
E·XFL

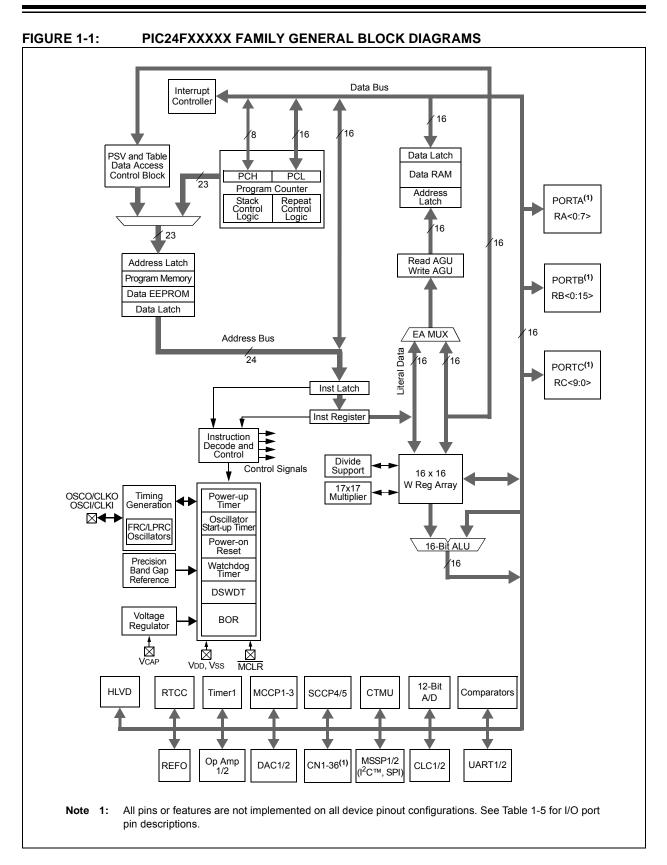
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 19x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f16km102-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1:	DEVICE FEATURES FOR THE PIC24F16KM204 FAMILY
------------	--

TABLE 1-1: DEVICE FEATURES FO	R THE PIC24F16		•	
Features	PIC24F16KM204	PIC24F08KM204	PIC24F16KM202	PIC24F08KM202
Operating Frequency		DC-3	2 MHz	
Program Memory (bytes)	16K	8K	16K	8K
Program Memory (instructions)	5632	2816	5632	2816
Data Memory (bytes)		20)48	
Data EEPROM Memory (bytes)		5	12	
Interrupt Sources (soft vectors/NMI traps)		40 (36/4)	
Voltage Range		1.8-	3.6V	
I/O Ports	PORTA< PORTB< PORTC	:15:0>	-	RTA<7:0> RTB<15:0>
Total I/O Pins	38			24
Timers	(One 16-bit timer, f		l1 Ps with up to tv	vo 16/32 timers each)
Capture/Compare/PWM modules MCCP SCCP			3 2	
Serial Communications MSSP UART			2 2	
Input Change Notification Interrupt	37		23	
12-Bit Analog-to-Digital Module (input channels)	22	22	19	19
Analog Comparators		:	3	
8-Bit Digital-to-Analog Converters			2	
Operational Amplifiers			2	
Charge Time Measurement Unit (CTMU)		Y	es	
Real-Time Clock and Calendar (RTCC)		Y	es	
Configurable Logic Cell (CLC)			2	
Resets (and delays)	POR, BOR, RESET Instruction, MCLR, WDT, Illegal Opcode, REPEAT Instruction, Hardware Traps, Configuration Word Mismatch (PWRT, OST, PLL Lock)			
Instruction Set	76 Base Inst	ructions, Multiple	e Addressing N	lode Variations
Packages	44-Pin QFI 48-Pin L			28-Pin SOP/SOIC/QFN

2.4.1 CONSIDERATIONS FOR CERAMIC CAPACITORS

In recent years, large value, low-voltage, surface-mount ceramic capacitors have become very cost effective in sizes up to a few tens of microfarad. The low-ESR, small physical size and other properties make ceramic capacitors very attractive in many types of applications.

Ceramic capacitors are suitable for use with the internal voltage regulator of this microcontroller. However, some care is needed in selecting the capacitor to ensure that it maintains sufficient capacitance over the intended operating range of the application.

Typical low-cost, 10 μ F ceramic capacitors are available in X5R, X7R and Y5V dielectric ratings (other types are also available, but are less common). The initial tolerance specifications for these types of capacitors are often specified as ±10% to ±20% (X5R and X7R), or -20%/+80% (Y5V). However, the effective capacitance that these capacitors provide in an application circuit will also vary based on additional factors, such as the applied DC bias voltage and the temperature. The total in-circuit tolerance is, therefore, much wider than the initial tolerance specification.

