSCO/SCLKI/AN16/PWRLCLK/ /CN0/RA4
13	VDD
14	PGED3/AN17/ASDA1/ / /OC1E/CLCINA/CN27/RB5
15	PGEC3/AN18/ASCL1/ / /OC1F/CLCINB/CN24/RB6
16	AN19/U1TX/INT0/CN23/RB7 AN19/U1TX/ / /INT0/CN23/RB7
17	AN20/SCL1/U1CTS/C3OUT/OC1B/CTED10/CN22/RB8
18	AN21/SDA1/T1CK/U1RTS/U1BCLK/IC2/ /CLC10/CTED4/CN21/RB9
19	/IC1/ / /CTED3/CN9/RA7
20	/OC1A/CTED1/INT2/CN8/RA6 VCAP OR VDDCORE
21	PGED2/SDI1/ /OC1C/CTED11/CN16/RB10
22	PGEC2/SCK1/OC2A/CTED9/CN15/RB11
23	/AN12/HLVDIN/ / / /CTED2/CN14/RB12 /AN12/HLVDIN/ / / /CTED2/INT2/CN14/ RB12
24	/ /AN11/SDO1/OCFB/ /OC1D/CTPLS/CN13/RB13
25	/CVREF/ / /AN10/ / /C1OUT/OCFA/CTED5/INT1/CN12/RB14
26	/ /AN9/ /REFO/SS1/TCKIA/CTED6/CN11/RB15
27	Vss/AVss
28	VdD/AVdd

Legend: Values in indicate pin function differences between PIC24F(V)XXKM202 and PIC24F(V)XXKM102 devices.

TABLE 4-11: SCCP4 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CCP4CON1L ⁽¹⁾	1ACh	CCPON	—	CCPSIDL	r	TMRSYNC	CLKSEL2	CLKSEL1	CLKSEL0	TMRPS1	TMRPS0	T32	CCSEL	MOD3	MOD2	MOD1	MOD0	0000
CCP4CON1H ⁽¹⁾	1AEh	OPSSRC	RTRGEN	—	—	IOPS3	IOPS2	IOPS1	IOPS0	TRIGEN	ONESHOT	ALTSYNC	SYNC4	SYNC3	SYNC2	SYNC1	SYNC0	0000
CCP4CON2L ⁽¹⁾	1B0h	PWMRSEN	ASDGM	—	SSDG			—	_	ASDG7	ASDG6	ASDG5	ASDG4	ASDG3	ASDG2	ASDG1	ASDG0	0000
CCP4CON2H ⁽¹⁾	1B2h	OENSYNC	_	—	—			—	OCAEN	ICGSM1	ICGSM0	—	AUXOUT1	AUXOUT0	ICSEL2	ICSEL1	ICSEL0	0100
CCP4CON3H ⁽¹⁾	1B6h	OETRIG	OSCNT2	OSCNT1	OSCNT0	_	_	_	_	_	_	POLACE	_	PSSACE1	PSSACE0	_	-	0000
CCP4STATL ⁽¹⁾	1B8h	—	_	_	_	_	_	_	_	CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE	0000
CCP4TMRL ⁽¹⁾	1BCh							SCCP	4 Time Base	e Register Lo	ow Word							0000
CCP4TMRH ⁽¹⁾	1BEh							SCCP4	1 Time Base	e Register Hi	gh Word							0000
CCP4PRL ⁽¹⁾	1C0h							SCCP4 Ti	me Base Pe	eriod Registe	er Low Word							FFFF
CCP4PRH ⁽¹⁾	1C2h							SCCP4 Tir	ne Base Pe	riod Registe	r High Word							FFFF
CCP4RAL ⁽¹⁾	1C4h							Ou	tput Compa	re 4 Data Wo	ord A							0000
CCP4RBL ⁽¹⁾	1C8h		Output Compare 4 Data Word B 0000											0000				
CCP4BUFL ⁽¹⁾	1CCh							Input 0	Capture 4 D	ata Buffer Lo	w Word							0000
CCP4BUFH ⁽¹⁾	1CEh							Input C	Capture 4 Da	ata Buffer Hi	gh Word							0000

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition, r = reserved.

Note 1: These registers are available only on PIC24F(V)16KM2XX devices.

