

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I²C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 19x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f16km102t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

Microchip's Worldwide Web site; http://www.microchip.com

Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

PIC24FV16KM204 FAMILY

TABLE 1-2: DEVICE FEATURES FOR THE PIC24F16KM104 FAMILY

Features	PIC24F16KM104	PIC24F16KM102	PIC24F08KM102	PIC24F08KM101
Operating Frequency		DC-3	2 MHz	
Program Memory (bytes)	16K	16K	8K	8K
Program Memory (instructions)	5632	5632	2816	2816
Data Memory (bytes)		10)24	
Data EEPROM Memory (bytes)		5	12	
Interrupt Sources (soft vectors/NMI traps)		25 (21/4)	
Voltage Range		1.8-	-3.6V	
I/O Ports	PORTA<11:0> PORTB<15:0> PORTC<9:0>	PORTA PORTB	<7:0> <15:0>	PORTA<6:0> PORTB<15:12,9:7, 4,2:0>
Total I/O Pins	38	24	1	18
Timers	(One 16-bit timer, t	wo MCCPs/SCC	5 Ps with up to tw	vo 16/32 timers each)
Capture/Compare/PWM modules MCCP SCCP			1	
Serial Communications MSSP UART			1	
Input Change Notification Interrupt	37	23	3	17
12-Bit Analog-to-Digital Module (input channels)	22	19	9	16
Analog Comparators			1	
8-Bit Digital-to-Analog Converters		-		
Operational Amplifiers		-		
Charge Time Measurement Unit (CTMU)		Y	<i>ï</i> es	
Real-Time Clock and Calendar (RTCC)		-		
Configurable Logic Cell (CLC)			1	
Resets (and delays)	POR, BOR, R REPEAT Instruction	ESET Instructior on, Hardware Tra (PWRT, OS	n, <mark>MCLR</mark> , WDT aps, Configura T, PLL Lock)	, Illegal Opcode, tion Word Mismatch
Instruction Set	76 Base Inst	tructions, Multiple	e Addressing N	lode Variations
Packages	44-Pin QFN/TQFP, 48-Pin UQFN	28-F SPDIP/SSOF	Pin P/SOIC/QFN	20-Pin SOIC/SSOP/PDIP

3.0 CPU

Note:	This data sheet summarizes the features
	of this group of PIC24F devices. It is not
	intended to be a comprehensive refer-
	ence source. For more information on the
	CPU, refer to the "PIC24F Family
	Reference Manual", "CPU" (DS39703).

The PIC24F CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set and a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M instructions of user program memory space. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the REPEAT instructions, which are interruptible at any point.

PIC24F devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can act as a data, address or address offset register. The 16th working register (W15) operates as a Software Stack Pointer (SSP) for interrupts and calls.

The upper 32 Kbytes of the Data Space (DS) memory map can optionally be mapped into program space at any 16K word boundary of either program memory or data EEPROM memory, defined by the 8-bit Program Space Visibility Page Address (PSVPAG) register. The program to Data Space mapping feature lets any instruction access program space as if it were Data Space.

The Instruction Set Architecture (ISA) has been significantly enhanced beyond that of the PIC18, but maintains an acceptable level of backward compatibility. All PIC18 instructions and addressing modes are supported, either directly, or through simple macros. Many of the ISA enhancements have been driven by compiler efficiency needs.

The core supports Inherent (no operand), Relative, Literal, Memory Direct and three groups of addressing modes. All modes support Register Direct and various Register Indirect modes. Each group offers up to seven addressing modes. Instructions are associated with predefined addressing modes depending upon their functional requirements. For most instructions, the core is capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing trinary operations (i.e., A + B = C) to be executed in a single cycle.

A high-speed, 17-bit by 17-bit multiplier has been included to significantly enhance the core arithmetic capability and throughput. The multiplier supports Signed, Unsigned and Mixed mode, 16-bit by 16-bit or 8-bit by 8-bit integer multiplication. All multiply instructions execute in a single cycle.

The 16-bit ALU has been enhanced with integer divide assist hardware that supports an iterative non-restoring divide algorithm. It operates in conjunction with the REPEAT instruction looping mechanism and a selection of iterative divide instructions to support 32-bit (or 16-bit), divided by 16-bit integer signed and unsigned division. All divide operations require 19 cycles to complete but are interruptible at any cycle boundary.

