

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

•XF

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 19x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f16km102-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2 CPU Control Registers

REGISTER 3-1: SR: ALU STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HSC			
	—	_			_	—	DC			
bit 15							bit 8			
							1			
R/W-0, HS0	C ⁽¹⁾ R/W-0, HSC ⁽¹⁾	R/W-0, HSC ⁽¹⁾	R-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC			
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	С			
bit 7							bit 0			
Legend:		HSC = Hardwa	re Settable/0	Clearable bit						
R = Readat	ole bit	W = Writable bi	t	U = Unimpler	mented bit, rea	id as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown			
bit 15-9	Unimplemente	d: Read as '0'								
bit 8	DC: ALU Half C	arry/Borrow bit								
	1 = A carry-out	from the 4 th low-	order bit (for	byte-sized dat	ta) or 8 th Iow-o	rder bit (for wo	rd-sized data)			
	of the resul	t occurred	oth low and	ar bit of the rea		ad				
hit 7 5		Interrupt Drigrit		bit of the res		eu				
DIL 7-5	111 - CPU Inte	IPL<2:0>: CPU Interrupt Priority Level Status bits ⁽¹⁾⁻⁷								
	110 = CPU Inte	rrupt Priority Lev	vel is 6 (13),	user menupis	s are disabled					
	101 = CPU Inte	rrupt Priority Lev	vel is 5 (13)							
	100 = CPU Inte	rrupt Priority Lev	/el is 4 (12)							
	011 = CPU Inte	rrupt Priority Lev	/el is 3 (11)							
	010 = CPU Inte	rrupt Priority Lev	$/eI IS \ge (10)$							
	000 = CPU Inte	rrupt Priority Lev	/el is 0 (8)							
bit 4	RA: REPEAT LO	op Active bit								
	1 = REPEAT loo	p in progress								
	0 = REPEAT loo	p not in progres	5							
bit 3	N: ALU Negativ	e bit								
	1 = Result was	negative								
	0 = Result was	non-negative (ze	ero or positiv	re)						
bit 2	OV: ALU Overflo	ow bit								
	1 = Overflow oc 0 = No overflow	curred for signe has occurred	d (2's comple	ement) arithme	etic in this arith	imetic operatio	n			
bit 1	Z: ALU Zero bit									
	1 = An operation, which effects the Z bit, has set it at some time in the past									
h:+ 0	0 = 1 ne most re	beent operation,	which effects	s uie ∠ dit, nas	cieared it (i.e.	, a non-zero re	esuit)			
U JIQ	U: ALU Carry/B $1 = \Delta carry-out f$	OFFOW DIT from the Most S	ionificant hit	(MSh) of the r	esult occurred					
	0 = No carry-ou	t from the Most	Significant b	it (MSb) of the	result occurre	d				
Note 1:	The IPLx Status bits a	are read-only wh	en NSTDIS	(INTCON1<15	5>) = 1.					
2: T	The IPL<2:0> Status Priority Level (IPL). T	bits are concate he value in pare	nated with th ntheses indi	ne IPL3 bit (CC cates the IPL v	DRCON<3>) to when IPL3 = 1	o form the CPL	J Interrupt			

4.2 **Data Address Space**

The PIC24F core has a separate, 16-bit-wide data memory space, addressable as a single linear range. The Data Space is accessed using two Address Generation Units (AGUs), one each for read and write operations. The Data Space memory map is displayed in Figure 4-3.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the Data Space. This gives a Data Space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility (PSV) area (see Section 4.3.3 "Reading Data From Program Memory Using Program Space Visibility").

Depending on the particular device, PIC24FV16KM family devices implement either 512 or 1024 words of data memory. Should an EA point to a location outside of this area, an all zero word or byte will be returned.