TABLE 4-21: PORTA REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11 ^(4,5)	Bit 10 ^(4,5)	Bit 9 ^(4,5)	Bit 8 ^(4,5)	Bit 7 ⁽⁴⁾	Bit 6 ⁽³⁾	Bit 5 ⁽²⁾	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	2C0h	_	—	_	_	TRISA11	TRISA10	TRISA9	TRISA8	TRISA7	TRISA6	_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	0FDF ⁽¹⁾
PORTA	2C2h	_	_	_	_	RA11	RA10	RA9	RA8	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx
LATA	2C4h	_	_	_	_	LATA11	LATA10	LATA9	LATA8	LATA7	LATA6		LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
ODCA	2C6h	_	_	_	-	ODA11	ODA10	ODA9	ODA8	ODA7	ODA6	_	ODA4	ODA3	ODA2	ODA1	ODA0	0000

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved.

Note 1: Reset value depends on the device type; the PIC24F16KM204 value is shown.

2: These bits are only available when MCLRE (FPOR<7>) = 0.

3: These bits are not implemented in FV devices.

4: These bits are not implemented in 20-pin devices.

5: These bits are not implemented in 28-pin devices.

TABLE 4-22: PORTB REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11 ⁽²⁾	Bit 10 ⁽²⁾	Bit 9	Bit 8	Bit 7	Bit 6 ⁽²⁾	Bit 5 ⁽²⁾	Bit 4	Bit 3 ⁽²⁾	Bit 2	Bit 1	Bit 0	All Resets
TRISB	2C8h	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	_{FFFF} (1)
PORTB	2CAh	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	2CCh	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	2CEh	ODB15	ODB14	ODB13	ODB12	ODB11	ODB10	ODB9	ODB8	ODB7	ODB6	ODB5	ODB4	ODB3	ODB2	ODB1	ODB0	0000

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved.

Note 1: Reset value depends on the device type; the PIC24F16KM204 value is shown.

2: These bits are not implemented in 20-pin devices.

TABLE 4-23: PORTC REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9 ^(2,3)	Bit 8 ^(2,3)	Bit 7 ^(2,3)	Bit 6 ^(2,3)	Bit 5 ^(2,3)	Bit 4 ^(2,3)	Bit 3 ^(2,3)	Bit 2 ^(2,3)	Bit 1 ^(2,3)	Bit 0 ^(2,3)	All Resets
TRISC	2D0h	—	_		_		_	TRISC9	TRISC8	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	03FF ⁽¹⁾
PORTC	2D2h	_	_	_		—		RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx
LATTC	2D4h	_	_	_	_	_	_	LATC9	LATC8	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xxxx
ODCC	2D6h	_	_	_	_	_	_	ODC9	ODC8	ODC7	ODC6	ODC5	ODC4	ODC3	ODC2	ODC1	ODC0	0000

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition, r = reserved.

Note 1: Reset value depends on the device type; the PIC24F16KM204 value is shown.

2: These bits are not implemented in 20-pin devices.

3: These bits are not implemented in 28-pin devices.

EXAMPLE 5-5: INITIATING A PROGRAMMING SEQUENCE – ASSEMBLY LANGUAGE CODE

DISI	#5	;	Block all interrupts for next 5 instructions
MOV	#0x55, W0		
MOV	W0, NVMKEY	;	Write the 55 key
MOV	#0xAA, W1	;	
MOV	W1, NVMKEY	;	Write the AA key
BSET	NVMCON, #WR	;	Start the erase sequence
NOP		;	2 NOPs required after setting WR
NOP		;	
BTSC	NVMCON, #15	;	Wait for the sequence to be completed
BRA	\$-2	;	

EXAMPLE 5-6: INITIATING A PROGRAMMING SEQUENCE – 'C' LANGUAGE CODE

// C example using MPLAB C30	
asm("DISI #5");	// Block all interrupts for next 5 instructions
builtin_write_NVM();	// Perform unlock sequence and set $\ensuremath{\mathtt{WR}}$

6.0 DATA EEPROM MEMORY

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on data EEPROM, refer to the *"PIC24F Family Reference Manual"*, **"Data EEPROM"** (DS39720).

The data EEPROM memory is a Nonvolatile Memory (NVM), separate from the program and volatile data RAM. Data EEPROM memory is based on the same Flash technology as program memory, and is optimized for both long retention and a higher number of erase/write cycles.