The PIC24F has a vectored exception scheme with up to eight sources of non-maskable traps and up to 118 interrupt sources. Each interrupt source can be assigned to one of seven priority levels.

A block diagram of the CPU is illustrated in Figure 3-1.

3.1 Programmer's Model

Figure 3-2 displays the programmer's model for the PIC24F. All registers in the programmer's model are memory mapped and can be manipulated directly by instructions.

Table 3-1 provides a description of each register. All registers associated with the programmer's model are memory mapped.

TABLE 4-17: OP AMP 1 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
AMP1CON ⁽¹⁾	24Ah	AMPEN	_	AMPSIDL	AMPSLP	_	-	_	_	SPDSEL	_	NINSEL2	NINSEL1	NINSEL0	PINSEL2	PINSEL1	PINSEL0	0000

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition, r = reserved.

Note 1: This registers are available only on PIC24F(V)16KM2XX devices.

TABLE 4-18: OP AMP 2 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
AMP2CON ⁽¹⁾	24Ch	AMPEN	_	AMPSIDL	AMPSLP	_	_		_	SPDSEL		NINSEL2	NINSEL1	NINSEL0	PINSEL2	PINSEL1	PINSEL0	0000

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition, r = reserved.

Note 1: This registers are available only on PIC24F(V)16KM2XX devices.

TABLE 4-19: DAC1 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DAC1CON ⁽¹⁾	274h	DACEN	—	DACSIDL	DACSLP	DACFM	—	SRDIS	DACTRIG	DACOE	DACTSEL4	DACTSEL3	DACTSEL2	DACTSEL1	DACTSEL0	DACREF1	DACREF0	0000
DAC1DAT ⁽¹⁾	276h	DACDAT15(2)	DACDAT14(2)	DACDAT13(2)	DACDAT12(2)	DACDAT11(2)	DACDAT10(2)	DACDAT9(2)	DACDAT8(2)	DACDAT7(2)	DACDAT6(2)	DACDAT5(2)	DACDAT4(2)	DACDAT3(2)	DACDAT2(2)	DACDAT1(2)	DACDATO(2)	0000

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition, r = reserved.

Note 1: These registers are available only on PIC24F(V)16KM1XX devices.

2: The 8-bit result format depends on the value of the DACFM control bit.

TABLE 4-20: DAC2 REGISTER MAP

	File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	DAC2CON ⁽¹⁾	278h	DACEN	—	DACSIDL	DACSLP	DACFM	_	SRDIS	DACTRIG	DACOE	DACTSEL4	DACTSEL3	DACTSEL2	DACTSEL1	DACTSEL0	DACREF1	DACREF0	0000
ſ	DAC2DAT ⁽¹⁾	27Ah	DACDAT15(2)	DACDAT14(2)	DACDAT13(2)	DACDAT12(2)	DACDAT11(2)	DACDAT10(2)	DACDAT9(2)	DACDAT8(2)	DACDAT7(2)	DACDAT6(2)	DACDAT5(2)	DACDAT4(2)	DACDAT3(2)	DACDAT2(2)	DACDAT1(2)	DACDATO(2)	0000

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition, r = reserved.

Note 1: These registers are available only on PIC24F(V)16KM2XX devices.

2: The 8-bit result format depends on the value of the DACFM control bit.

REGISTER 7-1:

RCON: RESET CONTROL REGISTER⁽¹⁾

				11.0	11.0		
			K/W-U	0-0	U-0	K/W-0	K/W-U
IRAPR	IOPUVR	SBOREN	RETEN"			CM	PIVISLP
DIC 15							DILO
R/W-0, HS	6 R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-1, HS	R/W-1, HS
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
bit 7		•				·	bit 0
r							
Legend:		HS = Hardwar	e Settable bit				
R = Reada	ible bit	W = Writable b	bit	U = Unimplen	nented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
1.1.45							
DIT 15		Reset Flag bit	occurred				
	1 = A Trap Co 0 = A Trap Co	onflict Reset has	s not occurred				
bit 14	IOPUWR: Illeg	gal Opcode or l	Jninitialized W	Access Reset	Flag bit		
	1 = An illegal	opcode detecti	on, an illegal a	ddress mode o	or Uninitialized V	V register used	as an Address
	Pointer ca	aused a Reset	vitialized W/ Da	aat haa nat aa	ourrod		
hit 12		fluere Enclose		set has not oc	curred		
DIL 13	1 = BOR is tu	rned on in softw	are	K DIL			
	0 = BOR is tu	rned off in softw	/are				
bit 12	RETEN: Rete	ntion Sleep Mo	de ⁽³⁾				
	1 = Regulate 0 = Regulate	d voltage supply d voltage supply	y provided by t y provided by t	he Retention F he main Voltag	Regulator (RETF ge Regulator (VF	REG) during Sle REG) during Sle	ep ep
bit 11-10	Unimplement	ted: Read as '0	,				
bit 9	CM: Configura	ation Word Misr	match Reset F	lag bit			
	1 = A Configu 0 = A Configu	ration Word Mis	smatch Reset	has occurred has not occurre	ed		
bit 8	PMSLP: Prog	ram Memory Po	ower During S	leep bit			
	1 = Program 0 = Program Standby r	memory bias vo memory bias v mode	oltage remains /oltage is pow	powered durir vered down du	ng Sleep Iring Sleep and	the voltage re	gulator enters
bit 7	EXTR: Extern	al Reset (MCLF	R) Pin bit				
	1 = A Master	Clear (pin) Res	et has occurre	d			
	0 = A Master	Clear (pin) Res	et has not occi	urred			
DIT 6		re RESET (Instru	UCTION) Flag bit	[
	1 - A RESET I 0 = A RESET I	instruction has i	not been executed	uted			
bit 5	SWDTEN: So	ftware Enable/[Disable of WD	Г bit ⁽²⁾			
	1 = WDT is er 0 = WDT is di	nabled sabled					
Note 1:	All of the Reset s	status bits may l Reset.	be set or cleare	ed in software.	Setting one of th	nese bits in soft	ware does not
2:	If the FWDTEN<	<1:0> Configura bit setting.	tion bits are '1	1' (unprogrami	med), the WDT i	is always enabl	ed regardless

3: This is implemented on PIC24FV16KMXXX parts only; not used on PIC24F16KMXXX devices.

7.2.1 POR AND LONG OSCILLATOR START-UP TIMES

The oscillator start-up circuitry and its associated delay timers are not linked to the device Reset delays that occur at power-up. Some crystal circuits (especially low-frequency crystals) will have a relatively long start-up time. Therefore, one or more of the following conditions is possible after SYSRST is released:

- The oscillator circuit has not begun to oscillate.
- The Oscillator Start-up Timer (OST) has not expired (if a crystal oscillator is used).
- The PLL has not achieved a lock (if PLL is used).

The device will not begin to execute code until a valid clock source has been released to the system. Therefore, the oscillator and PLL start-up delays must be considered when the Reset delay time must be known.

7.2.2 FAIL-SAFE CLOCK MONITOR (FSCM) AND DEVICE RESETS

If the FSCM is enabled, it will begin to monitor the system clock source when SYSRST is released. If a valid clock source is not available at this time, the device will automatically switch to the FRC Oscillator and the user can switch to the desired crystal oscillator in the Trap Service Routine (TSR).

7.3 Special Function Register Reset States

Most of the Special Function Registers (SFRs) associated with the PIC24F CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in each section of this manual.

The Reset value for each SFR does not depend on the type of Reset, with the exception of four registers. The Reset value for the Reset Control register, RCON, will depend on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, will depend on the type of Reset and the programmed values of the FNOSCx bits in the Flash Configuration Word (FOSCSEL<2:0>); see Table 7-2. The RCFGCAL and NVMCON registers are only affected by a POR.

7.4 Brown-out Reset (BOR)

The PIC24FXXXXX family devices implement a BOR circuit, which provides the user several configuration and power-saving options. The BOR is controlled by the BORV<1:0> and BOREN<1:0> Configuration bits (FPOR<6:5,1:0>). There are a total of four BOR configurations, which are provided in Table 7-3.

The BOR threshold is set by the BORV<1:0> bits. If BOR is enabled (any values of BOREN<1:0>, except '00'), any drop of VDD below the set threshold point will reset the device. The chip will remain in BOR until VDD rises above the threshold.

If the Power-up Timer is enabled, it will be invoked after VDD rises above the threshold. Then, it will keep the chip in Reset for an additional time delay, TPWRT, if VDD drops below the threshold while the Power-up Timer is running. The chip goes back into a BOR and the Power-up Timer will be initialized. Once VDD rises above the threshold, the Power-up Timer will execute the additional time delay.