The X5R and X7R capacitors typically exhibit satisfactory temperature stability (ex: $\pm 15\%$ over a wide temperature range, but consult the manufacturer's data sheets for exact specifications). However, Y5V capacitors typically have extreme temperature tolerance specifications of $\pm 22\%/-82\%$. Due to the extreme temperature tolerance, a 10 µF nominal rated Y5V type capacitor may not deliver enough total capacitance to meet minimum internal voltage regulator stability and transient response requirements. Therefore, Y5V capacitors are not recommended for use with the internal regulator if the application must operate over a wide temperature range.

In addition to temperature tolerance, the effective capacitance of large value ceramic capacitors can vary substantially, based on the amount of DC voltage applied to the capacitor. This effect can be very significant, but is often overlooked or is not always documented.

A typical DC bias voltage vs. capacitance graph for X7R type capacitors is shown in Figure 2-4.

DC BIAS VOLTAGE vs. FIGURE 2-4: CAPACITANCE **CHARACTERISTICS** Capacitance Change (%) 0 -10 16V Capacitor -20 -30 -40 10V Capacitor -50 -60 -70 6.3V Capacitor -80 -9 10 11 12 13 2 8 15 16 DC Bias Voltage (VDC)

When selecting a ceramic capacitor to be used with the internal voltage regulator, it is suggested to select a high-voltage rating, so that the operating voltage is a small percentage of the maximum rated capacitor voltage. For example, choose a ceramic capacitor rated at 16V for the 3.3V or 2.5V core voltage. Suggested capacitors are shown in Table 2-1.

2.5 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100Ω.

Pull-up resistors, series diodes, and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits, and pins, Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

For device emulation, ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins), programmed into the device, matches the physical connections for the ICSP to the Microchip debugger/emulator tool.

For more information on available Microchip development tools connection requirements, refer to **Section 26.0 "Development Support"**.

4.3.2 DATA ACCESS FROM PROGRAM MEMORY AND DATA EEPROM MEMORY USING TABLE INSTRUCTIONS

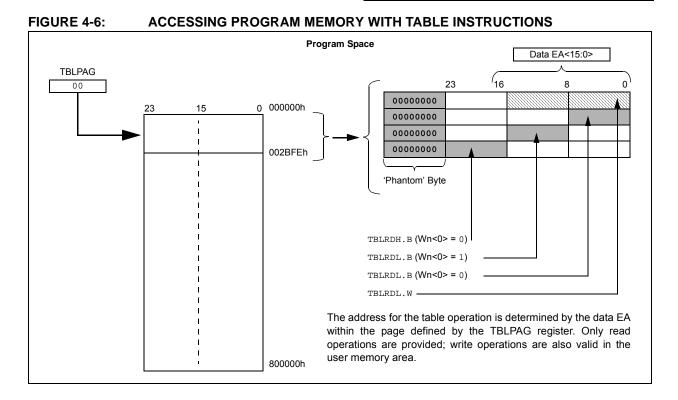
The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program memory without going through Data Space. It also offers a direct method of reading or writing a word of any address within data EEPROM memory. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

Note: The TBLRDH and TBLWTH instructions are not used while accessing data EEPROM memory.

The PC is incremented by 2 for each successive 24-bit program word. This allows program memory addresses to directly map to Data Space addresses. Program memory can thus be regarded as two 16-bit, word-wide address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word, and TBLRDH and TBLWTH access the space which contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

 TBLRDL (Table Read Low): In Word mode, it maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>). In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when byte select is '1'; the lower byte is selected when it is '0'.


 TBLRDH (Table Read High): In Word mode, it maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom' byte, will always be '0'.

In Byte mode, it maps the upper or lower byte of the program word to D<7:0> of the data address, as above. Note that the data will always be '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in **Section 5.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Memory Page Address register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

Note: Only Table Read operations will execute in the configuration memory space, and only then, in implemented areas, such as the Device ID. Table Write operations are not allowed.

© 2013 Microchip Technology Inc.

4.3.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

The upper 32 Kbytes of Data Space may optionally be mapped into a 16K word page of the program space. This provides transparent access of stored constant data from the Data Space without the need to use special instructions (i.e., TBLRDL/H).

Program space access through the Data Space occurs if the MSb of the Data Space, EA, is '1' and PSV is enabled by setting the PSV bit in the CPU Control (CORCON<2>) register. The location of the program memory space to be mapped into the Data Space is determined by the Program Space Visibility Page Address register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits.