The data EEPROM is mapped to the top of the user program memory space, with the top address at program memory address, 7FFE00h to 7FFFFh. The size of the data EEPROM is 256 words in PIC24FXXXXX devices.

The data EEPROM is organized as 16-bit-wide memory. Each word is directly addressable, and is readable and writable during normal operation over the entire VDD range.

Unlike the Flash program memory, normal program execution is not stopped during a data EEPROM program or erase operation.

The data EEPROM programming operations are controlled using the three NVM Control registers:

- NVMCON: Nonvolatile Memory Control Register
- NVMKEY: Nonvolatile Memory Key Register
- NVMADR: Nonvolatile Memory Address Register

6.1 NVMCON Register

The NVMCON register (Register 6-1) is also the primary control register for data EEPROM program/erase operations. The upper byte contains the control bits used to start the program or erase cycle and the flag bit to indicate if the operation was successfully performed. The lower byte of NVMCOM configures the type of NVM operation that will be performed.

6.2 NVMKEY Register

The NVMKEY is a write-only register that is used to prevent accidental writes or erasures of data EEPROM locations.

To start any programming or erase sequence, the following instructions must be executed first, in the exact order provided:

- 1. Write 55h to NVMKEY.
- 2. Write AAh to NVMKEY.

After this sequence, a write will be allowed to the NVMCON register for one instruction cycle. In most cases, the user will simply need to set the WR bit in the NVMCON register to start the program or erase cycle. Interrupts should be disabled during the unlock sequence.

The MPLAB® C30 C compiler provides a defined library procedure (builtin_write_NVM) to perform the unlock sequence. Example 6-1 illustrates how the unlock sequence can be performed with in-line assembly.

EXAMPLE 6-1: DATA EEPROM UNLOCK SEQUENCE

//Disable Inter	rupts For 5 instruc	tions
asm volatile	("disi #5");	
//Issue Unlock	Sequence	
asm volatile	("mov #0x55, W0	\n"
	"mov W0, NVMKEY	\n"
	"mov #0xAA, W1	\n"
	"mov W1, NVMKEY	\n");
// Perform Writ	e/Erase operations	
asm volatile	("bset NVMCON, #WR	\n"
	"nop	\n"
	"nop	\n");

REGISTER 10-1: ULPWCON: ULPWU CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0
ULPEN	_	ULPSIDL	_	_	—	—	ULPSINK
bit 15				-			bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—		—	—	—	—
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable b	pit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	ULPEN: ULF	PWU Module En	able bit				
	1 = Module is	s enabled					
	0 = Module is	s disabled					
bit 14	Unimplemer	nted: Read as '	י)				
bit 13	ULPSIDL: U	LPWU Stop in Id	dle Select bit				
	1 = Discontin	ues module ope	eration when the	e device enters	Idle mode		
	0 = Continue	s module opera	tion in Idle mod	e			
bit 12-9	Unimplemer	nted: Read as ')'				
bit 8	ULPSINK: U	LPWU Current	Sink Enable bit				
	1 = Current s	sink is enabled					
	0 = Current s	sink is disabled					
bit 7-0	Unimplemer	nted: Read as 'o)'				

REGISTER 11-2: ANSB: PORTB ANALOG SELECTION REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	U-0	U-0	R/W-1	R/W-1
ANSB15	ANSB14	ANSB13	ANSB12	—	—	ANSB9	ANSB8
bit 15							bit 8

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
ANSB7	ANSB6 ⁽¹⁾	ANSB5 ⁽¹⁾	ANSB4	ANSB3 ⁽¹⁾	ANSB2	ANSB1	ANSB0
bit 7							bit 0

Legend

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12 **ANSB<15:12>:** Analog Select Control bits 1 = Digital input buffer is not active (use for analog input)

- 0 = Digital input buffer is active
- bit 11-10 Unimplemented: Read as '0'
- bit 9-0 ANSB<9:0>: Analog Select Control bits⁽¹⁾
 - 1 = Digital input buffer is not active (use for analog input)
 - 0 = Digital input buffer is active
- Note 1: The ANSB<6:5,3> bits are not available on 20-pin devices.