FIGURE 4-3:

4.2.1 DATA SPACE WIDTH

The data organized memory space is in byte-addressable, 16-bit-wide blocks. Data is aligned in data memory and registers as 16-bit words, but all the Data Space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

DATA SPACE MEMORY MAP FOR PIC24FXXXXX FAMILY DEVICES⁽³⁾

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC[®] devices and improve Data Space memory usage efficiency, the PIC24F instruction set supports both word and byte operations. As a consequence of byte accessibility, all EA calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] will result in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

Data byte reads will read the complete word, which contains the byte, using the LSB of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, the data memory and the registers are organized as two parallel, byte-wide entities with shared (word) address decode, but separate write lines. Data byte writes only write to the corresponding side of the array or register, which matches the byte address.

All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap will be generated. If the error occurred on a read, the instruction underway is completed; if it occurred on a write, the instruction will be executed, but the write will not occur. In either case, a trap is then executed, allowing the system and/or user to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the LSB; the MSB is not modified.

A Sign-Extend (SE) instruction is provided to allow the users to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, users can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

Although most instructions are capable of operating on word or byte data sizes, it should be noted that some instructions operate only on words.

4.2.3 NEAR DATA SPACE

The 8-Kbyte area between 0000h and 1FFFh is referred to as the Near Data Space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. The remainder of the Data Space is addressable indirectly. Additionally, the whole Data Space is addressable using MOV instructions, which support Memory Direct Addressing (MDA) with a 16-bit address field. For PIC24FV16KM204 family devices, the entire implemented data memory lies in Near Data Space (NDS).

4.2.4 SFR SPACE

The first 2 Kbytes of the Near Data Space, from 0000h to 07FFh, are primarily occupied with Special Function Registers (SFRs). These are used by the PIC24F core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by that module. Much of the SFR space contains unused addresses; these are read as '0'. The SFR space, where the SFRs are actually implemented, is provided in Table 4-2. Each implemented area indicates a 32-byte region where at least one address is implemented as an SFR. A complete listing of implemented SFRs, including their addresses, is provided in Table 4-3 through Table 4-26.

	SFR Space Address									
	xx00	xx20	xx40	xx60	xx80	xxA0	xxC0	xxE0		
000h		Core ICN				Interrupts				
100h	Timers	CLC		MCCP/SCCP						
200h	MSSP	UART	Op Amp DAC — — I/O					0		
300h		A/D/C	CMTU		—	—	—	—		
400h		—	_	—	—	—	—	ANSEL		
500h	—	—	—	—	—	—	—	—		
600h		RTCC/Comp	_	Band Gap		-	_			
700h	_	_	System/ HLVD	NVM/PMD	_	_	_	_		

TABLE 4-2: IMPLEMENTED REGIONS OF SFR DATA SPACE

Legend: — = No implemented SFRs in this block.