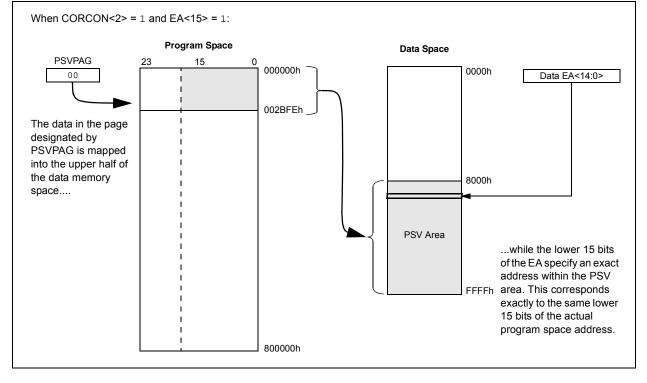
By incrementing the PC by 2 for each program memory word, the lower 15 bits of Data Space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads from this area add an additional cycle to the instruction being executed, since two program memory fetches are required.

Although each Data Space address, 8000h and higher, maps directly into a corresponding program memory address (see Figure 4-7), only the lower 16 bits of the

24-bit program word are used to contain the data. The upper 8 bits of any program space locations used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.

Note:	PSV access is temporarily disabled during
	Table Reads/Writes.


For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV.D instructions will require one instruction cycle in addition to the specified execution time. All other instructions will require two instruction cycles in addition to the specified execution time.

For operations that use PSV, which are executed inside a REPEAT loop, there will be some instances that require two instruction cycles in addition to the specified execution time of the instruction:

- · Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction accessing data, using PSV, to execute in a single cycle.

FIGURE 4-7: PROGRAM SPACE VISIBILITY OPERATION

Vector Number	IVT Address	AIVT Address	Trap Source
0	000004h	000104h	Reserved
1	000006h	000106h	Oscillator Failure
2	000008h	000108h	Address Error
3	00000Ah	00010Ah	Stack Error
4	00000Ch	00010Ch	Math Error
5	00000Eh	00010Eh	Reserved
6	000010h	000110h	Reserved
7	000012h	000112h	Reserved