BOR and the Power-up Timer (PWRT) are independently configured. Enabling the Brown-out Reset does not automatically enable the PWRT.

7.4.1 LOW-POWER BOR (LPBOR)

The Low-Power BOR is an alternate setting for the BOR, designed to consume minimal power. In LPBOR mode, BORV<1:0> (FPOR<6:5>) = 00. The BOR trip point is approximately 2.0V. Due to the low current consumption, the accuracy of the LPBOR mode can vary.

Unlike the other BOR modes, LPBOR mode will not cause a device Reset when VDD drops below the trip point. Instead, it re-arms the POR circuit to ensure that the device will reset properly in the event that VDD continues to drop below the minimum operating voltage.

The device will continue to execute code when VDD is below the level of the LPBOR trip point. A device that requires falling edge BOR protection to prevent code from improperly executing should use one of the other BOR voltage settings.

13.3 Output Compare Mode

Output Compare mode compares the Timer register value with the value of one or two Compare registers, depending on its mode of operation. The Output Compare x module on compare match events has the ability to generate a single output transition or a train of output

pulses. Like most PIC[®] MCU peripherals, the Output Compare x module can also generate interrupts on a compare match event.

Table 13-3 shows the various modes available in Output Compare modes.

TABLE 13-3: OUTPUT COMPARE/PWM MODES

MOD<3:0> (CCPxCON1L<3:0>)	T32 (CCPxCON1L<5>)	Operating Mode			
0001	0	Output High on Compare (16-bit)			
0001	1	Output High on Compare (32-bit)			
0010	0	Output Low on Compare (16-bit)	Single Edge Mede		
0010	1	Output Low on Compare (32-bit)	Single Eage Mode		
0011	0	Output Toggle on Compare (16-bit)			
0011	1	Output Toggle on Compare (32-bit)			
0100	0	Dual Edge Compare (16-bit)	Dual Edge Mode		
0101	0	Dual Edge Compare (16-bit buffered)	PWM Mode		
0110	0	Center-Aligned Pulse (16-bit buffered)	Center PWM		
0111	0	Variable Frequency Pulse (16-bit)			
0111	1	Variable Frequency Pulse (32-bit)			

OUTPUT COMPARE x BLOCK DIAGRAM

REGISTER 10-2: RICPWC: RICC CONFIGURATION REGISTER 2	GISTER 16-2:	RTCPWC: RTCC CONFIGURATION REGISTER 2 ⁽¹⁾
--	--------------	--

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
PWCEN	PWCPOL	PWCCPRE	PWCSPRE	RTCCLK1 ⁽²⁾	RTCCLK0 ⁽²⁾	RTCOUT1	RTCOUT0				
bit 15							bit 8				
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
—	—	—	—	—		—	—				
bit 7							bit 0				
Legend:											
R = Reada	ble bit	W = Writable	bit	U = Unimpleme	nted bit, read as	'0'					
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cleare	ed	x = Bit is unkr	nown				
bit 15	PWCEN: Po	wer Control Er	able bit								
	1 = Power co	ontrol is enable	ed								
	0 = Power c	ontrol is disable	ed								
bit 14	PWCPOL: F	Power Control F	Polarity bit								
	1 = Power control output is active-high										
	0 = Power control output is active-low										
bit 13	PWCCPRE:	Power Control	Stability Pres	caler bits							
	1 = PWC sta	ability window c	lock is divide-l	by-2 of source R	I CC clock						
hit 12		Power Control		calor bits	I OO CIOCK						
	1 = PWC sat	mple window c	lock is divide-t	ov-2 of source R	FCC clock						
	0 = PWC sa	mple window c	lock is divide l	by 2 of source R	FCC clock						
bit 11-10	RTCCLK<1:	:0>: RTCC Clo	ck Select bits ⁽²	2)							
	Determines	the source of th	ne internal RT	CC clock, which i	s used for all RT	CC timer opera	tions.				
	00 = Externa	al Secondary C	scillator (SOS	C)		-					
	01 = Interna	I LPRC Oscilla	tor								
	10 = External	al power line so	burce -50 Hz								
hit 9-8		.0>. BICC Out	nut Select hits								
	Determines	the source of the	ne RTCC nin o	, putput							
	00 = RTCC :	alarm pulse									
	01 = RTCC :	seconds clock									
	10 = RTCC	clock									
hit 7-0		nted: Road an	' ∩'								
	onimpienie	meu. Reau as	U								
Note 1:	The RTCPWC	register is only	affected by a	POR.							