REGISTER 11-3: ANSC: PORTC ANALOG SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—						—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1
—	—	—	—	—	ANSC2 ^(1,2)	ANSC1 ^(1,2)	ANSC0 ^(1,2)
bit 7							bit 0
Legend:							

Logonal							
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15-3 Unimplemented: Read as '0'

bit 2-0 ANSC<2:0>: Analog Select Control bits^(1,2)

- 1 = Digital input buffer is not active (use for analog input)
- 0 = Digital input buffer is active

Note 1: These bits are not implemented in 20-pin devices.

2: These bits are not implemented in 28-pin devices.

13.3 Output Compare Mode

Output Compare mode compares the Timer register value with the value of one or two Compare registers, depending on its mode of operation. The Output Compare x module on compare match events has the ability to generate a single output transition or a train of output

pulses. Like most PIC[®] MCU peripherals, the Output Compare x module can also generate interrupts on a compare match event.

Table 13-3 shows the various modes available in Output Compare modes.

TABLE 13-3: OUTPUT COMPARE/PWM MODES

MOD<3:0> (CCPxCON1L<3:0>)	T32 (CCPxCON1L<5>)	Operating Mode			
0001	0	Output High on Compare (16-bit)			
0001	1	Output High on Compare (32-bit)			
0010	0	Output Low on Compare (16-bit)	Single Edge Mede		
0010 1		Output Low on Compare (32-bit)			
0011	0	Output Toggle on Compare (16-bit)			
0011	1	Output Toggle on Compare (32-bit)]		
0100	0	Dual Edge Compare (16-bit)	Dual Edge Mode		
0101	0	Dual Edge Compare (16-bit buffered)	PWM Mode		
0110	0	Center-Aligned Pulse (16-bit buffered)	Center PWM		
0111	0	Variable Frequency Pulse (16-bit)			
0111	1	Variable Frequency Pulse (32-bit)			

OUTPUT COMPARE x BLOCK DIAGRAM

16.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Real-Time Clock and Calendar, refer to the "PIC24F Family Reference Manual", "Real-Time Clock and Calendar (RTCC)" (DS39696).

The RTCC provides the user with a Real-Time Clock and Calendar (RTCC) function that can be calibrated.

Key features of the RTCC module are:

- · Operates in Sleep and Retention Sleep modes
- · Selectable clock source
- Provides hours, minutes and seconds using 24-hour format
- · Visibility of one half second period
- Provides calendar weekday, date, month and year
- Alarm-configurable for half a second, one second, 10 seconds, one minute, 10 minutes, one hour, one day, one week, one month or one year
- · Alarm repeat with decrementing counter
- · Alarm with indefinite repeat chime
- Year 2000 to 2099 leap year correction

- · BCD format for smaller software overhead
- Optimized for long term battery operation
- User calibration of the 32.768 kHz clock crystal/32K INTRC frequency with periodic auto-adjust
- · Optimized for long term battery operation
- · Fractional second synchronization
- Calibration to within ±2.64 seconds error per month
- · Calibrates up to 260 ppm of crystal error
- Ability to periodically wake-up external devices without CPU intervention (external power control)
- · Power control output for external circuit control
- · Calibration takes effect every 15 seconds
- · Runs from any one of the following:
 - External Real-Time Clock of 32.768 kHz
 - Internal 31.25 kHz LPRC Clock
 - 50 Hz or 60 Hz External Input

16.1 RTCC Source Clock

The user can select between the SOSC crystal oscillator, LPRC internal oscillator or an external 50 Hz/60 Hz power line input as the clock reference for the RTCC module. This gives the user an option to trade off system cost, accuracy and power consumption, based on the overall system needs.

FIGURE 16-1: RTCC BLOCK DIAGRAM

REGISTER 16-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾ (CONTINUED)

- **Note 1:** The RCFGCAL register is only affected by a POR.
 - 2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
 - 3: This bit is read-only; it is cleared to '0' on a write to the lower half of the MINSEC register.

19.1 A/D Control Registers

The 12-bit A/D Converter module uses up to 43 registers for its operation. All registers are mapped in the data memory space.