TABLE 4-25: A/D REGISTER MAP

					-					1		1	r	1	1	1		
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	300h		A/D Data Buffer 0/Threshold for Channel 0/Threshold for Channel 0 & 12 in Window Compare										xxxx					
ADC1BUF1	302h		A/D Data Buffer 1/Threshold for Channel 1/Threshold for Channel 1 & 13 in Window Compare															
ADC1BUF2	304h		A/D Data Buffer 2/Threshold for Channel 2/Threshold for Channel 2 & 14 in Window Compare															
ADC1BUF3	306h		A/D Data Buffer 3/Threshold for Channel 3/Threshold for Channel 3 & 15 in Window Compare															
ADC1BUF4	308h		A/D Data Buffer 4/Threshold for Channel 4/Threshold for Channel 4 & 16 in Window Compare															
ADC1BUF5	30Ah		A/D Data Buffer 5/Threshold for Channel 5/Threshold for Channel 5 & 17 in Window Compare															
ADC1BUF6	30Ch					A/D D	ata Buffer 6	/Threshold	for Channel 6	Threshold for	Channel 6 & 1	8 in Window	Compare					xxxx
ADC1BUF7	30Eh					A/D D	ata Buffer 7	/Threshold	for Channel 7	Threshold for	Channel 7 & 1	9 in Window	Compare					xxxx
ADC1BUF8	310h					A/D D	ata Buffer 8	/Threshold	for Channel 8	Threshold for	Channel 8 & 2	0 in Window	Compare					xxxx
ADC1BUF9	312h					A/D D	ata Buffer 9	/Threshold	for Channel 9	Threshold for	Channel 9 & 2	1 in Window	Compare					xxxx
ADC1BUF10	314h					A/D Dat	a Buffer 10/	Threshold	for Channel 10	/Threshold for	Channel 10 &	22 in Window	v Compare					xxxx
ADC1BUF11	316h					A/D Dat	ta Buffer 11/	Threshold	for Channel 11	/Threshold for	Channel 11 &	23 in Windov	v Compare					XXXX
ADC1BUF12	318h					A/D Da	ta Buffer 12	/Threshold	for Channel 1	2/Threshold fo	r Channel 0 &	12 in Window	/ Compare					xxxx
ADC1BUF13	31Ah					A/D Da	ta Buffer 13	/Threshold	for Channel 1	3/Threshold fo	r Channel 1 &	13 in Window	/ Compare					xxxx
ADC1BUF14	31Ch					A/D Da	ta Buffer 14	/Threshold	for Channel 1	4/Threshold fo	r Channel 2 &	14 in Window	/ Compare					XXXX
ADC1BUF15	31Eh		A/D Data Buffer 15/Threshold for Channel 15/Threshold for Channel 3 & 15 in Window Compare															
ADC1BUF16	320h		A/D Data Buffer 16/Threshold for Channel 16/Threshold for Channel 4 & 16 in Window Compare															
ADC1BUF17	322h					A/D Da	ta Buffer 17	/Threshold	for Channel 1	7/Threshold fo	r Channel 5 &	17 in Window	/ Compare					XXXX
ADC1BUF18	324h					A/D Da	ta Buffer 18	/Threshold	for Channel 1	8/Threshold fo	r Channel 6 &	18 in Window	/ Compare					xxxx
ADC1BUF19	326h					A/D Da	ta Buffer 19	/Threshold	for Channel 1	9/Threshold fo	r Channel 7 &	19 in Window	/ Compare					xxxx
ADC1BUF20	328h					A/D Da	ta Buffer 20	/Threshold	for Channel 2	0/Threshold fo	r Channel 8 &	20 in Window	/ Compare					xxxx
ADC1BUF21	32Ah					A/D Da	ta Buffer 21	/Threshold	for Channel 2	1/Threshold fo	r Channel 9 &	21 in Window	/ Compare					xxxx
ADC1BUF22	32Ch					A/D Dat	a Buffer 22/	Threshold	for Channel 22	2/Threshold for	Channel 10 &	22 in Window	v Compare					xxxx
ADC1BUF23	32Eh					A/D Dat	a Buffer 23/	Threshold	for Channel 23	3/Threshold for	Channel 11 &	23 in Window	v Compare					xxxx
AD1CON1	340h	ADON	-	ADSIDL	_	_	MODE12	FORM1	FORM0	SSRC3	SSRC2	SSRC1	SSRC0	_	ASAM	SAMP	DONE	0000
AD1CON2	342h	PVCFG1	PVCFG0	NVCFG0	_	BUFREGEN	CSCNA	_	_	BUFS	SMPI4	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS	0000
AD1CON3	344h	ADRC	EXTSAM	_	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0	ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
AD1CHS	348h	CH0NB2	CH0NB1	CH0NB0	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0	CH0NA2	CH0NA1	CH0NA0	CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0	0000
AD1CSSH	34Eh	_	CSS30	CSS29	CSS28	CSS27	CSS26	_	_	CSS23	CSS22	CSS21	CSS20 ⁽¹⁾	CSS19 ⁽¹⁾	CSS18	CSS17	CSS16	0000
AD1CSSL	350h	CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8 ^(1,2)	CSS7 ^(1,2)	CSS6 ^(1,2)	CSS5 ⁽¹⁾	CSS4	CSS3	CSS2	CSS1	CSS0	0000
AD1CON5	354h	ASEN	LPEN	CTMREQ	BGREQ	r	_	ASINT1	ASINT0	_	_	_	_	WM1	WM0	CM1	CM0	0000
AD1CHITH	356h	_	_	_	_	_	_	_	_	CHH23	CHH22	CHH21	CHH20 ⁽¹⁾	CHH19 ⁽¹⁾	CHH18	CHH17	CHH16	0000
AD1CHITL	358h	CHH15	CHH14	CHH13	CHH12	CHH11	CHH10	CHH9	CHH8 ^(1,2)	CHH7 ^(1,2)	CHH6 ^(1,2)	CHH5 ⁽¹⁾	CHH4	CHH3	CHH2	CHH1	CHH0	0000
AD1CTMENH	360h	—	—	—	—	—	_	_	_	CTMEN23	CTMEN22	CTMEN21	CTMEN20 ⁽¹⁾	CTMEN19 ⁽¹⁾	CTMEN18	CTMEN17	CTMEN16	0000
AD1CTMENL	362h	CTMEN15	CTMEN14	CTMEN13	CTMEN12	CTMEN11	CTMEN10	CTMEN9	CTMEN8((1,2)	CTMEN7 ^(1,2)	CTMEN6(1,2)	CTMEN5 ⁽¹⁾	CTMEN4	CTMEN3	CTMEN2	CTMEN1	CTMEN0	0000