2: When a new value is written to these register bits, the Seconds Value register should also be written to properly reset the clock prescalers in the RTCC.

REGISTER 17-5: CLCxGLSH: CLCx GATE LOGIC INPUT SELECT HIGH REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N
bit 15		•		1	I		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N
bit 7							bit 0
Legend:			.,				
R = Readable	e bit	VV = VVritable t	Dit	U = Unimplem	nented bit, read	as '0'	
-n = value at	PUR	= Bit is set		0 = Bit is clea	ared	x = Bit is unkr	lown
bit 15	CADAT: Cate	4 Data Source	4 True Enable	bit			
bit 15	1 = The Data	Source 4 invert	ed signal is er	abled for Gate	4		
	0 = The Data	Source 4 invert	ed signal is di	sabled for Gate	4		
bit 14	G4D4N: Gate	4 Data Source	4 Negated Er	nable bit			
	1 = The Data	Source 4 invert	ed signal is er	nabled for Gate	4		
	0 = The Data	Source 4 invert	ed signal is di	sabled for Gate	4		
bit 13	G4D3T: Gate	4 Data Source	3 True Enable	e bit a abla difan Qata	4		
	1 = The Data 0 = The Data	Source 3 invert	ed signal is er ted signal is di	sabled for Gate	4 : 4		
bit 12	G4D3N: Gate	4 Data Source	3 Negated Er	nable bit			
	1 = The Data	Source 3 invert	ed signal is er	nabled for Gate	4		
	0 = The Data	Source 3 invert	ed signal is di	sabled for Gate	4		
bit 11	G4D2T: Gate	4 Data Source	2 True Enable	e bit			
	1 = The Data 0 = The Data	Source 2 invert	ed signal is er	nabled for Gate	4		
bit 10	G4D2N: Gate	4 Data Source	2 Negated Er	nable bit			
	1 = The Data	Source 2 invert	ed signal is er	nabled for Gate	4		
	0 = The Data	Source 2 invert	ed signal is di	sabled for Gate	4		
bit 9	G4D1T: Gate	4 Data Source	1 True Enable	e bit			
	1 = The Data	Source 1 invert	ed signal is er	habled for Gate	4		
hit Q	0 = The Data	A Data Source	1 Nogatod Er	sabled for Gale	: 4		
DILO	1 = The Data	Source 1 invert		nabled for Gate	4		
	0 = The Data	Source 1 invert	ed signal is di	sabled for Gate	4		
bit 7	G3D4T: Gate	3 Data Source	4 True Enable	e bit			
	1 = The Data	Source 4 invert	ed signal is er	nabled for Gate	3		
1.11.0	0 = The Data	Source 4 invert	ed signal is di	sabled for Gate	3		
bit 6	G3D4N: Gate	3 Data Source	4 Negated Er	hable bit	2		
	1 = The Data 0 = The Data	Source 4 invert	ed signal is ei	sabled for Gate	3		
bit 5	G3D3T: Gate	3 Data Source	3 True Enable	e bit	-		
	1 = The Data	Source 3 invert	ed signal is er	nabled for Gate	3		
	0 = The Data	Source 3 invert	ed signal is di	sabled for Gate	3		
bit 4	G3D3N: Gate	3 Data Source	3 Negated Er	hable bit			
	1 = The Data 0 = The Data	Source 3 invert Source 3 invert	ed signal is er ed signal is di	nabled for Gate sabled for Gate	3 3		

19.0 12-BIT A/D CONVERTER WITH THRESHOLD DETECT

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the 12-Bit A/D Converter with Threshold Detect, refer to the "PIC24F Family Reference Manual", "12-Bit A/D Converter with Threshold Detect" (DS39739).