TABLE 8-1:TRAP VECTOR DETAILS

TABLE 8-2: IMPLEMENTED INTERRUPT VECTORS

			ΑΙντ	Interrupt Bit Locations			
Interrupt Source	Vector Number	IVI Address	Address	Flag	Enable	Priority	
ADC1 – ADC1 Convert Done	13	00002Eh	00012Eh	IFS0<13>	IEC0<13>	IPC3<6:4>	
CLC1	96	0000D4h	0001D4h	IFS6<0>	IEC6<0>	IPC24<2:0>	
CLC2	97	0000D6h	0001D6h	IFS6<1>	IEC6<1>	IPC24<6:4>	
Comparator Interrupt	18	000038h	000138h	IFS1<2>	IEC1<2>	IPC4<10:8>	
СТМИ	77	0000AEh	0001AEh	IFS4<13>	IEC4<13>	IPC19<6:4>	
DAC1 – Buffer Update	78	0000B0h	0001B0h	IFS4<14>	IEC4<14>	IPC19<10:8>	
DAC2 – Buffer Update	79	0000B2h	0001B2h	IFS4<15>	IEC4<15>	IPC19<14:12>	
HLVD – High/Low-Voltage Detect	72	0000A4h	0001A4h	IFS4<8>	IEC4<8>	IPC18<2:0>	
ICN – Input Change Notification	19	00003Ah	00013Ah	IFS1<3>	IEC1<3>	IPC4<14:12>	
INT0 – External Interrupt 0	0	000014h	000114h	IFS0<0>	IEC0<0>	IPC0<2:0>	
INT1 – External Interrupt 1	20	00003Ch	00013Ch	IFS1<4>	IEC1<4>	IPC5<2:0>	
INT2 – External Interrupt 2	29	00004Eh	00014Eh	IFS1<13>	IEC1<13>	IPC7<6:4>	
MCCP1 – Capture/Compare	1	000016h	000116h	IFS0<1>	IEC0<1>	IPC0<6:4>	
MCCP1 – Time Base	7	000022h	000122h	IFS0<7>	IEC0<7>	IPC1<14:12>	
MCCP2 – Capture/Compare	2	000018h	000118h	IFS0<2>	IEC0<2>	IPC0<10:8>	
MCCP2 – Time Base	8	000024h	000124h	IFS0<8>	IEC0<8>	IPC2<2:0>	
MCCP3 – Capture/Compare	5	00001Eh	00011Eh	IFS0<5>	IEC0<5>	IPC1<6:4>	
MCCP3 – Time Base	27	00004Ah	00014Ah	IFS1<11>	IEC1<11>	IPC6<14:12>	
MSSP1 – Bus Collision Interrupt	17	000036h	000136h	IFS1<1>	IEC1<1>	IPC4<6:4>	
MSSP1 – I ² C™/SPI Interrupt	16	000034h	000134h	IFS1<0>	IEC1<0>	IPC4<2:0>	
MSSP2 – Bus Collision Interrupt	50	000078h	000178h	IFS3<2>	IEC3<2>	IPC12<10:8>	
MSSP2 – I ² C/SPI Interrupt	49	000076h	000176h	IFS3<1>	IEC3<1>	IPC12<6:4>	
NVM – NVM Write Complete	15	000032h	000132h	IFS0<15>	IEC0<15>	IPC3<14:12>	
RTCC – Real-Time Clock/Calendar	62	000090h	000190h	IFS3<14>	IEC3<14>	IPC15<10:8>	
SCCP4 – Capture/Compare	6	000020h	000120h	IFS0<6>	IEC0<6>	IPC1<10:8>	
SCCP4 – Time Base	28	00004Ch	00014Ch	IFS1<12>	IEC1<12>	IPC7<2:0>	
SCCP5 – Capture/Compare	22	000040h	000140h	IFS1<6>	IEC1<6>	IPC5<10:8>	
SCCP5 – Time Base	41	000066h	000166h	IFS2<9>	IEC2<9>	IPC10<6:4>	
TMR1 – Timer1	3	00001Ah	00011Ah	IFS0<3>	IEC0<3>	IPC0<14:12>	
UART1 Error	65	000096h	000196h	IFS4<1>	IEC4<1>	IPC16<6:4>	
UART2 Error	66	000098h	000198h	IFS4<2>	IEC4<2>	IPC16<10:8>	
UART1RX – UART1 Receiver	11	00002Ah	00012Ah	IFS0<11>	IEC0<11>	IPC2<14:12>	
UART1TX – UART1 Transmitter	12	00002Ch	00012Ch	IFS0<12>	IEC0<12>	IPC3<2:0>	
UART2RX – UART2 Receiver	30	000050h	000150h	IFS1<14>	IEC1<14>	IPC7<10:8>	
UART2TX – UART2 Transmitter	31	000052h	000152h	IFS1<15>	IEC1<15>	IPC7<14:12>	
ULPWU – Ultra Low-Power Wake-up	80	0000B4h	0001B4h	IFS5<0>	IEC5<0>	IPC20<2:0>	

R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0	U-0	U-0	U-0	R/W-0, HS
DAC2IF	DAC1IF	CTMUIF	—		_		HLVDIF
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	U-0
—	—	—	_	—	U2ERIF	U1ERIF	—
bit 7							bit 0
Legend:		HS = Hardwar	re Settable bit				
R = Readable	e bit	W = Writable I	oit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15	•	tal-to-Analog C		rrupt Flag Stat	us bit		
		request has occ request has not					
bit 14		•		reunt Flog Stat	ua hit		
DIL 14	•	tal-to-Analog Co request has occ		mupt Flag Stat			
		request has not					
bit 13		MU Interrupt Fla					
		request has occ	•				
	0 = Interrupt r	request has not	occurred				
bit 12-9	Unimplemen	ted: Read as 'o)'				
bit 8	HLVDIF: High	n/Low-Voltage D	Detect Interrupt	t Flag Status bi	t		
		request has occ					
		request has not					
bit 7-3	Unimplemented: Read as '0'						
bit 2	U2ERIF: UART2 Error Interrupt Flag Status bit 1 = Interrupt request has occurred						
		request has occ request has not					
bit 1	U1ERIF: UART1 Error Interrupt Flag Status bit						
		request has occ					
		request has not					
bit 0	Unimplemen	ted: Read as 'o)'				

REGISTER 8-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_					U2ERIP2	U2ERIP1	U2ERIP0
oit 15			•			•	bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	U1ERIP2	U1ERIP1	U1ERIP0	—	—	—	—
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 10-8 bit 7 bit 6-4	<pre>111 = Interru </pre>	>: UART2 Error pt is Priority 7 (pt is Priority 1 pt source is dis nted: Read as ' >: UART1 Error pt is Priority 7 (highest priority abled o'	interrupt)			
bit 3-0	• • 001 = Interru 000 = Interru	pt is Priority 1 pt is Priority 1 pt source is dis nted: Read as '	abled	interrupt)			

REGISTER 8-30: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16

9.3 Control Registers

The operation of the oscillator is controlled by three Special Function Registers (SFRs):

- OSCCON
- CLKDIV
- OSCTUN

The OSCCON register (Register 9-1) is the main control register for the oscillator. It controls clock source switching and allows the monitoring of clock sources.