 $\label{eq:Legend: Legend: x = unknown, u = unchanged, --- = unimplemented, q = value depends on condition, r = reserved.$

Note 1: These bits are not implemented in 20-pin devices.

2: These bits are not implemented in 28-pin devices.

4.2.5 SOFTWARE STACK

In addition to its use as a working register, the W15 register in PIC24F devices is also used as a Software Stack Pointer. The pointer always points to the first available free word and grows from lower to higher addresses. It pre-decrements for stack pops and post-increments for stack pushes, as depicted in Figure 4-4.

For a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, ensuring that the MSB is always clear.

Note:	A PC push during exception processing
	will concatenate the SRL register to the
	MSB of the PC prior to the push.

The Stack Pointer Limit Value (SPLIM) register, associated with the Stack Pointer, sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' as all stack operations must be word-aligned. Whenever an EA is generated using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal, and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation.

Thus, for example, if it is desirable to cause a stack error trap when the stack grows beyond address, 0DF6 in RAM, initialize the SPLIM with the value, 0DF4.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0800h. This prevents the stack from interfering with the Special Function Register (SFR) space.

Note: A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

4.3 Interfacing Program and Data Memory Spaces

The PIC24F architecture uses a 24-bit-wide program space and 16-bit-wide Data Space (DS). The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Apart from the normal execution, the PIC24F architecture provides two methods by which the program space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the Data Space, PSV

Table instructions allow an application to read or write small areas of the program memory. This makes the method ideal for accessing data tables that need to be updated from time to time. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look ups from a large table of static data. It can only access the least significant word (lsw) of the program word.

4.3.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Memory Page Address register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the Most Significant bit (MSb) of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

For remapping operations, the 8-bit Program Space Visibility Page Address register (PSVPAG) is used to define a 16K word page in the program space. When the MSb of the EA is '1', PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space address. Unlike the table operations, this limits remapping operations strictly to the user memory area.

See Table 4-35 and Figure 4-5 to know how the program EA is created for table operations and remapping accesses from the data EA. Here, P<23:0> refers to a program space word, whereas D<15:0> refers to a Data Space word.

6.3 NVM Address Register

As with Flash program memory, the NVM Address registers, NVMADRU and NVMADR, form the 24-bit Effective Address (EA) of the selected row or word for data EEPROM operations. The NVMADRU register is used to hold the upper 8 bits of the EA, while the NVMADR register is used to hold the lower 16 bits of the EA. These registers are not mapped into the Special Function Register (SFR) space; instead, they directly capture the EA<23:0> of the last Table Write instruction that has been executed and select the data EEPROM row to erase. Figure 6-1 depicts the program memory EA that is formed for programming and erase operations.

Like program memory operations, the Least Significant bit (LSb) of NVMADR is restricted to even addresses. This is because any given address in the data EEPROM space consists of only the lower word of the program memory width; the upper word, including the uppermost "phantom byte", are unavailable. This means that the LSb of a data EEPROM address will always be '0'.