The PIC24F 12-bit A/D Converter has the following key features:

- Successive Approximation Register (SAR)
 Conversion
- Conversion Speeds of up to 100 ksps
- Up to 32 Analog Input Channels (internal and external)
- Multiple Internal Reference Input Channels
- External Voltage Reference Input Pins
- Unipolar Differential Sample-and-Hold (S/H)
 Amplifier
- Automated Threshold Scan and Compare
 Operation to Pre-Evaluate Conversion Results
- Selectable Conversion Trigger Source
- Fixed-Length (one word per channel), Configurable Conversion Result Buffer
- Four Options for Results Alignment
- Configurable Interrupt Generation
- Operation During CPU Sleep and Idle modes

The 12-bit A/D Converter module is an enhanced version of the 10-bit module offered in some PIC24 devices. Both modules are Successive Approximation Register (SAR) converters at their cores, surrounded by a range of hardware features for flexible configuration. This version of the module extends functionality by providing 12-bit resolution, a wider range of automatic sampling options and tighter integration with other analog modules, such as the CTMU, and a configurable results buffer. There is a legacy 10-bit mode on this A/D to allow the option to run with lower resolution in order to obtain higher throughput. This module also includes a unique Threshold Detect feature that allows the module itself to make simple decisions based on the conversion results.

A simplified block diagram for the module is illustrated in Figure 19-1.

PIC24FV16KM204 FAMILY

REGISTER 19-7: AD1CHITL: A/D SCAN COMPARE HIT REGISTER (LOW WORD)⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CHH15	CHH14	CHH13	CHH12	CHH11	CHH10	CHH9	CHH8 ^(2,3)	
bit 15				-			bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CHH7 ^(2,3)	CHH6 ^(2,3)	CHH5 ⁽²⁾	CHH4	CHH3	CHH2	CHH1	CHH0	
bit 7				-			bit 0	
Legend:								
R = Readable	bit	W = Writable I	oit	U = Unimplen	nented bit, read	l as '0'		
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown		
bit 15-0	CHH<15:0>:	A/D Compare H	lit bits ^(2,3)					
	<u>If CM<1:0> =</u>	<u>11:</u>						
	1 = A/D Res	ult Buffer x has	been written w	vith data or a m	atch has occur	red		

0 = A/D Result Buffer x has not been written with data

For All Other Values of CM<1:0>:

1 = A match has occurred on A/D Result Channel x

0 = No match has occurred on A/D Result Channel x

Note 1: Unimplemented channels are read as '0'.

2: The CHH<8:5> bits are not implemented in 20-pin devices.

3: The CHH<8:6> bits are not implemented in 28-pin devices.

19.3 Transfer Function

The transfer functions of the A/D Converter in 12-bit resolution are shown in Figure 19-3. The difference of the input voltages (VINH – VINL) is compared to the reference ((VR+) – (VR-)).

- The first code transition occurs when the input voltage is ((VR+) (VR-))/4096 or 1.0 LSb.
- The '0000 0000 0001' code is centered at VR- + (1.5 * ((VR+) (VR-))/4096).

- The '0010 0000 0000' code is centered at VREFL + (2048.5 * ((VR+) – (VR-))/4096).
- An input voltage less than VR- + (((VR-) – (VR-))/4096) converts as '0000 0000 0000'.
- An input voltage greater than (VR-) + (4095 ((VR+) – (VR-))/4096) converts as '1111 1111 1111'.

FIGURE 19-3: 12-BIT A/D TRANSFER FUNCTION

REGISTER 23-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_		_		—	—
bit 15		•					bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CVREN	CVROE	CVRSS	CVR4	CVR3	CVR2	CVR1	CVR0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15-8	Unimplemen	ted: Read as ')'				
bit 7	CVREN: Com	parator Voltage	e Reference E	nable bit			
	1 = CVREF ci	rcuit is powered	d on				
		rcuit is powered	d down				
bit 6	CVROE: Com	parator VREF C	Dutput Enable	Dit			
	1 = CVREF VC 0 = CVREF VC	oltage level is o oltage level is d	utput on the C isconnected fr	VREF pin om the CVREF i	nin		
bit 5	CVRSS: Com	inarator VREE S	Source Selectic	on bit	pin		
bit o	1 = Compara	tor reference s	ource. CVRSRO	C = VREF+ – VR	EF-		
	0 = Compara	tor reference s	ource, CVRSRO	c = AVDD – AVs	S		
bit 4-0	CVR<4:0>: C	omparator VRE	F Value Select	ion $0 \le CVR < 4$:0> ≤ 31 bits		
	When CVRSS	<u>S = 1:</u>					
	CVREF = (VRE	:F-) + (CVR<4:()>/32) • (VREF+	⊦ – Vref-)			
	When CVRSS	$\frac{S = 0}{2}$	× /00) × / A) /==	A) (22)			
	$CVREF = (AVSS) + (CVR<4:0>/32) \cdot (AVDD - AVSS)$						