19.1.1 CONTROL REGISTERS

Depending on the specific device, the module has up to eleven control and status registers:

- AD1CON1: A/D Control Register 1
- AD1CON2: A/D Control Register 2
- AD1CON3: A/D Control Register 3
- AD1CON5: A/D Control Register 5
- AD1CHS: A/D Sample Select Register
- AD1CHITH and AD1CHITL: A/D Scan Compare Hit Registers
- AD1CSSH and AD1CSSL: A/D Input Scan Select Registers
- AD1CTMENH and AD1CTMENL: CTMU Enable Registers

The AD1CON1, AD1CON2 and AD1CON3 registers (Register 19-1, Register 19-2 and Register 19-3) control the overall operation of the A/D module. This includes enabling the module, configuring the conversion clock and voltage reference sources, selecting the sampling and conversion Triggers, and manually controlling the sample/convert sequences. The AD1CON5 register (Register 19-4) specifically controls features of the Threshold Detect operation, including its function in power-saving modes.

The AD1CHS register (Register 19-5) selects the input channels to be connected to the S/H amplifier. It also allows the choice of input multiplexers and the selection of a reference source for differential sampling.

The AD1CHITH and AD1CHITL registers (Register 19-6 and Register 19-7) are semaphore registers used with Threshold Detect operations. The status of individual bits, or bit pairs in some cases, indicates if a match condition has occurred. AD1CHITL is always implemented, whereas AD1CHITH may not be implemented in devices with 16 or fewer channels.

The AD1CSSH/L registers (Register 19-8 and Register 19-9) select the channels to be included for sequential scanning.

The AD1CTMENH/L registers (Register 19-10 and Register 19-11) select the channel(s) to be used by the CTMU during conversions. Selecting a particular channel allows the A/D Converter to control the CTMU (particularly, its current source) and read its data through that channel. AD1CTMENL is always implemented, whereas AD1CTMENH may not be implemented in devices with 16 or fewer channels.

19.1.2 A/D RESULT BUFFERS

The module incorporates a multi-word, dual port buffer, called ADC1BUFx. Each of the locations is mapped into the data memory space and is separately addressable. The buffer locations are referred to as ADC1BUF0 through ADC1BUFx (x = up to 17).

The A/D result buffers are both readable and writable. When the module is active (AD1CON<15> = 1), the buffers are read-only and store the results of A/D conversions. When the module is inactive (AD1CON<15> = 0), the buffers are both readable and writable. In this state, writing to a buffer location programs a conversion threshold for Threshold Detect operations.

Buffer contents are not cleared when the module is deactivated with the ADON bit (AD1CON1<15>). Conversion results and any programmed threshold values are maintained when ADON is set or cleared.

TABLE 19-2:NUMERICAL EQUIVALENTS OF VARIOUS RESULT CODES:
12-BIT FRACTIONAL FORMATS

VIN/VREF	12-Bit Output Code	16-Bit Fractional Format Equivalent Decimal Value	16-Bit Signed Fractional Fo Equivalent Decimal Val	ormat/ ue						
+4095/4096	0 1111 1111 1111	1111 1111 1111 0000	0.999	0111 1111 1111 1000	0.999					
+4094/4096	0 1111 1111 1110	1111 1111 1110 0000	0.998	0111 1111 1110 1000	0.998					
	•••									
+1/4096	0 0000 0000 0001	0000 0000 0001 0000	0.001	0000 0000 0000 1000	0.001					
0/4096	0 0000 0000 0000	0000 0000 0000 0000	0.000	0000 0000 0000 0000	0.000					
-1/4096	1 0111 1111 1111	0000 0000 0000 0000	0.000	1111 1111 1111 1000	-0.001					
•••										
-4095/4096	1 0000 0000 0001	0000 0000 0000 0000	0.000	1000 0000 0000 1000	-0.999					
-4096/4096	1 0000 0000 0000	0000 0000 0000 0000	0.000	1000 0000 0000 0000	-1.000					

FIGURE 19-5: A/D OUTPUT DATA FORMATS (10-BIT)

RAM Contents:							d09	d08	d07	d06	d05	d04	d03	d02	d01	d00
Read to Bus:																I
Integer	0	0	0	0	0	0	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00
Signed Integer	s0	s0	s0	s0	s0	s0	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00
Fractional (1.15)	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00	0	0	0	0	0	0
Signed Fractional (1.15)	s0	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00	0	0	0	0	0
	L															LI