The Clock Divider register (Register 9-2) controls the features associated with Doze mode, as well as the postscaler for the FRC Oscillator.

The FRC Oscillator Tune register (Register 9-3) allows the user to fine-tune the FRC Oscillator over a range of approximately $\pm 5.25\%$. Each bit increment or decrement changes the factory calibrated frequency of the FRC Oscillator by a fixed amount.

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER

U-0	R-0, HSC	R-0, HSC	R-0, HSC	U-0	R/W-x ⁽¹⁾	R/W-x ⁽¹⁾	R/W-x ⁽¹⁾
—	COSC2	COSC1	COSC0	—	NOSC2	NOSC1	NOSC0
bit 15							bit 8

R/SO-0, HSC	U-0	R-0, HSC ⁽²⁾	U-0	R/CO-0, HS	R/W-0 ⁽³⁾	R/W-0	R/W-0
CLKLOCK	—	LOCK	—	CF	SOSCDRV	SOSCEN	OSWEN
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit		
HS = Hardware Settable bit	CO = Clearable Only bit	SO = Settable Only bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14-12	COSC<2:0>: Current Oscillator Selection bits
	 111 = 8 MHz Fast RC Oscillator with Postscaler (FRCDIV) 110 = 500 kHz Low-Power Fast RC Oscillator (FRC) with Postscaler (LPFRCDIV) 101 = Low-Power RC Oscillator (LPRC) 100 = Secondary Oscillator (SOSC) 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL) 010 = Primary Oscillator (XT, HS, EC) 001 = 8 MHz FRC Oscillator with Postscaler and PLL module (FRCPLL) 000 = 8 MHz FRC Oscillator (FRC)
bit 11	Unimplemented: Read as '0'
bit 10-8	NOSC<2:0>: New Oscillator Selection bits ⁽¹⁾
	 111 = 8 MHz Fast RC Oscillator with Postscaler (FRCDIV) 110 = 500 kHz Low-Power Fast RC Oscillator (FRC) with Postscaler (LPFRCDIV) 101 = Low-Power RC Oscillator (LPRC) 100 = Secondary Oscillator (SOSC) 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL) 010 = Primary Oscillator (XT, HS, EC) 001 = 8 MHz FRC Oscillator with Postscaler and PLL module (FRCPLL) 000 = 8 MHz FRC Oscillator (FRC)
Note 1:	Reset values for these bits are determined by the FNOSCx Configuration bits.
2:	This bit also resets to '0' during any valid clock switch or whenever a non-PLL Clock mode is selected.

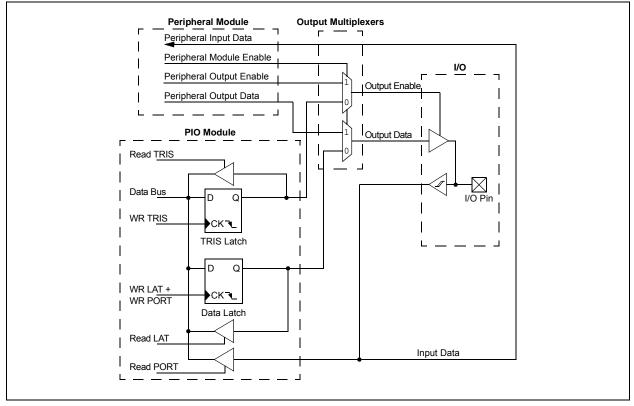
3: When SOSC is selected to run from a digital clock input, rather than an external crystal (SOSCSRC = 0), this bit has no effect.

11.0 I/O PORTS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the I/O ports, refer to the *"PIC24F Family Reference Manual"*, *"I/O Ports with Peripheral Pin Select (PPS)"* (DS39711). Note that the PIC24FV16KM204 family devices do not support Peripheral Pin Select features.

All of the device pins (except VDD and VSS) are shared between the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports


A Parallel I/O port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 illustrates how ports are shared with other peripherals and the associated I/O pin to which they are connected. When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read, but the output driver for the parallel port bit will be disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin may be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the Data Direction register bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the Data Latch register (LATx), read the latch. Writes to the latch, write the latch. Reads from the port pins; writes to the port pins, write the latch.