PIC24FV16KM204 FAMILY

R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
FWDTEN1	WINDIS	FWDTEN0	FWPSA	WDTPS3	WDTPS2	WDTPS1	WDTPS0
bit 7							bit 0
Legend:							
R = Readab	le bit	P = Programn	nable bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 7,5	FWDTEN<1:0 11 = WDT is en	>: Watchdog Ti nabled in hardy antrolled with the second secon	mer Enable bi vare	ts			
	01 = WDT is er 00 = WDT is di	nabled only whi isabled in hard	ile the device i ware; SWDTE	s active, WDT is N bit is disabled	s disabled in SI I	eep; SWDTEN	bit is disabled
bit 6	WINDIS: Winde	owed Watchdo	g Timer Disab	le bit			
	1 = Standard V 0 = Windowed hardware device Res	NDT is selecter I WDT is enable and software (set	d; windowed V ed; note that e (FWDTEN<1:0	VDT is disabled executing a CLR ()> = 00 and SV	WDT instruction	while the WDT N<5>) = 0) wi	is disabled in II not cause a
bit 4	FWPSA: WDT	Prescaler bit					
	1 = WDT preso 0 = WDT preso	caler ratio of 1: caler ratio of 1:	128 32				
bit 3-0	WDTPS<3:0>:	Watchdog Tim	er Postscale S	Select bits			
	1111 = 1:32,76	68					
	1110 = 1.16,38	34					
	1100 = 1.3, 192 1100 = 1.4,096	5					
	1011 = 1:2,048	3					
	1010 = 1:1,024	4					
	1001 = 1.512 1000 = 1.256						
	0111 = 1:128						
	0110 = 1:64						
	0101 = 1:32						
	0011 = 1:8						
	0010 = 1 :4						
	0001 = 1:2						
	0000 = 1:1						

REGISTER 25-5: FWDT: WATCHDOG TIMER CONFIGURATION REGISTER

TABLE 27-1: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
Operating Junction Temperature Range	TJ	-40	—	+140	°C
Operating Ambient Temperature Range	TA	-40	—	+125	°C
$\begin{array}{l} \mbox{Power Dissipation} \\ \mbox{Internal Chip Power Dissipation:} \\ \mbox{PINT} = \mbox{VDD } x \ (\mbox{IDD} - \Sigma \ \mbox{IOH}) \\ \mbox{I/O Pin Power Dissipation:} \\ \mbox{PI/O} = \Sigma \ (\{\mbox{VDD} - \mbox{VOH} \} \ x \ \mbox{IOH}) + \Sigma \ (\mbox{VOL } x \ \mbox{IOL}) \end{array}$	PD		Pint + Pi/c)	W
Maximum Allowed Power Dissipation	PDMAX	(TJ — TA)/θJ	A	W

TABLE 27-2: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Notes
Package Thermal Resistance, 20-Pin PDIP	θJA	62.4	—	°C/W	1
Package Thermal Resistance, 28-Pin SPDIP	θJA	60		°C/W	1
Package Thermal Resistance, 20-Pin SSOP	θJA	108		°C/W	1
Package Thermal Resistance, 28-Pin SSOP	θJA	71		°C/W	1
Package Thermal Resistance, 20-Pin SOIC	θJA	75		°C/W	1
Package Thermal Resistance, 28-Pin SOIC	θJA	80.2		°C/W	1
Package Thermal Resistance, 20-Pin QFN	θJA	43		°C/W	1
Package Thermal Resistance, 28-Pin QFN	θJA	32		°C/W	1
Package Thermal Resistance, 44-Pin QFN	θJA	29		°C/W	1
Package Thermal Resistance, 44-Pin TQFP	θJA	40		°C/W	1
Package Thermal Resistance, 48-Pin UQFN	θJA	41	—	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

TABLE 27-3: DC CHARACTERISTICS: TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHA		STICS	Standard Operating Conditions: Operating temperature				s: 1.8V to 3.6V (PIC24F16KMXXX) 2.0V to 5.5V (PIC24FV16KMXXX) $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DC10	Vdd	Supply Voltage	1.8		3.6	V	For PIC24F devices
			2.0		5.5	V	For PIC24FV devices
DC12	Vdr	RAM Data Retention	1.6		—	V	For PIC24F devices
		Voltage ⁽²⁾	1.8		_	V	For PIC24FV devices
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	Vss	_	0.7	V	
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.05	_		V/ms	0-3.3V in 0.1s 0-2.5V in 60 ms

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: This is the limit to which VDD can be lowered without losing RAM data.