TABLE 19-3:NUMERICAL EQUIVALENTS OF VARIOUS RESULT CODES:
10-BIT INTEGER FORMATS

VIN/VREF	10-Bit Differential Output Code (11-bit result)	16-Bit Integer Format/ Equivalent Decimal Value	16-Bit Signed Integer Form Equivalent Decimal Valu	nat/ e						
+1023/1024	011 1111 1111	0000 0011 1111 1111	1023	0000 0001 1111 1111	1023					
+1022/1024	011 1111 1110	0000 0011 1111 1110	1022	0000 0001 1111 1110	1022					
•••										
+1/1024	000 0000 0001	0000 0000 0000 0001	1	0000 0000 0000 0001	1					
0/1024	000 0000 0000	0000 0000 0000 0000	0	0000 0000 0000 0000	0					
-1/1024	101 1111 1111	0000 0000 0000 0000	0	1111 1111 1111 1111	-1					
•••										
-1023/1024	100 0000 0001	0000 0000 0000 0000	0	1111 1110 0000 0001	-1023					
-1024/1024	100 0000 0000	0000 0000 0000 0000	0	1111 1110 0000 0000	-1024					

26.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- · Integrated Development Environment
- MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB X SIM Software Simulator
- · Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

26.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac $OS^{®}$ X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- Call graph window
- Project-Based Workspaces:
- · Multiple projects
- Multiple tools
- Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

- · Local file history feature
- Built-in support for Bugzilla issue tracker

26.11 Demonstration/Development Boards, Evaluation Kits and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

26.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

27.1 DC Characteristics

FIGURE 27-2: PIC24F16KM204 FAMILY VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)

DC CHARA	CTERISTICS	Standard C	Operating	Conditions	s: 1.8V to 3.6V (PIC24F16KM204) 2.0V to 5.5V (PIC24FV16KM204) -40°C ≤ TA ≤ +85°C for Industrial			
Deremeter					$-40^{\circ}C \le TA \le +125^{\circ}C \text{ for Extended}$			
No.	Device	Typical ⁽¹⁾	Max	Units		C	onditions	
Power-Dow	n Current (IPD)							
DC60	PIC24FV16KMXXX				-40°C			
			8.0		+25°C			
		6.0	8.5	μA	+60°C	2.0V		
			9.0		+85°C			
			15.0		+125°C			
			_		-40°C			
			8.0		+25°C			
		6.0	9.0	μA	+60°C	5.0V		
			10.0		+85°C			
			15.0		+125°C		Sleen Mode(2)	
	PIC24F16KMXXX				-40°C			
			0.80		+25°C			
		0.025	1.5	μA	+60°C	1.8V		
			2.0		+85°C			
			7.5		+125°C			
			_		-40°C			
			1.0		+25°C			
		0.040	2.0	μA	+60°C	3.3V		
			3.0		+85°C			
			7.5		+125°C			
DC61	PIC24FV16KMXXX	0.25	_	ıιΔ	+85°C	2 0\/		
		0.20	7.5	μΛ	+125°C	2.0 V	Low-Voltage	
		0.35	3.0	ıιΔ	+85°C	5.0\/	Sleep Mode ⁽²⁾	
		0.00	7.5	μΛ	+125°C	0.00		

TABLE 27-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Legend: Unshaded rows represent PIC24F16KMXXX devices and shaded rows represent PIC24FV16KMXXX devices.

Note 1: Data in the Typical column is at 3.3V, +25°C (PIC24F16KMXXX) or 5.0V, +25°C (PIC24FV16KMXXX) unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as outputs and set low. PMSLP is set to '0' and WDT, etc., are all switched off.

3: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

24FV16KM

204/MV® 1342M7W

XXXXXXXX

XXXXXXXX YYWWNNN

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimonsion Lim	vite	MIN				
Dimension Lin				IVIAA		
Number of Pins	N		20			
Pitch	е		1.27 BSC			
Overall Height	Α	-	-	2.65		
Molded Package Thickness	A2	2.05	-	-		
Standoff §	A1	0.10	-	0.30		
Overall Width		10.30 BSC				
Molded Package Width	E1	7.50 BSC				
Overall Length	D	12.80 BSC				
Chamfer (Optional)	h	0.25	-	0.75		
Foot Length	L	0.40	-	1.27		
Footprint	L1		1.40 REF	-		
Lead Angle	Θ	0°	-	-		
Foot Angle	φ	0°	-	8°		
Lead Thickness	С	0.20	-	0.33		
Lead Width	b	0.31	-	0.51		
Mold Draft Angle Top	α	5°	-	15°		
Mold Draft Angle Bottom	β	5°	-	15°		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-094C Sheet 2 of 2