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers, and the port pin will read as zeros.

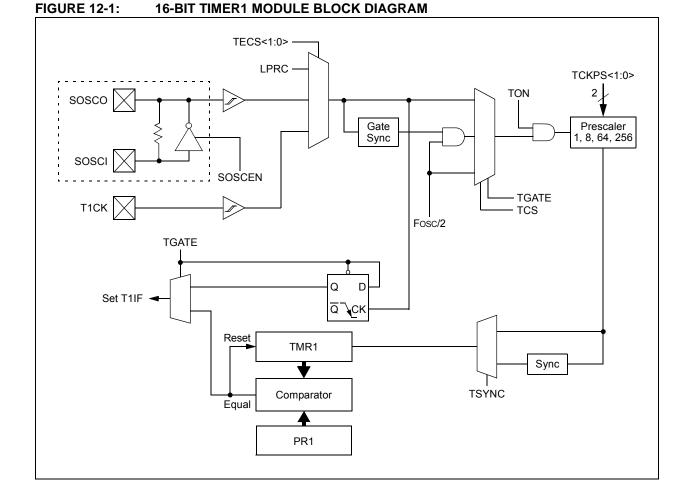
When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

12.0 TIMER1

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on timers, refer to the "PIC24F Family Reference Manual", "Timers" (DS39704).

The Timer1 module is a 16-bit timer which can serve as the time counter for the Real-Time Clock (RTC) or operate as a free-running, interval timer/counter. Timer1 can operate in three modes:

- 16-Bit Timer
- 16-Bit Synchronous Counter
- 16-Bit Asynchronous Counter


Timer1 also supports these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation During CPU Idle and Sleep modes
- Interrupt on 16-Bit Period Register Match or Falling Edge of External Gate Signal

Figure 12-1 illustrates a block diagram of the 16-bit Timer1 module.

To configure Timer1 for operation:

- 1. Set the TON bit (= 1).
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Set or clear the TSYNC bit to configure synchronous or asynchronous operation.
- 5. Load the timer period value into the PR1 register.
- 6. If interrupts are required, set the Timer1 Interrupt Enable bit, T1IE. Use the Timer1 Interrupt Priority bits, T1IP<2:0>, to set the interrupt priority.

REGISTER 16-2:	RTCPWC: RTCC CONFIGURATION REGISTER 2 ⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
PWCEN	PWCPOL	PWCCPRE	PWCSPRE	RTCCLK1 ⁽²⁾	RTCCLK0 ⁽²⁾	RTCOUT1	RTCOUT0			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
bit 7							bit C			
Legend:										
R = Reada	hle hit	W = Writable	hit	II = I Inimpleme	nted bit, read as	ʻ ∩ '				
-n = Value		'1' = Bit is set		'0' = Bit is cleare		x = Bit is unkr	own			
					50					
bit 15	PWCEN: Po	wer Control Er	able bit							
		ontrol is enable								
	0 = Power co	ontrol is disable	ed							
bit 14	PWCPOL: P	ower Control F	Polarity bit							
		ontrol output is								
		ontrol output is								
bit 13		Power Control	2							
				by-2 of source R ⁻ by-1 of source R ⁻						
bit 12		Power Control		2						
			•	by-2 of source R	CC clock					
				by-1 of source R						
bit 11-10	RTCCLK<1:	0>: RTCC Clo	ck Select bits ⁽²	2)						
	Determines the source of the internal RTCC clock, which is used for all RTCC timer operations.									
	00 = External Secondary Oscillator (SOSC) 01 = Internal LPRC Oscillator									
	10 = External power line source – 50 Hz									
		al power line so								
bit 9-8	RTCOUT<1:0>: RTCC Output Select bits									
		Determines the source of the RTCC pin output.								
	00 = RTCC	alarm pulse seconds clock								
	10 = RTCC (
	11 = Power (control								
bit 7-0	Unimpleme	nted: Read as	' 0 '							
Note 1:	The RTCPWC	register is only	affected by a	POR						
			-	r bits the Secon	da Valua ragiatar	should also be	written to			

2: When a new value is written to these register bits, the Seconds Value register should also be written to properly reset the clock prescalers in the RTCC.