Similarly, the Most Significant bit (MSb) of NVMADRU is always '0', since all addresses lie in the user program space.

FIGURE 6-1: DATA EEPROM ADDRESSING WITH TBLPAG AND NVM ADDRESS REGISTERS

6.4 Data EEPROM Operations

The EEPROM block is accessed using Table Read and Write operations, similar to those used for program memory. The TBLWTH and TBLRDH instructions are not required for data EEPROM operations since the memory is only 16 bits wide (data on the lower address is valid only). The following programming operations can be performed on the data EEPROM:

- · Erase one, four or eight words
- Bulk erase the entire data EEPROM
- Write one word
- Read one word

Note 1: Unexpected results will be obtained if the user attempts to read the EEPROM while a programming or erase operation is underway.

2: The XC16 C compiler includes library procedures to automatically perform the Table Read and Table Write operations, manage the Table Pointer and write buffers, and unlock and initiate memory write sequences. This eliminates the need to create assembler macros or time critical routines in C for each application.

The library procedures are used in the code examples detailed in the following sections. General descriptions of each process are provided for users who are not using the XC16 compiler libraries.

R/W-0	R-0, HSC	U-0	U-0	U-0	U-0	U-0	U-0		
ALTIVT	DISI		—	—	—	—	—		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
	—	<u> </u>			INT2EP	INT1EP	INT0EP		
bit 7							bit 0		
Legend:		HSC = Hardw	are Settable/C	learable bit					
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	Bit is unknown		
bit 15	ALTIVT: Enat	ole Alternate Int	errupt Vector 7	able bit					
	1 = Uses Alte 0 = Uses stan	rnate Interrupt	Vector Table (Annuel Annuel Vector Netronal Ne	AIVT) r Table (IVT)					
bit 14	DISI: DISI In	struction Status	s bit	()					
	1 = DISI inst 0 = DISI inst	ruction is active	e ctive						
bit 13-3	Unimplemen	ted: Read as 'o)'						
bit 2	INT2EP: Exte	ernal Interrupt 2	Edge Detect F	Polarity Select b	oit				
	1 = Interrupt i 0 = Interrupt i	s on the negati s on the positiv	ve edge e edge						
bit 1	INT1EP: Exte	INT1EP: External Interrupt 1 Edge Detect Polarity Select bit							
	1 = Interrupt i 0 = Interrupt i	 1 = Interrupt is on the negative edge 0 = Interrupt is on the positive edge 							
bit 0	INTOEP: Exte	ernal Interrupt 0	Edge Detect F	Polarity Select b	oit				
	1 = Interrupt i 0 = Interrupt i	s on the negati s on the positiv	ve edge e edge						

REGISTER 8-4: INTCON2: INTERRUPT CONTROL REGISTER 2

REGISTER 8-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HS	U-0
_	_	—	—	—	—	CCT5IF	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_		_
bit 7							bit 0

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10	Unimplemented: Read as '0'
bit 9	CCT5IF: Capture/Compare 5 Timer Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred

bit 8-0 Unimplemented: Read as '0'

REGISTER 8-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

U-0	R/W-0, HS	U-0	U-0	U-0	U-0	U-0	U-0
—	RTCIF	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	U-0
—	—	—	—	—	BCL2IF	SSP2IF	—
bit 7							bit 0

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14	RTCIF: Real-Time Clock and Calendar Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 13-3	Unimplemented: Read as '0'
bit 2	BCL2IF: MSSP2 I ² C [™] Bus Collision Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 1	SSP2IF: MSSP2 SPI/I ² C Event Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	Unimplemented: Read as '0'

REGISTER 8-17: IEC5: INTERRUPT ENABLE CONTROL REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	_	—	—	—			_	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
_	_	—	—	—	—	—	ULPWUIE	
bit 7							bit 0	
Legend:								