PIC24FV16KM204 FAMILY

FIGURE 27-9: BROWN-OUT RESET CHARACTERISTICS

TABLE 27-25: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET TIMING REQUIREMENTS

АС СН	ARACTER	ISTICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				8V to 3.6V (PIC24F16KM204) 0V to 5.5V (PIC24FV16KM204) $0^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $0^{\circ}C \le TA \le +125^{\circ}C$ for Extended
Param No.	Symbol	Characteristic	Min.	Typ ⁽¹⁾	Max.	Units	Conditions
SY10	TmcL	MCLR Pulse Width (low)	2	_	_	μS	
SY11	TPWRT	Power-up Timer Period	50	64	90	ms	
SY12	TPOR	Power-on Reset Delay	1	5	10	μS	
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	_	_	100	ns	
SY20	Twdt	Watchdog Timer Time-out	0.85	1.0	1.15	ms	1.32 prescaler
		Period	3.4	4.0	4.6	ms	1:128 prescaler
SY25	TBOR	Brown-out Reset Pulse Width	1	-	_	μS	
SY35	TFSCM	Fail-Safe Clock Monitor Delay	-	2.0	2.3	μs	
SY45	TRST	Internal State Reset Time	_	5	—	μS	
SY50	TVREG	On-Chip Voltage Regulator Output Delay	_	10	—	μS	(Note 2)
SY55	TLOCK	PLL Start-up Time	_	100	—	μS	
SY65	Tost	Oscillator Start-up Time	_	1024	—	Tosc	
SY71	Трм	Program Memory Wake-up Time	—	1	—	μs	Sleep wake-up with PMSLP = 0
SY72	Tlvr	Low-Voltage Regulator Wake-up Time		250	—	μS	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: This applies to PIC24FV16KMXXX devices only.

FIGURE 27-13: EXAMPLE SPI SLAVE MODE TIMING (CKE = 0)

Param No.	Symbol	Characteristic	Characteristic		Max	Units	Conditions
70	TssL2scH, TssL2scL	$\overline{\text{SSx}} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input		3 Тсү	—	ns	
70A	TssL2WB	SSx to Write to SSPxBUF		3 TCY	—	ns	
71	TscH	SCKx Input High Time	Continuous	1.25 Tcy + 30	_	ns	
71A		(Slave mode)	Single Byte	40	—	ns	(Note 1)
72	TscL	SCKx Input Low Time	Continuous	1.25 Tcy + 30	—	ns	
72A		(Slave mode)	Single Byte	40	_	ns	(Note 1)
73	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx	Setup Time of SDIx Data Input to SCKx Edge				
73A	Тв2в	Last Clock Edge of Byte 1 to the First Clo	ck Edge of Byte 2	1.5 Tcy + 40	—	ns	(Note 2)
74	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx	Edge	40	—	ns	
75	TDOR	SDOx Data Output Rise Time		—	25	ns	
76	TDOF	SDOx Data Output Fall Time		—	25	ns	
77	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	e	10	50	ns	
80	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Ec	—	50	ns		
83	TscH2ssH, TscL2ssH	SSx ↑ After SCKx Edge		1.5 TCY + 40	—	ns	
	FSCK	SCKx Frequency		_	10	MHz	

TABLE 27-31: EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE TIMING, CKE = 0)

Note 1: Requires the use of Parameter 73A.

2: Only if Parameters 71A and 72A are used.

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

TOP VIEW

VIEW A-A

Microchip Technology Drawing C04-094C Sheet 1 of 2

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	Dimension Limits			
Number of Pins	N		28	
Pitch	е		0.65 BSC	
Overall Height	А	-	-	2.00
Molded Package Thickness	A2	1.65	1.75	1.85
Standoff	A1	0.05	-	-
Overall Width	E	7.40	7.80	8.20
Molded Package Width	E1	5.00	5.30	5.60
Overall Length	D	9.90	10.20	10.50
Foot Length	L	0.55	0.75	0.95
Footprint	L1	1.25 REF		
Lead Thickness	С	0.09	-	0.25
Foot Angle	¢	0°	4°	8°
Lead Width	b	0.22	-	0.38

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

48-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 6x6x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-153A Sheet 1 of 2