REGISTER 17-5: CLCxGLSH: CLCx GATE LOGIC INPUT SELECT HIGH REGISTER (CONTINUED)

bit 3	G3D2T: Gate 3 Data Source 2 True Enable bit
	1 = The Data Source 2 inverted signal is enabled for Gate 3
	0 = The Data Source 2 inverted signal is disabled for Gate 3
bit 2	G3D2N: Gate 3 Data Source 2 Negated Enable bit
	1 = The Data Source 2 inverted signal is enabled for Gate 3
	0 = The Data Source 2 inverted signal is disabled for Gate 3
bit 1	G3D1T: Gate 3 Data Source 1 True Enable bit
	1 = The Data Source 1 inverted signal is enabled for Gate 3
	0 = The Data Source 1 inverted signal is disabled for Gate 3
bit 0	G3D1N: Gate 3 Data Source 1 Negated Enable bit
	1 = The Data Source 1 inverted signal is enabled for Gate 3
	0 = The Data Source 1 inverted signal is disabled for Gate 3

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0		
DACEN		DACSIDL	DACSLP	DACFM		SRDIS	DACTRIG		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
DACOE	DACTSEL4	DACTSEL3	DACTSEL2	DACTSEL1	DACTSEL0	DACREF1	DACREF0		
bit 7 k									
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown		
							-		
bit 15	DACEN: DAC	x Enable bit							
	1 = Module is	s enabled							
	0 = Module is	s disabled							
bit 14	Unimplement	ted: Read as 'd)'						
bit 13	DACSIDL: DA	ACx Stop in Idle	e Mode bit						
		ues module op s module opera		device enters lo ode	lle mode				
bit 12	DACSLP: DA	Cx Enable Per	ipheral During	Sleep bit					
				ent value of DA ; DACxOUT pi			nd LATx bits		
bit 11	DACFM: DAC	x Data Format	Select bit						
		ft justified (data ht justified (dat							
bit 10	Unimplement	ted: Read as '0)'						
bit 9	SRDIS: Soft F	Reset Disable b	oit						
	 1 = DACxCON and DACxDAT SFRs reset only on a POR or BOR Reset 0 = DACxCON and DACxDAT SFRs reset on any type of device Reset 								
bit 8									
	DACTRIG: DACx Trigger Input Enable bit 1 = Analog output value updates when the selected (by DACTSEL<4:0>) event occurs 0 = Analog output value updates as soon as DACxDAT is written (DAC Trigger is ignored)								
bit 7	DACOE: DAC	Cx Output Enab	le bit						
	1 = DACx out	 1 = DACx output pin is enabled and driven on the DACxOUT pin 0 = DACx output pin is disabled, DACx output is available internally to other peripherals only 							
Note 1.		in configuration			-1.0~)		-		

REGISTER 20-1: DACxCON: DACx CONTROL REGISTER

Note 1: BGBUF1 voltage is configured by BUFREF<1:0> (BUFCON0<1:0>).

DC CHARACTERISTICS			Standard Op	•		1.8V to 3.6V (PIC24F16KM204) 2.0V to 5.5V (PIC24FV16KM204) $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended		
Param No.	Sym	Characteristic	Min	Тур ⁽¹⁾	Мах	Units	Conditions	
	VIL	Input Low Voltage ⁽⁴⁾						
DI10		I/O Pins	Vss	—	0.2 VDD	V		
DI15		MCLR	Vss	_	0.2 VDD	V		
DI16		OSCI (XT mode)	Vss	—	0.2 VDD	V		
DI17		OSCI (HS mode)	Vss	—	0.2 VDD	V		
DI18		I/O Pins with I ² C™ Buffer	Vss		0.3 VDD	V	SMBus disabled	
DI19		I/O Pins with SMBus Buffer	Vss	—	0.8	V	SMBus enabled	
	Vih	Input High Voltage ^(4,5)						
DI20		I/O Pins: with Analog Functions Digital Only	0.8 Vdd 0.8 Vdd	—	Vdd Vdd	V V		
DI25		MCLR	0.8 Vdd	_	Vdd	V		
DI26		OSCI (XT mode)	0.7 Vdd	—	Vdd	V		
DI27		OSCI (HS mode)	0.7 Vdd	_	Vdd	V		
DI28		I/O Pins with I ² C Buffer: with Analog Functions Digital Only	0.7 Vdd 0.7 Vdd	—	Vdd Vdd	V V		
DI29		I/O Pins with SMBus	2.1	—	Vdd	V	$2.5V \le V\text{PIN} \le V\text{DD}$	
DI30	ICNPU	CNx Pull-up Current	50	250	500	μA	VDD = 3.3V, VPIN = VSS	
DI31	IPU	Maximum Load Current for		—	30	μA	VDD = 2.0V	
		Digital High Detection w/Internal Pull-up	—	—	1000	μA	VDD = 3.3V	
	lı∟	Input Leakage Current ^(2,3)						
DI50		I/O Ports	_	0.050	±0.100	μA	$\label{eq:VSS} \begin{split} &V{\rm SS} \leq V{\rm PIN} \leq V{\rm DD}, \\ &P{\rm in \ at \ high-impedance} \end{split}$	
DI51		Pins with OAxOUT Functions (RB15 and RB3)	_	0.100	±0.200	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &P{\rm in \ at \ high-impedance} \end{split}$	