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-1 Unimplemented: Read as '0'

bit 0 ULPWUIE: Ultra Low-Power Wake-up Interrupt Enable bit

1 = Interrupt request is enabled

0 = Interrupt request is not enabled

REGISTER 8-18: IEC6: INTERRUPT ENABLE CONTROL REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	CLC2IE	CLC1IE
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-2 Unimplemented: Read as '0'

bit 1 CLC2IE: Configurable Logic Cell 2 Interrupt Enable bit

1 = Interrupt request is enabled

0 = Interrupt request is not enabled

bit 0 CLC1IE: Configurable Logic Cell 1 Interrupt Enable bit

1 = Interrupt request is enabled

0 = Interrupt request is not enabled

REGISTER 8-19: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	T1IP2	T1IP1	T1IP0	_	CCP2IP2	CCP2IP1	CCP2IP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	CCP1IP2	CCP1IP1	CCP1IP0	—	INT0IP2	INT0IP1	INT0IP0
bit 7							bit 0
Legend:	1.11						
R = Readable		vv = vvritable i	זונ		hented bit, read		
-n = Value at	POR	'1' = Bit is set		0° = Bit is clea	ared	x = Bit is unkr	iown
bit 15	Unimplemen	ted: Read as '() ²				
bit 14-12		imer1 Interrunt	, Priority hits				
511 14 12	111 = Interrup	it is Priority 7 (h	iahest priority	interrupt)			
	•	(.g. loot p. lonty				
	•						
	•						
	001 = Interrup 000 = Interrup	ot is Priority 1 of source is disa	abled				
bit 11	Unimplemen	ted: Read as '0)'				
bit 10-8	CCP2IP<2:0>	: Capture/Com	pare 2 Event I	nterrupt Priority	/ bits		
	111 = Interrup	t is Priority 7 (h	ighest priority	interrupt)			
	•		5				
	•						
	• 001 - Interrur	t io Driarity 1					
	001 = Interrup 000 = Interrup	ot is Priority 1	abled				
bit 7	Unimplement	ted: Read as '()'				
bit 6-4	CCP1IP-2:05	· Canture/Com	, nare 1 Event I	nterrunt Priority	/ hits		
	111 = Interrup	t is Priority 7 (h	ighest priority	interrupt)			
	•		.g				
	•						
	•	tio Drievity 1					
	001 = Interrup 000 = Interrup	ot is Priority 1	abled				
hit 3	Unimplemen	ted: Read as '()'				
bit 2-0		External Intern	unt 0 Interrunt	Priority bits			
Sit 2 0	111 = Interrur	ot is Priority 7 (I	nighest priority	interrunt)			
	•		igneet prienty	interrupt)			
	•						
	•	at in Deiceite d					
	001 = Interrup	ot is Priority 1	abled				

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	U2TXIP2	U2TXIP1	U2TXIP0	_	U2RXIP2	U2RXIP1	U2RXIP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	INT2IP2	INT2IP1	INT2IP0	—	CCT4IP2	CCT4IP1	CCT4IP0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15	Unimplemen	ted: Read as '	D'				
bit 14-12	U2TXIP<2:0>	: UART2 Trans	smitter Interrup	ot Priority bits			
	111 = Interrup	ot is Priority 7(highest priority	interrupt)			
	•						
	•						
	001 = Interrup	ot is Priority 1	abled				
bit 11	Unimplemen	ted: Read as '	ab.ou n'				
bit 10-8	U2RXIP<2:0>	: UART2 Rece	eiver Interrupt F	Priority bits			
	111 = Interrup	ot is Priority 7 (highest priority	(interrupt)			
	•	, , , , , , , , , , , , , , , , , , ,	0 1 3	.,			
	•						
	• 001 = Interrur	ot is Priority 1					
	000 = Interrup	ot source is dis	abled				
bit 7	Unimplemen	ted: Read as '	D'				
bit 6-4	INT2IP<2:0>:	External Interr	upt 2 Priority b	oits			
	111 = Interrup	ot is Priority 7(highest priority	interrupt)			
	•						
	•						
	001 = Interru	ot is Priority 1					
	000 = Interrup	ot source is dis	abled				
bit 3	Unimplemen	ted: Read as '	o'				
bit 2-0	CCT4IP<2:0>	: Capture/Com	pare 4 Timer I	nterrupt Priorit	y bits		
	111 = Interrup	ot is Priority 7 (highest priority	interrupt)			
	•						
	•						
	001 = Interru	ot is Priority 1					
	000 = Interrup	ot source is dis	abled				