TABLE 27-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

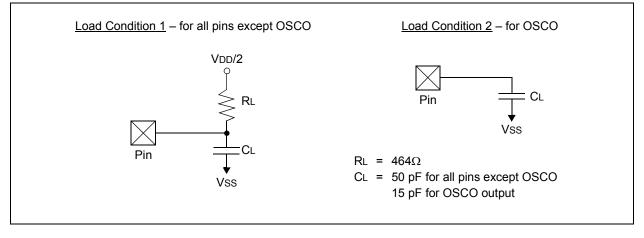
Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: Refer to Table 1-4 and Table 1-5 for I/O pin buffer types.

5: VIH requirements are met when the internal pull-ups are enabled.


27.2 AC Characteristics and Timing Parameters

The information contained in this section defines the PIC24FV16KM204 family AC characteristics and timing parameters.

TABLE 27-18: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions	: 1.8V to 3.6V
AC CHARACTERISTICS	Operating temperature	-40°C \leq TA \leq +85°C for Industrial
AC CHARACTERISTICS		-40°C \leq TA \leq +125°C for Extended
	Operating voltage VDD range as de	escribed in Section 27.1 "DC Characteristics".

FIGURE 27-5: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 27-19: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DO50	Cosc2	OSCO/CLKO Pin	_	—	15	pF	In XT and HS modes when External Clock is used to drive OSCI
DO56	Сю	All I/O Pins and OSCO	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	—	—	400	pF	In l ² C™ mode

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

AC CH	ARACTER	ISTICS	Standard Operation		pnditions: 1.8V to 3.6V (PIC24F16KM204) 2.0V to 5.5V (PIC24FV16KM204) $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended			
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions	
			Device S	Supply				
AD01	AVDD	Module VDD Supply	Greater of: VDD – 0.3 or 1.8	ĺ	Lesser of: VDD + 0.3 or 3.6	V	PIC24FXXKMXXX devices	
			Greater of: VDD – 0.3 or 2.0		Lesser of: VDD + 0.3 or 5.5	V	PIC24FVXXKMXXX devices	
AD02	AVss	Module Vss Supply	Vss – 0.3	_	Vss + 0.3	V		
			Reference	e Input	S			
AD05	VREFH	Reference Voltage High	AVss + 1.7	_	AVDD	V		
AD06	VREFL	Reference Voltage Low	AVss		AVDD – 1.7	V		
AD07	Vref	Absolute Reference Voltage	AVss – 0.3	_	AVDD + 0.3	V		
AD08	IVREF	Reference Voltage Input Current	—	1.25	—	mA		
AD09	Zvref	Reference Input Impedance	—	10k	—	Ω		
	•		Analog	Input				
AD10	VINH-VINL	Full-Scale Input Span	VREFL	_	VREFH	V	(Note 2)	
AD11	Vin	Absolute Input Voltage	AVss – 0.3	_	AVDD + 0.3	V		
AD12	VINL	Absolute Vın∟ Input Voltage	AVss – 0.3	_	AVDD/2	V		
AD17	RIN	Recommended Impedance of Analog Voltage Source			1k	Ω	12-bit	
	-		A/D Acc	uracy				
AD20b	NR	Resolution	_	12	—	bits		
AD21b	INL	Integral Nonlinearity	—	±1	±9	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V	
AD22b	DNL	Differential Nonlinearity		±1	±5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V	
AD23b	Gerr	Gain Error	_	±1	±9	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V	
AD24b	EOFF	Offset Error	_	±1	±5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V	
AD25b		Monotonicity ⁽¹⁾	—	_	_	_	Guaranteed	

TABLE 27-37: A/D MODULE SPECIFICATIONS

 $\label{eq:Note_1:} \textbf{Note_1:} \quad \text{The A/D conversion result never decreases with an increase in the input voltage.}$

2: Measurements are taken with external VREF+ and VREF- used as the A/D voltage reference.

NOTES:

NOTES:

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

 $\ensuremath{\textcircled{\sc 0}}$ 2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-62077-358-1

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.