REGISTER 8-26: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7

REGISTER 8-27: IPC10: INTERRUPT PRIORITY CONTROL REGISTER 10

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	CCT5IP2	CCT5IP1	CCT5IP0	—	—	—	—
bit 7							bit 0

Legend:	Legend:									
R = Readable bit		W = Writable bit	U = Unimplemented bit	, read as '0'						
-n = Value at POR		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						
bit 15-7	Unimple	mented: Read as '0'								
bit 6-4	CCT5IP<	2:0>: Capture/Compare 5 T	imer Interrupt Priority bits							
	111 = Int	errupt is Priority 7 (highest p	riority interrupt)							
	•									
	•									
	•									
	0.01 = Int	errupt is Priority 1								

- 000 = Interrupt source is disabled
- bit 3-0 Unimplemented: Read as '0'

FIGURE 14-4: MSSPx BLOCK DIAGRAM (I²C[™] MASTER MODE)

NOTES:

NOTES:

FIGURE 27-6: EXTERNAL CLOCK TIMING

Standard Operating Conditions: 1.8V to 3.6V (PIC24F16KM204)								
AC CH	ARACT	ERISTICS	Operating temperature				2.0V to 5.5V (PIC24FV16KM204) -40°C \leq TA \leq +85°C for Industrial -40°C \leq TA \leq +125°C for Extended	
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions	
OS10	Fosc	External CLKI Frequency (External Clocks allowed only in EC mode)	DC 4 DC 4	 	32 8 24 6	MHz MHz MHz MHz	EC, -40°C < TA < +85°C ECPLL, -40°C < TA < +85°C EC, -40°C < TA < +125°C ECPLL, -40°C < TA < +125°C	
		Oscillator Frequency	0.2 4 4 4 31		4 25 8 6 33	MHz MHz MHz MHz kHz	XT HS XTPLL, -40°C < TA < +85°C XTPLL, -40°C < TA < +125°C SOSC	
OS20	Tosc	Tosc = 1/Fosc	—	—		—	See Parameter OS10 for Fosc value	
OS25	Тсү	Instruction Cycle Time ⁽²⁾	62.5	—	DC	ns		
OS30	TosL, TosH	External Clock in (OSCI) High or Low Time	0.45 x Tosc	—		ns	EC	
OS31	TosR, TosF	External Clock in (OSCI) Rise or Fall Time			20	ns	EC	
OS40	TckR	CLKO Rise Time ⁽³⁾	—	6	10	ns		
OS41	TckF	CLKO Fall Time ⁽³⁾	—	6	10	ns		

TABLE 27-20: EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Instruction cycle period (Tcr) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type, under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an External Clock applied to the OSCI/CLKI pin. When an External Clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

3: Measurements are taken in EC mode. The CLKO signal is measured on the OSCO pin. CLKO is low for the Q1-Q2 period (1/2 TcY) and high for the Q3-Q4 period (1/2 TcY).

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins	N	28		
Pitch	е	0.65 BSC		
Overall Height	А	-	-	2.00
Molded Package Thickness	A2	1.65	1.75	1.85
Standoff	A1	0.05	-	-
Overall Width	E	7.40	7.80	8.20
Molded Package Width	E1	5.00	5.30	5.60
Overall Length	D	9.90	10.20	10.50
Foot Length	L	0.55	0.75	0.95
Footprint	L1	1.25 REF		
Lead Thickness	С	0.09	-	0.25
Foot Angle	¢	0°	4°	8°
Lead Width	b	0.22	-	0.38

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E		0.65 BSC		
Contact Pad Spacing	С		7.20		
Contact Pad Width (X28)	X1			0.45	
Contact Pad Length (X28)	Y1			1.75	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-052C Sheet 1 of 2